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Message from the General Chair

As the General Chair, I am indeed honored to pen the first words of the ISCSLP
2006 proceedings. On this occasion, I share with you the excitement in our
community as we approach the end-point of an eventful, two-year journey, while
anticipating a bright future, full of stimulating and inspiring scientific programs.
Over the last two years, exciting research endeavors in Chinese spoken language
processing have been pursued vigorously all over the world. I feel privileged to
chair the Fifth ISCSLP in Singapore this year, particularly at this juncture in
our history when the Chinese language is receiving worldwide attention, placing
us at an important period of growth and change.

ISCSLP 2006 received a surprisingly large number of paper submissions. I
would like to start by expressing my thanks to everyone who submitted their re-
search work. This year’s symposium was made possible by the hard work of many
people. My deepest thanks to all the chairs, especially, the Technical Chairs,
Qiang Huo and Bin Ma, together with the Special Session Chairs, who put an
immense amount of quality work into the paper review and preparation of the
technical program. I am also grateful to the Publication Chair, Eng-Siong Chng,
who did a great job coordinating the publication of our conference proceedings
(selected papers) in the Springer LNAI series for the first time.

I would also like to express my gratitude and appreciation to the Steering
Committee, which has led ISCSLP to what it is today, for their invaluable ad-
vice at various stages of our development; to the members of the Organizing
Committee, who made this event possible in Singapore; to the enthusiasts who
contributed their ideas in the committee meetings in Lisbon, Toulouse and Pitts-
burgh; to all the sponsors for their generous support of our CSLP undertakings;
and to the invited speakers as well as all the participants.

ISCSLP 2006 was unique in many ways, yet we continue the symposium’s
heritage of staying close to tradition. This year, we presented a scientific program
of cutting-edge research in CSLP in the form of paper presentations, posters and
demonstrations, supported by tutorials, workshops, and as always, good food.
The program continues to show a healthy balance of a high standard of selection
coupled with wide participation from the scientific community.

December 2006 Haizhou Li
General Chair, ISCSLP 2006



Preface

This book contains a selection of refereed papers presented at the Fifth Interna-
tional Symposium on Chinese Spoken Language Processing (ISCSLP 2006), held
in Singapore during December 13-16, 2006. ISCSLP is a biennial conference for
scientists, researchers, and practitioners to report and discuss the latest progress
in all scientific and technological aspects of Chinese spoken language processing
(CSLP). The previous four conferences were held in Singapore (ISCSLP 1998),
Beijing (ISCSLP 2000), Taipei (ISCSLP 2002) and Hong Kong (ISCSLP 2004),
respectively. Since its inception, ISCSLP has become the world’s largest and
most comprehensive technical conference focused on Chinese spoken language
processing and its applications.

This year, a total number of 183 full paper submissions were received from
18 countries and regions, including mainland China, Taiwan, Hong Kong, Sin-
gapore, Japan, India, Korea, USA, Australia, Spain, Finland, Belgium, Czech
Republic, Germany, Iran, Netherlands, Thailand, and Vietnam. Each paper was
reviewed rigorously by at least two reviewers, thanks to the help offered by all
members of the Technical Program Committee (TC), several members of the Or-
ganizing Committee (OC), and some additional reviewers. Detailed comments
from the reviewers were given to authors for their consideration in revising the
final manuscripts. Given the good quality of submitted papers, the TC and OC
worked very hard to place as many of these good papers into the technical pro-
gram as possible. As a result, 74 high-quality papers were selected to be included
in this book. They are arranged in the following sections:

- Invited plenary talks and tutorials
- Topics in speech science
- Speech analysis
- Speech synthesis and generation
- Speech enhancement
- Acoustic modeling for automatic speech recognition
- Robust speech recognition
- Speech adaptation/normalization
- General topics in speech recognition
- Large vocabulary continuous speech recognition
- Multilingual recognition and identification
- Speaker recognition and characterization
- Spoken language understanding
- Human language acquisition, development and learning
- Spoken and multimodal dialog systems
- Speech data mining and document retrieval
- Machine translation of speech
- Spoken language resources and annotation



VIII Preface

The conference program featured four invited plenary talks, two tutorials,
four special sessions and a number of regular oral and poster sessions covering
a wide range of areas related to CSLP. The program was further enhanced by a
co-located event, “Affective Sciences Workshop,” jointly organized by the Swiss
House Singapore, the Swiss Centre (NCCR) for Affective Sciences and ISCSLP
2006.

On behalf of the Organizing and Technical Program Committees, we would
like to take this opportunity to express our deep gratitude to all the invited
plenary speakers (Stephanie Seneff, Klaus R. Scherer, Franz Josef Och, and Tat-
Seng Chua) and tutorial speakers (Keiichi Tokuda and Hang Li) for accepting
our invitation to give talks at ISCSLP 2006. Helen Meng did an excellent job
in organizing the plenary and tutorial sessions. Special thanks are due to the
organizers of the special sessions (Chiu-Yu Tseng, Thomas Fang Zheng, Hsin-
Min Wang, and Jianhua Tao), for their contributions in making ISCSLP 2006
an even more interesting and valuable event. We also want to thank those who
helped review papers, and members of the International Advisory Committee for
their advice. Last but not least, a special “thank you” has to go to the authors
of papers and all the participants of the event for their support of ISCSLP.

We hope that the fruitful technical interactions made possible by this con-
ference and the papers published in this book will benefit your research and
development efforts in CSLP.

December 2006 Qiang Huo and Bin Ma
Technical Program Co-chairs

ISCSLP 2006

Eng-Siong Chng
Publication Chair

ISCSLP 2006
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Abstract. It is widely recognized that one of the best ways to learn
a foreign language is through spoken dialogue with a native speaker.
However, this is not a practical method in the classroom due to the
one-to-one student/teacher ratio it implies. A potential solution to this
problem is to rely on computer spoken dialogue systems to role play
a conversational partner. This paper describes several multilingual dia-
logue systems specifically designed to address this need. Students can en-
gage in dialogue with the computer either over the telephone or through
audio/typed input at a Web page. Several different domains are being
developed, in which a student’s conversational interaction is assisted by
a software agent functioning as a “tutor” which can provide them with
translation assistance at any time. Thus, two recognizers are running in
parallel, one for English and one for Chinese. Some of the research is-
sues surrounding high-quality spoken language translation and dialogue
interaction with a non-native speaker are discussed.

1 Introduction

It is widely agreed among educators that the best way to learn to speak a
foreign language is to engage in natural conversation with a native speaker of
the language. Yet this is also one of the most costly ways to teach a language,
due to the inherently one-to-one student-teacher ratio that it implies.

Mandarin Chinese is one of the most difficult languages for a native English
speaker to learn. Chinese is substantially more difficult to master than the tradi-
tional European languages currently being taught in America – French, Spanish,
German, etc., because of the lack of common roots in the vocabulary, the novel
tonal and writing systems, and the distinctly different syntactic structure.

With the rapid recent emergence of China as a major player in the global
economy, there is an increased urgency to find ways to accelerate the pace at
which non-native speakers can acquire proficiency in communicating in Chinese.
It is evident that, as China becomes internationalized, individuals who can speak
Chinese fluently will have a distinct advantage in tapping into the human, fi-
nancial, and physical resources that China offers to the world. China itself has
wholeheartedly embraced the need for the members of its society to acquire flu-
ency in English, but the Western nations have been slow to reciprocate. Part of
the problem is the shortage of educators who speak both English and Chinese
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fluently (at least in the U.S.) and who understand the pedagogy of language
teaching.

Computers can offer a solution to this problem, both by engaging the student
in one-on-one spoken conversation, where the computer role plays the conversa-
tional partner, and by providing translation assistance when needed to help the
student formulate their half of the conversation. Conversations will ultimately
support a wide range of topics and will likely be goal directed, to help hold the
student’s interest and focus their attention. These conversations need not be
speech only, but instead could incorporate a display component, ranging from
an avatar to embody the voice to an entire video-game-like environment [13,14].

The explosive expansion of computer usage in households around the world in
the last decade is rapidly morphing into the widespread adoption of computers
and personal digital assistants (PDA’s) as devices for access to remote computa-
tional and information resources. Computers, via Voice over IP (VOIP), are also
beginning to replace the land line and cellular telephone systems as an alterna-
tive way for humans to remotely communicate among one another. Computer
Aided Language Learning (CALL) systems will be able to take advantage of the
widespread availability of high data rate communications networks to support
easy accessability to systems operating at remote sites. The student can just
enter a Web page, where they would be able to type or speak to the system,
with the system responding through displays and synthetic speech, supported
by multimodal WIMP-based interaction.

Clearly, for this vision to become a reality, a considerable amount of research
is necessary. While significant progress has been made on human language tech-
nologies, it is not clear that the technology is sufficiently mature to succeed in
enticing students of Chinese to play computer conversational games. At issue is
the very hard problem of speech recognition not only for a non-native speaker,
but also for a hesitant and disfluent speaker. Environmental issues are another
risk factor, as students could be using whatever set-up they have at home, and
the developer has no control over microphone quality or placement, or over en-
vironmental noise. The quality of the provided translations must be essentially
perfect, and the dialogue interaction must be able to gracefully recover from
digressions and misinformation due to unavoidable recognition errors. Any mul-
timodal interactions need to be intuitive and easily integrated into the conver-
sational thread. Finally, computers should also be able to analyze the recorded
utterances of the conversation, and, in a subsequent interaction, critique selected
production errors, involving aspects such as phonetic accuracy [4,21], tone pro-
duction [22,17], lexical and grammar usage [18], and fluency [7].

Holland et al. [8] have identified the basic principles of learning and cognition
as (1) implicit feedback, (2) overlearning, and (3) adaptive sequencing. Implicit
feedback falls out naturally in spoken conversational interaction – if the student
does not speak fluently and with good articulation, the computer will not under-
stand what they say. Furthermore, while the system could understand sentences
that are slightly ill-formed, it could routinely paraphrase the student’s query as
a technique for both confirming understanding and providing implicit corrective
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feedback. Thus, the student might say, “yi1 ge5 shu1” (“a book”), which the
system would repair to “yi1 ben3 shu1” in its paraphrase. Overlearning implies
the achievement of a mastery of the material to the point of effortless and auto-
matic retrieval. This can be achieved through the device used by video games to
provide immediate feedback and intrinsic reward in the game itself. Adaptive se-
quencing involves careful design of the material to support incremental advances
and to personalize the degree of difficulty to match the student’s achievement
level. Incremental advances in difficulty level will allow the student to be contin-
uously challenged but not overchallenged. Computer language learning systems
designed to achieve these goals will be entertaining and engaging, as well as
educational.

At the Spoken Language Systems group in the Computer Science and Ar-
tificial Intelligence Laboratory at MIT, we have been developing multilingual
spoken dialogue systems for nearly two decades [34]. A focus of our recent re-
search has been to configure multilingual systems to support language learning
applications [26]. Thus far, we have been concentrating on technology goals, but
we hope to achieve a milestone of introducing the technology into the classroom
wihtin the next year or so. Feedback from students and educators will lead to
design changes which will eventually converge on a design that works best, given
the constraints of the technology and the needs and interests of the students.
Most especially, we hope to design application domains that will be entertaining
to the students, thus engaging them in the activity and providing a rewarding
and non-threatening learning experience.

2 Current Status

Our research on spoken conversational systems has focused on the travel domain:
booking flights [29], city navigation, hotel booking, restaurant guide, weather
information [33], etc. These topics are fortuitously often quite appropriate for
the student of a second language, since it is likely that their first opportunity
to utilize their language skills will be a visit to a country where the language
is spoken. These systems center on goal-directed dialogue, which provides a
focus for the conversation as well as an assessment mechanism based on task
completion.

In developing these systems, we are attempting to provide generalizable tech-
nology solutions, especially for the linguistic analysis and the dialogue manage-
ment strategy, which will lead to more rapid deployment of capabilities in other
domains suitable for a language student. A recent new undertaking launched
specifically for the language learning application is a kind of “symmetrical” dia-
logue interaction style, where the two dialogue participants jointly solve a shared
problem, such as arranging a future meeting. Ultimately, we hope to empower
language educators to design novel dialogue interaction scenarios on a wide range
of topics, facilitated by an intuitive and easy-to-use graphical interface, modelled,
for example, after MIT’s SpeechBuilder system [9] or Carnegie Mellon’s Universal
Speech Interface [10].
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Fig. 1. Screen shot of Web-based drill exercise, in which the student must solve a
weather scenario. The student is provided explicit feedback on any tone errors.

To enable the student to gain competence in language usage within the
scope of the exercise, we have developed a “translation game,” where the sys-
tem presents a word, phrase, or sentence in English, and the student is tasked
with speaking an utterance with equivalent meaning in Chinese. If the computer
judges their answer to be correct, it congratulates them and offers another (ran-
domly generated) utterance to translate. The degree of difficulty of the trans-
lation task advances over time, and each student traverses this difficulty scale
depending on their constantly monitored performance. A convenient parameter
for measuring performance is the mean number of turns taken to successfully
translate each posed utterance. An enrollment step allows the computer to per-
sonalize the level to the student’s previously determined competence level across
multiple episodic interactions.

Figure 1 shows an example of a text-based interface to a translation game. The
system poses a simple scenario – Chicago; Monday; rain – and the student must
formulate a query in pinyin that solves this scenario. The system can correct any
tone errors, and also verifies if the student has correctly solved the scenario.

Having completed the translation exercises, the student would then attempt
spoken dialogue interaction with the computer on a topic that exercises the same
vocabulary and language constructs. The student converses (either by typing or
by speaking) with a software agent that speaks only Chinese but has access
to information sources. A software tutor can provide translation assistance at
any time. The system automatically detects whether the student is speaking
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English or Chinese – English utterances are translated whereas Chinese inputs
are answered in Chinese. If the student doesn’t understand the response, they
can simply ask for a translation. To help reign in the language usage and thus
improve the recognition performance, the tutor only provides translations that
the Mandarin grammar can parse. The computer records a detailed log of the
conversation, as well as capturing the student’s spoken untterances as audio files
that can be processed off-line for later language assessment.

An optional subsequent interaction provides the student with corrective fed-
edback on ways to improve their language production skills. While such feedback
could be integrated into the original live conversation, we feel that it would be
too distracting and disruptive during a time when they are concentrating on
communicating their needs, and is thus best left as a follow-on drill exercise.

3 Related Research

In a 1998 review paper assessing the state of the art in computer aids for lan-
guage teaching, Ehsani and Knodt [6] wrote: “Students’ ability to engage in
meaningful conversational interaction in the target language is considered an
important, if not the most important, goal of second language education. This
shift of emphasis has generated a growing need for instructional materials that
provide an opportunity for controlled interactive speaking practice outside the
classroom.” However, perhaps because of the complex requirements associated
with human-computer dialogue interaction, there has been surprisingly little re-
search in spoken dialogue systems aimed towards this goal up to the present time.

There are a couple of promising ongoing initiatives, one in the U.S. and one in
China, which are rapidly changing this picture. The U.S. initiative is the DAR-
WARS Tactical Language Training System (TLTS) [13,14], which is part of the
DARPA Training Superiority program. This ambitious program is targeted to-
wards U.S. military personnel, and has focused thus far on Arabic as the target
language. The idea is to embed language learning into a video-game-like envi-
ronment, where the student assumes the role of a character in the video game,
and interacts with other characters they encounter as they explore the virtual
space. The student communicates with the other characters through speech and
mouse-based gestures, and the options available at any point are based on the
situational setting.

One of the presumably many ongoing efforts in China for learning English is
the CSIEC Project [11,12], which is similar to ours in that the main delivery
model is interactive dialogue at a Web page. Similar to the DARWARS project,
the student interacts with embodied characters. No attempt is made to situate
them in a complex scene, but rather each character simply role plays a conver-
sational partner, mainly using a chatbot concept. The student can choose from
among six different “virtual chatting partners,” each of which has a distinct style
of conversational interaction. For example, one personality will simply rephrase
a user’s statement into a question: “Why do you like to play baseball?” An-
other character will tell jokes or stories, or sing a song, upon request. Thus far
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interaction has been restricted to typed input, with the target language being
English, although their intention is to eventually support spoken inputs. No
translation assistance is offered.

Any multilingual spoken dialogue system could be relatively easily reconfig-
ured as a language learning activity. For example, the ISIS system [20] is an im-
pressive trilingual spoken dialogue system, supporting English, Mandarin, and
Cantonese, which involves topics related to the stock domain and simulated
personal portfolios.

A research topic that has some synergy with dialogue systems for language
learning is the more general area of educational tutoring scenarios. An example
involving spoken dialogue interaction to help a student solve simple physics
problems can be found in [19].

4 Underlying Technologies

In this section, we describe the underlying technologies that support the language
learning systems we are developing, highlighting three aspects in particular:
(1) spoken language translation, (2) symmetrical dialogue interaction, and (3)
assessment and feedback.

Our systems are all configured as a set of technology and interface servers
that communicate among one another via a programmable central hub using
the Galaxy Communicator architecture [25]. The student accesses the system
simply by visiting a Web page. A Java audio program is automatically down-
loaded to support audio input at the computer. The audio stream is captured
and transmitted to two speech recognizers at a remote server to allow the stu-
dent to seamlessly switch between English and Chinese at any time. For speech
recognition we use the summit landmark based system [5]. The natural lan-
guage understanding component, tina [27], receives a word graph of utterance
hypotheses from both recognizers, and it is tasked both with selecting a can-
didate hypothesis and deciding which language was spoken. It also produces a
semantic frame, encoding the meaning, which is then translated (paraphrased
into Chinese by the language generation server), or answered (dispatched to
the dialogue manager), if Chinese was spoken. The dialogue manager interprets
the sentence in context, assisted by the context resolution server, and retrieves
appropriate information pertinent to the question from the database (flights,
weather, etc.). The dialogue manager prepares a reply frame which is passed
on to the language generation server to produce a string response in Chinese.
Each translation or response string is directed to the appropriate synthesizer
(English or Chinese) by the hub program, and the response is played back to
the student at the Web browser interface. When relevant, a separate HTML
response is displayed as a table of appropriate information returned from the
database. The system response is also displayed in a dialogue box that shows
a sequence of all preceding user-system turns. The user’s turn is represented
by a paraphrase of the original user query (as understood by the system). This
paraphrase string is automatically generated via formal rules by the language
generation server.
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At any time, the user can ask for a translation of the system’s response, in
which case the hub program redirects dialogue flow such that the previous reply
frame is retrieved and generated in English instead of Chinese.

4.1 Speech Translation

One of the most challenging technology requirements is high quality translation
of spoken inputs. This is a critical component of the system design, as it allows
the student to dislodge from a situation where inadequate knowledge of the lan-
guage stands in the way of advancing the dialogue. Two factors that make it
feasible are (1) the student is speaking in their native language, and (2) the do-
main is highly restricted. Although statistical methods are currently dominating
the field [1,16], linguistic methods are more likely to ultimately succeed in the
special case of high quality spoken language translation within a narrow domain.

Our approach is based on the semantic frame playing the role of an interlingua.
The natural language parser uses a language-specific grammar to transform the
English or Chinese query into a common meaning representation, and language-
specific generation rules are then applied to produce paraphrase strings in ei-
ther language. This framework thus supports bidirectional translation as well as
English-to-English and Chinese-to-Chinese paraphrases. Both the Chinese and
English grammars are syntax-based. However, the terminals are lexicalized, and
a spaciotemporal trigram language model, superimposed on the parse tree, pro-
vides significant constraint to aid in resolving parse ambiguity [27].

A trace mechanism to handle movement is important for maintaining con-
sistency between the two meaning repesentations produced by the English and
Chinese grammars respectively. English syntax moves wh-marked NP’s to the
front of the sentence, whereas in Chinese, temporals and locatives are typically
topicalized in a similar fashion. The effort involved in porting to a new domain
is minimized by relying heavily on syntactic rather than semantic structure.

Language generation makes use of the genesis [2] system. A set of recur-
sive rule-templates operates top-down on the semantic frame, supported by a
lexicon providing context-sensitive word senses. A preprocessor phase augments
a possibly impoverished semantic frame with syntactic features appropriate for
the target language [3], for example, supplying the inflectional endings for En-
glish verbs or the appropriate particle usage (“ge5,” “ben3,” “jian4,” etc.) for
quantified nouns in Chinese.

One advantage of a bidirectional linguistic-based translation method is that
it provides a convenient mechanism for assessing the quality of the proposed
translation. If a generated Chinese string fails to parse in the Chinese grammar,
it is rejected by the system. In this way, the system never proposes a Chinese
sentence that it can not understand.

To handle sentences for which direct translation fails to parse, we have de-
veloped two distinct back-off mechanisms, both of which are based on a sim-
plified [attribute: value] representation of the meaning (which we refer to as
an “electronic form” or E-form). The first one [30], utilized in the weather
domain, exploits an example-based translation method, borrowing from ideas
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Table 1. Spoken language translation results for English to Chinese, evaluated on an
unseen test set for two domains. Recognition WER was 6.9% for the weather domain,
and 10.6% for the flight domain. ORTH: text transcript; REC: recognizer output.

Num Utts Perfect Acceptable Incorrect Yield Accuracy

Weather ORTH 695 613 43 9 95.7% 98.6%

REC 695 577 50 13 92.1% 98.0%

Flights ORTH 432 356 30 13 92.4% 96.7%

REC 432 317 35 43 91.4% 89.1%

originating in the early ’90’s at ATR in Japan [24]. This method was found to
be less effective in the flight domain, due to sparse data issues. Instead, we uti-
lized an intermediate English-to-English paraphrase generated directly from the
E-form, via relatively straightforward generation rules [32]. The English para-
phrase is structured in a more regularized format than the original, and thus is
more likely to yield a parsable translation.

We have evaluated our English-to-Chinese spoken language translation system
in both the weather domain [30] and the flight domain [32], and results are sum-
marized in Table 1. The 695 test utterances in the weather domain averaged 6.5
words per sentence, whereas the 432 test utterances in the flight domain averaged
5.6 words per utterance. Native speakers of Mandarin judged the translations as
one of three categories: “Perfect,” “Acceptable,” and “Incorrect.” The “yield”
(percentage of utterances that were translated) and “accuracy” (percentage of
utterances whose translation was judged to be acceptable or better) values re-
ported in the table show that only the accuracy (89.1%) of the translations of
the flight domain recognition outputs falls below 90%. It is often the case that
an incorrect translation of a spoken input involves recognition errors that are
easily communicated to the student through the provided English paraphrase,
so that they would not be misinformed.

4.2 Symmetrical Conversational Paradigm

Typical first year language textbooks [31] center around the “self” – personal and
family relationships, hobbies and personal preferences, and daily activities. Thus,
we feel that it would be very useful if we could design generic dialogue systems
that support a new style of interaction, involving a symmetrical or “equal party”
conversational style. The participants share a common goal, but each side has
only partial knowledge of the goal space. Thus new information is both solicited
and provided by each participant in a conversational give-and-take paradigm.

We have chosen as our first scenario a simple game in which each partici-
pant role plays a persona with particular preferences with regard to activities
(such as swimming, dancing, playing video games, etc.), along with a particular
pre-arranged schedule of commitments over the next few days. The goal of the
conversation is to find a time to get together to jointly participate in an activity
that both parties find enjoyable. An example of a typical conversation in this
domain is shown in Figure 2.
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Student: What are you doing tomorrow afternoon?

System: I’m playing basketball. Would you like to join me?

Student: No, I don’t like to play basketball.

System: What do you like to do?

Student: I like to play video games and watch movies.

System: Would you like to join me to watch a movie this evening?

Student: No, I’m going to study this evening.

System: Are you free tomorrow evening?

Student: Yes, let’s watch a movie tomorrow evening.

Fig. 2. Example English dialogue in the “hobbies and schedules” domain

The symmetry inherent in this kind of dialogue allows the computer to role
play both sides of the conversation, thus enabling an effective resource for sys-
tem development and refinement. A considerable amount of randomness can be
built into the dialogue model, such that thousands of different variants can be
automatically generated, which, incidentally, yield a large corpus of simulated
utterances to train the initial statistics of the recognizer’s language model, as
well as providing example dialogues to show the student at a Web interface.
Each time a new dialogue is generated, each participant’s persona is reinstan-
tiated to randomly selected values for preferences and schedule, and the initial
question is randomly generated from among a number of different possibilities,
e.g., “When are you free <day>?” What are you doing <day> <time>?” “Do
you like <hobby>?” “What do you like to do?”, etc.

Similar to our strategies in the past, we have separated out aspects partic-
ular to the scenario into an external domain-specific configuration file. This
will make it relatively straightforward to redesign dialogue interaction scenarios
around other topics that share a common abstraction with our original scenario,
and thus lead to a substantially accelerated development cycle for an expanded
curriculum. For example, a later scenario might involve making plans to dine
together at a mutually agreeable restaurant. The dialogue manager adopts a
simple E-form representation of its linguistic messages, which are converted into
well-formed English and/or Chinese sentences using formal generation rules.

4.3 Assessment and Feedback

While we envision that students should not be distracted by explicit corrective
feedback during their live conversation with the computer, implicit feedback in
the form of (possibly corrected) paraphrases of their input sentence should allow
them to learn to recognize and correct certain kinds of mistakes, such as particle
usage mentioned above. We believe, furthermore, that students would welcome
the opportunity to receive feedback in a follow-on exercise about any mistakes
that were made and how they could be corrected. We are developing software
aimed at detecting and repairing errors in tone production [22,23], grammar [18],
and pronunciation [15].

Our work on tone production aims to provide the student with audio feedback
that will easily draw their attention to the provided corrections. The student will
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be able to compare their original utterance with one in which the worst-scoring
segments have been tonally adjusted. Since the two utterances differ only in the
fundamental frequency dimension, it should be clear to the student what needs
to be changed to correct the problem. This strategy requires a significant amount
of signal processing. The first step is to automatically align the utterance with its
orthographic transcript (this presumes that the transcript is correct). In parallel,
the fundamental frequency contour is extracted. Next, an explicit parameterized
model of the tone contour is computed for the vocalic portion of each syllable,
and a score is calculated for the quality of the match to the expected tone
contour for that syllable (having made adjustments for pitch range and for overall
sentence declination effects on the fundamental frequency). Subsequently, for
each syllable whose match is poor, the system can surgically repair the tone via
phase vocoder techniques, reshaping it to match the predicted shape and height
while preserving the original voice quality and speaker characteristics.

5 Summary and Future Work

This paper summarizes the current status of our research over the past several
years, which is aimed towards providing an enriching, entertaining, and effective
environment for practicing a foreign language by interacting with a computer.
We are now at the threshold of a new phase of our research, in which we will
introduce our technology into the classroom setting, and evaluate its effective-
ness in teaching Mandarin to native speakers of English. We have barely begun
the research on the assessment phase, which will involve post-processing the stu-
dent’s recorded utterances and providing focused corrective feedback on errors
in prosodics, pronunciation, lexical, and grammar usage.

While our research has predominantly involved the paradigm of a native En-
glish speaker learning Mandarin, it would be quite straightforward to reverse the
roles of the two languages to support a native Mandarin speaker learning English.
Our attempts to support portability issues allow the techniques to generalize to
other language pairs as well, but of course this needs to be demonstrated in
future research.

Our symmetrical dialogue interaction paradigm could support the intriguing
possibility of humans role playing both sides of the conversation, via their respec-
tive Web-based interfaces. Two students could interact with each other to solve
the scenario, with the computer playing a tutorial role for both students, provid-
ing them with translation assistance when needed and filtering their utterances
such that the other student only receives sentences spoken in Chinese.

In future research, we plan to greatly enrich the graphics component of our
systems, ultimately supporting an interactive immersive video contextualization,
thus blurring the boundary between educational exercises and video games.
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Abstract. Prosody or intonation is a prime carrier of affective information, a 
function that has often been neglected in speech research. Most work on 
prosody has been informed by linguistic models of sentence intonation that 
focus on accent structure and which are based on widely differing theoretical 
assumptions. Human speech production includes both prosodic coding of 
emotions, such as anger or happiness, and pragmatic intonations, such as 
interrogative or affirmative modes, as part of the language codes. The 
differentiation between these two types of prosody still presents a major 
problem to speech researchers. It is argued that this distinction becomes more 
feasible when it is acknowledged that these two types of prosody are differently 
affected by the so-called “push” and “pull” effects. Push effects, influenced by 
psychophysiological activation, strongly affect emotional prosody, whereas pull 
effects, influenced by cultural rules of expression, predominantly affect 
intonation or pragmatic prosody, even though both processes influence all 
prosodic production. The push-pull distinction implies that biological marking 
(push) is directly externalized in motor expression, whereas pull effects (based 
on socio-cultural norms or desirable, esteemed reference persons) will require 
the shaping of the expression to conform to these models. Given that the 
underlying biological processes are likely to be dependent on both the 
idiosyncratic nature of the individual and the specific nature of the situation, we 
would expect relatively strong inter-individual differences in the expressive 
patterns resulting from push effects. This is not the case for pull effects. Here, 
because of the very nature of the models that pull the expression, we would 
expect a very high degree of symbolization and conventionalization, in other 
words comparatively few and small individual differences. With respect to 
cross-cultural comparison, we would expect the opposite: very few differences 
between cultures for push effects, large differences for pull effects. 

Scherer and collaborators have suggested that these two types of effect 
generate two general principles underlying the coding of emotional and 
pragmatic information in speech, covariation and configuration. The 
covariation principle assumes a continuous, but not necessarily linear, 
relationship between some aspect of the emotional response and a particular 
acoustic variable. Thus, if F0 is directly related to physiological arousal, F0 
should be higher in rage as compared with mild irritation. An early study by 
Ladd and collaborators is described, showing that the F0 range shows a 
covariance relationship with attitudinal and affective information in that a larger 
range communicates more intense emotional meaning. In contrast, almost all 
linguistic descriptions assume that intonation involves a number of categorical 
distinctions, analogous to contrasts between segmental phonemes or between 
grammatical categories. In consequence, the configuration principle implies that 
the specific meaning conveyed by an utterance is actively inferred by the 
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listener from the total prosodic configuration, such as "falling intonation 
contour", and the linguistic choices in the context.  

The configuration principle seems to determine the coding of pragmatic 
features of speech, for example, emphasis, or message types such as declarative 
or interrogative mode. A study by Scherer and his collaborators is outlined that 
suggests that final pitch movements are coded by the configuration principle. 
While final-rise versus final-fall patterns of F0 in themselves do not carry 
emotional meanings; they are linked to sentence modes such as question versus 
affirmation. However, it can be shown that context, such as type of sentence, 
affects interpretation. Whereas a falling intonation contour is judged as neutral 
in a WH-question, it is judged as aggressive or challenging in a yes/no question. 
It can be hypothesized that continuous variables are linked to push effects 
(externalization of internal states); whereas configurations of category variables 
are more likely to be linked to pull effects (specific normative models for affect 
signals or display). In terms of origin and evolutionary development, it seems 
plausible to suggest that the covariation principle is evolutionarily continuous 
with the bio-psychological mechanism that underlies affect vocalizations in a 
large number of species. This possibility is described, for example, by the 
motivational-structural rules suggested by Morton in an attempt to systematize 
the role of fundamental frequency, energy, and quality (texture) of vocalization 
for the signaling of aggressive anger and fear. In contrast, the configuration 
principle might be assumed to be an evolutionarily more recent development, 
based on the emergence of language with its specific design features, including 
intonation patterns. Affective meaning could be produced by nonstandard usage 
of these respective codes, depending on the degree of context-dependent 
emotional marking. If this assumption is correct, one could imagine that the 
neural mechanisms that underlie the perceptual processing of the two types of 
affect messaging via prosodic variation are different, both with respect to the 
neural structures and circuits involved and to the nature and timing of the 
respective processes. 

A preliminary step in the empirical testing of this prediction is an 
examination of the difference in neural auditory processing of speech samples 
communicating either emotional content (joy, anger, sadness) or linguistic-
pragmatic meaning categories (e.g., statements or questions). If the prosodic 
communication of emotional content via the configuration principle uses a 
nonstandard, or marked, version of linguistic-pragmatic prosody identifying 
message type, it would be useful to first identify the potential neural processing 
differences between covariation-based emotion prosody patterns and linguistic-
pragmatically coded prosodic message types. In this contribution, several 
empirical studies are described that exemplify the possibilities of dissociating 
emotional and linguistic prosody decoding at the behavioral and neurological 
level. The results highlight the importance of considering not only the 
distinction of different types of prosody, but also the relevance of the task 
accomplished by the participants, to better understand information processes 
related to human vocal expression at the suprasegmental level. 
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Abstract. In recent years there has been an enormous boom in MT research. 
There has been not only an increase in the number of research groups in the 
field and in the amount of funding, but there is now also optimism for the future 
of the field and for achieving even better quality. The major reason for this 
change has been a paradigm shift away from linguistic/rule-based methods 
towards empirical/data-driven methods in MT. This has been made possible by 
the availability of large amounts of training data and large computational 
resources. This paradigm shift towards empirical methods has fundamentally 
changed the way MT research is done. The field faces new challenges. For 
achieving optimal MT quality, we want to train models on as much data as 
possible, ideally language models trained on hundreds of billions of words and 
translation models trained on hundreds of millions of words. Doing that 
requires very large computational resources, a corresponding software 
infrastructure, and a focus on systems building and engineering. In addition to 
discussing those challenges in MT research, the talk will also give specific 
examples on how some of the data challenges are being dealt with at Google 
Research.   
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Abstract. Most existing operational systems rely purely on automatic speech 
recognition (ASR) text as the basis for news video indexing and retrieval. While 
current research shows that ASR text has been the most influential component, 
results of large scale news video processing experiments indicate that the use of 
other modality features and external information sources such as the Web is 
essential in various situations. This talk reviews the frameworks and machine 
learning techniques used to fuse the ASR text with multi-modal and multi-
source information to tackle the challenging problems of story segmentation, 
concept detection and retrieval in broadcast news video. This paper also points 
the way towards the development of scalable technology to process large news 
video archives. 
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Abstract. The increasing availability of large speech databases makes it 
possible to construct speech synthesis systems, which are referred to as corpus-
based, data-driven, speaker-driven, or trainable approach, by applying statistical 
learning algorithms. These systems, which can be automatically trained, not 
only generate natural and high quality synthetic speech but also can reproduce 
voice characteristics of the original speaker. This talk presents one of these 
approaches, HMM-based speech synthesis. The basic idea of the approach is 
very simple: just train HMMs (hidden Markov models) and generate speech 
directly from them. To realize such a speech synthesis system, however, we 
need some tricks: algorithms for speech parameter generation from HMMs, and 
a mel-cepstrum based vocoding technique are reviewed, and an approach to 
simultaneous modeling of phonetic and prosodic parameters (spectrum, F0, and 
duration) is also presented. The main feature of the system is the use of 
dynamic feature: by inclusion of dynamic coefficients in the feature vector, the 
speech parameter sequence generated in synthesis is constrained to be realistic, 
as defined by the parameters of the HMMs. The attraction of this approach is 
that voice characteristics of synthesized speech can easily be changed by 
transforming HMM parameters. Actually, it has been shown that we can change 
voice characteristics of synthetic speech by applying a speaker adaptation 
technique which has been used in speech recognition systems. The relationship 
between the HMM-based approach and other concatenative speech synthesis 
approaches is also discussed. In the talk, not only the technical description but 
also recent results and demos will be presented. 
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Abstract. Every day people spend much time on creating, processing, and 
accessing information. In fact, most of the information exists in the form of 
"text", contained in books, emails, web pages, news paper articles, blogs, and 
reports. How to help people quickly find information from text data and how to 
help people discover new knowledge from text data has become an enormously 
important issue. Many research efforts have been made on text information 
extraction, retrieval, and mining; and significant progress has made in recent 
years. A large number of new methods have been proposed, and many systems 
have been developed and put into practical uses. This tutorial is aimed at giving 
an overview on two central topics of the area: namely Information Extraction 
(IE) and Information Retrieval (IR). Important technologies on them will be 
introduced. Specifically, models for IE such as Maximum Entropy Markov 
Model and Conditional Random Fields will be explained. Models for IR such as 
Language Model and Learning to Rank will be described. A brief survey on 
recent work on both IE and IR will be given. Finally, some recent work on the 
combined uses of IE and IR technologies will also be introduced. 



Q. Huo et al. (Eds.): ISCSLP 2006, LNAI 4274, pp. 19 – 30, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Mechanisms of Question Intonation in Mandarin 

Jiahong Yuan 

Department of Linguistics, University of Pennsylvania 
Philadelphia, PA 19104, USA 
jiahong@ling.upenn.edu 

Abstract. This study investigates mechanisms of question intonation in 
Mandarin Chinese. Three mechanisms of question intonation have been 
proposed: an overall higher phrase curve, higher strengths of sentence final 
tones, and a tone-dependent mechanism that flattens the falling slope of the 
final falling tone and steepens the rising slope of the final rising tone. The 
phrase curve and strength mechanisms were revealed by a computational 
modeling study and verified by the acoustic analyses as well as the perception 
experiments. The tone-dependent mechanism was suggested by a result from 
the perceptual study: question intonation is easier to identify if the sentence-
final tone is falling whereas it is harder to identify if the sentence-final tone is 
rising, and was revealed by the acoustic analyses on the final Tone2 and Tone4.  

Keywords: question intonation, perception, acoustics. 

1   Introduction 

This study investigates mechanisms of question intonation in Mandarin Chinese. In 
terms of surface F0, the difference between question and statement intonation in 
Mandarin Chinese is quite diverse, which can be illustrated by Figure 1. 

In general, the difference can be realized as the following: 1. The question curve is 
higher than the statement curve on the whole sentence (the left pair in Figure 1). 2. 
The question curve diverges from the statement curve after a point (the middle pair in 
Figure 1). 3. The question curve is higher than the statement curve except at some 
portions or points (the right pair in Figure 1).  

The difference between question and statement intonation has attracted much 
attention in Chinese intonation study. De Francis claims that the whole pitch level of 
the interrogative is higher than that of the declarative [1]. Disagreeing with De 
Francis, Tsao argues that the whole pitch level has no difference between the two 
intonation types and interrogative intonation in Chinese is ‘a matter of stress’ [2]. 
Gårding models Chinese intonation with ‘grids’, which qualitatively mark a time-
varying pitch range. Lexical tones then fit into that range [3, 4]. In Gårding’s model, 
the two intonation types have different grids. Shen J. proposes that the top line and the 
base line of a pitch contour are independent in the prosodic system of Chinese [5, 6]. 
For interrogative intonation the top line falls gradually whereas the base line 
undulates slightly and ends at a much higher point (compared to declarative 
intonation). Shen X. investigates the difference between the two intonation types by 
comparing their pitch values at four points: starting point, highest peak, lowest trough, 
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and ending point [7]. Her conclusion is that interrogative intonation begins at a 
register higher than declarative, although it may end with either a high or low key. In 
Pan-Mandarin ToBI, question intonation is mainly associated with a high boundary 
tone in the intonational tones tier [8]. 

   

Fig. 1. Diverse patterns of difference between the question curve (dark circles) and the 
statement curve (open circles) 

We studied the difference between question and statement intonation in Chinese 
with Stem-ML [9], an intonation description language combined with an algorithm 
for translating tags into quantitative prosody. Our study found that the ‘diverse’ 
difference between question and statement intonation in Mandarin Chinese can be 
accounted for by two consistent mechanisms: an overall higher phrase curve for the 
question intonation, and higher strength values of sentence final tones for the question 
intonation. It also suggested that the phrase curves of the two intonation types tend to 
be parallel and boundary tones are not necessary for modeling the difference between 
the two intonation types in Mandarin Chinese [10].  

These results raised several interesting issues and questions: Firstly, they seem 
inconsistent with some previous models of Chinese intonation. For example, in 
Gårding’s model the two intonation types have grids with different directions and in 
Pan-Mandarin ToBI a high boundary tone has been used to transcribe question 
intonation. Secondly, if question intonation is realized by strengthening the final 
syllables then what is the difference between ‘plain’ interrogative intonation and 
interrogative intonation whose final syllable(s) are focused (given the fact that a 
focused syllable must also be strengthened in speech)? And what is the difference 
between ‘plain’ question intonation and declarative intonation that has a focus at its 
end? Thirdly and most importantly, do actual production and perception data support 
these results? 

Perception and acoustic studies were then conducted in light of these issues and 
questions. A systematic corpus was created for both of these facets of the study. The 
corpus consisted of 130 sentences, which were minimal pairs contrasting on 
intonation type (statement, question), presence of a focus or not, focus position 
(sentence initial, middle, end), tone of the focused syllable (tone1, tone2, tone3, 
tone4), and tone of the last syllable (tone1, tone2, tone3, tone4). For example: 
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1. Li3bai4wu3 Luo2Yan4   yao4  mai3  mao1.  ←  statement, no focus 
    Friday          Luo2Yan4   will   buy     cat 
    “Luo2Yan4 (Luo2 is a last name and Yan4 is a first name) will buy a cat Friday.” 
2. Li3bai4wu3 Luo2yan4   yao4  mai3  mao1?    ←  question, no focus 
    Friday          Luo2yan3   will   buy     cat 
    “Luo2Yan4 will buy a cat Friday?” (It is a question with surprise, dubiousness, etc.) 
3. Li3bai4wu3 Luo2Yan4   yao4  mai3  mao1.   ←  statement, a tone1 focus at the end 
    Friday          Luo2Yan4   will   buy     cat 
    “(not a goat, not a deer,) LuoYan will buy a cat Friday.” 
 
Eight native Mandarin speakers, four male and four female, took part in the 

recording. Two perception experiments were conducted on the 1040 utterances 
recorded in the database. One was for identifying intonation type and the other for 
identifying focus. Sixteen listeners, 8 female and 8 male, participated in the 
perception experiments. The listeners are also native Mandarin speakers.  

Results of the perception experiments have been reported in [11, 12]. In section 2 I 
summarize these results, and argue that the perception experiments found evidence 
for the strength mechanism of question intonation, as well as evidence for a third 
mechanism that was not found in our previous Stem-ML modeling study. In section 3, 
I report the results of acoustic analyses, which show further evidence for the strength 
and the phrase curve mechanisms, and discuss what the third mechanism is. Finally, 
in section 4, I present the conclusions. 

2   Evidence from Perception Experiments 

As reported in [11, 12], the perception experiments found that: 1. Statement 
intonation is easier to identify than question intonation; 2. The tone of the last syllable 
does not affect the identification of statement intonation; 3. The tone of the last 
syllable does affect the identification of question intonation: First, question intonation 
is easier to identify on a sentence ending with Tone4 than those ending with the other 
tones; second, identification of some speakers’ question intonation is very difficult if 
the sentence ends with Tone2; 4. A focus at the end of a sentence makes statement 
intonation more difficult to identify; 5. A focus at the middle or the end of a sentence 
makes question intonation easier to identify; 6. A focus at the middle of a sentence is 
easier to identify than a focus at the beginning or at the end, no matter what intonation 
type the sentence has; 7. A focus at the end of a sentence is more difficult to identify 
than a focus at the beginning for a statement but not for a question; 8. The tone of a 
focused syllable does not affect focus identification under Statement, even if the focus 
is at the end of a sentence; 9. A focus on Tone2 is more difficult to identify than that 
on Tone4 if the focus is at the middle of a question sentence and a focus on Tone1 is 
more difficult to identify than that on Tone3 if it is at the end of a question sentence. 
Some of the results were also found in Liu and Xu’s study on a different dataset [13]. 

These results reveal four interesting asymmetries: statement and question 
intonation identification; effects of the final tone2 and tone4 on question intonation 
identification; effects of the final focus on statement and question intonation 
identification; and effects of intonation type on focus identification. 
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The asymmetry of statement and question intonation identification manifests in 
two ways: First, statement intonation is easier to identify than question intonation, 
suggest by both a higher mean identification ratio and a smaller variation; second, the 
tone of the last syllable does not affect statement intonation identification but it does 
affect question intonation identification. The intonation identification test was a 
forced choice test: the listeners must identify the intonation type of each utterance as 
either a statement or a question. That question intonation identification was less 
accurate means that many question intonation utterances were identified as 
statements. This suggests that statement intonation is a default or unmarked intonation 
type. That is, listeners fall back to this option when there is not enough information 
suggesting ‘question’, which is also supported by the fact that the tone of the last 
syllable does not affect Statement identification. Question intonation is, however, a 
marked intonation type. It can only be identified if the listeners actually hear the 
‘question’ features/mechanisms.  

The second asymmetry revealed by the perception experiments is of the effects of 
the sentence-final Tone2 and Tone4 on question intonation identification: On the one 
hand, question intonation is easier to identify on a sentence ending with Tone4 than 
ending with the other tones. On the other hand, identification of some speakers’ 
question intonation is very difficult if the sentence ends with Tone2. Tone4 is a falling 
tone and Tone2 is a rising tone. Therefore the asymmetry can also be stated as 
follows: In sentence-final position, question intonation is easier to identify on a falling 
tone and more difficult to identify on a rising tone. Our previous Stem-ML modeling 
study on Mandarin intonation showed that the difference between statement and 
question intonation in Mandarin Chinese can be accounted for by two mechanisms: an 
overall higher phrase curve for the question intonation, and higher strength values of 
sentence final tones for the question intonation. Neither of these gestures, however, 
seems to be able to explain this asymmetry. The raise of the phrase curve is a global 
mechanism and has nothing to do with the asymmetry of the local interaction between 
intonation and the final tone. If the strength mechanism accounts for the asymmetry, 
at the sentence final position a high strength on Tone2 should be more difficult to 
identify than that on Tone4. Our perception test on focus identification, however, does 
not support this hypothesis. The mechanism of a focus must be a high strength, but 
the tone of the focused syllable, according to conclusion 8 above, does not affect 
focus identification under Statement, even if the focus is at the end of a sentence. The 
inability of the strength mechanism to explain this asymmetry implies either of the 
following two conclusions: 1. the strength mechanism is a ‘false’ one; 2. there exists 
another mechanism that accounts for the asymmetry. The first implication, however, 
is not tenable, as we can see from the discussion below as well as in section 3.  

The third and fourth asymmetries are related to both focus and intonation type. The 
third asymmetry is that a focus at the end of a sentence makes statement intonation 
harder to identify but makes question intonation easier to identify. And from 
conclusion 6 and 7 we can generalize the fourth asymmetry: Question intonation 
makes a focus at the end of a sentence easier to identify whereas statement intonation 
does not. Both of the asymmetries are consistent with the strength mechanism of 
question intonation. Both question intonation and a final focus have a higher strength 
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at the sentence final position. Therefore, presence of both in a sentence will make it 
easier for the listeners to identify the higher strength mechanism, which is an 
indicator of question intonation to the listeners in the intonation type identification 
test and an indicator of focus in the focus identification test. If there is a focus at the 
end of a statement, the higher strength of the last focused tone may be misinterpreted 
as a mechanism of question intonation for some listeners. Therefore more statements 
were identified as questions if focus was presented in final position.     
    In summary, the perception experiments found evidence for the strength 
mechanism of question intonation. It also found an asymmetry about the effects of the 
sentence-final tone2 and tone4 on question intonation identification. That the strength 
and the phrase curve mechanisms cannot explain this asymmetry suggests there is 
another mechanism of question intonation.  

3   Evidence from Acoustic Analyses 

Comparisons of statement and question intonation were made on the overall F0 
pattern, the overall intensity and duration pattern, the intensity and duration of the 
final tones, and the F0 of the final Tone2 and Tone4. Only the unfocused utterances 
were used for the acoustic analyses. 

3.1   Overall F0 Pattern 

Since each statement and question intonation pair has the same tone sequence, we can 
calculate the difference of the average F0 over the tone at each syllable pair. The 
results are shown in Figure 2. 

Difference of average F0 at each syllable: All speakers
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Fig. 2. Difference of the average F0 over each syllable pair (question minus statement) for all 
speakers 

Clearly, the F0 curve of question intonation is higher overall than that of statement 
intonation. We can also see that the difference widens toward the end of the sentence.  
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This is consistent with the mechanisms of question intonation we found in our Stem-
ML modeling study of Chinese intonation: Question intonation has a higher phrase 
curve and higher strengths at sentence final tones. 

On the other hand, although in general the F0 curve of question intonation is higher 
than that of statement intonation, Tone3 in a question may reach the same low point 
as in a statement at any sentence position, as we can see from Figure 1 above. To 
further support the conclusion that Tone3 in statement and question intonation may 
reach the same low point at any sentence position, Table 1 provides the counts of the 
occurrences where Tone3 reaches the same or almost the same low point (the 
difference is less than 5 Hz) at different sentence positions. 

Table 1. Counts of the occurrences of the same low Tone3s in statements and questions 

Sentence position of Tone3 

Speaker Syllable 1 Syllable 3 Syllable 5 Syllable 7 
S1 2 (11)* 2 (16) 0 (20) 0 (14) 
S2 2 (11) 1 (16) 0 (20) 0 (14) 
S3 4 (11) 3 (16) 0 (20) 0 (14) 
S4 3 (11) 1 (16) 2 (20) 1 (14) 
S5 1 (11) 1 (16) 0 (20) 2 (14) 
S6 9 (11) 11 (16) 6 (20) 5 (14) 
S7 0 (11) 10 (16) 7 (20) 4 (14) 
S8 6 (11) 10 (16) 7 (20) 2 (14) 

Total 27 (88) 39 (128) 22 (160) 14 (112) 

  * The numbers in the brackets are the total occurrences. 

3.2   Overall Duration and Intensity Pattern 

Each utterance has eight syllables. Each syllable has its own duration and intensity. 
Duration is the time span of the syllable and intensity is measured by the highest 
intensity value of the syllable. The mean duration and intensity of each syllable in 
statement and question intonation across all speakers are shown in Figure 3 and 4 
respectively. 

Figure 3 shows that the syllables in question intonation are shorter than those in 
statement intonation in every position except the last syllable, which is longer in 
question intonation. It also shows final lengthening of both statement and question 
intonation, because of which the final syllable is longer than the other syllables. 

Figure 4 shows that question intonation has a higher intensity curve than statement 
intonation and that the difference between them grows toward the end of the sentence. 

The duration and intensity patterns shown in Figures 3 and 4 strongly support the 
strength mechanism: The sentence final tones have higher strength values in question 
intonation. 
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Fig. 3. Overall duration pattern of statement and question intonation (S: Statement; Q: 
Question) 
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Fig. 4. Overall intensity pattern of statement and question intonation (S: Statement; Q: 
Question) 

3.3   Duration and Intensity of the Final Tones 

Figure 5 shows the duration and intensity difference between statement and question 
intonation for each of the sentence final tones. 

From Figure 5 we can see that the final Tone3 and Tone4 are longer in question 
intonation than in statement intonation, whereas the final Tone1 and Tone2 have 
similar duration in the two intonation types. 

In many cases the final Tone3 is only a low target in a statement. In a question, 
however, the rising end of Tone3 appears. Therefore, it is not surprising that the final 
Tone3 in question intonation is much longer than in the statement. However, why the 
final Tone4 is longer in question intonation whereas the final Tone1 and Tone2 are 
not is puzzling. 
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Fig. 5. Duration and intensity difference between statement and question intonation for each of 
the final tones (S: Statement; Q: Question) 

We can also see from Figure 5 that each final tone has a higher intensity in 
question intonation than in statement intonation. The difference between them, 
however, is the largest for Tone2 and the smallest for Tone4. 

3.4   F0 of the Final Tone2 and Tone4 

Both the perception experiments and the duration and intensity analyses above 
revealed an asymmetry between the final Tone2 and Tone4. Do they also show an 
asymmetry in F0? This section tries to answer this question. Two F0 parameters are 
extracted and compared for the final Tone2 and Tone4: F0 at the end and F0 slope. 
The results are shown in Figures 6 and 7. 

From Figures 6 and 7 we can see that both the F0 at the end and the F0 slope of the 
final Tone2 are higher in question intonation than in statement intonation. The F0 at 
the end of the final Tone4 is higher in question intonation than in statement intonation 
whereas the F0 slope is not different between the two intonation types.  
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F0 slope of the final Tone2
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Fig. 6. F0 of the final Tone2 (S: Statement; Q: Question) 
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F0 slope of the final Tone4
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Fig. 7. F0 of the final Tone4 (S: Statement; Q: Question) 

3.5   Summary and Discussion 

To summarize the results of the acoustic analyses, I draw the following conclusions: 
1. The F0 curve of question intonation is higher than that of statement intonation. 
Tone3, however, may sometimes pull the question curve down to the statement curve. 
2. Question intonation has a higher intensity curve than statement intonation and the 
difference between them becomes greater toward the end of the utterance. 3. The final 
Tone3 and Tone4 are longer in question intonation than in statement intonation 
whereas the final Tone1 and Tone2 have similar duration in the two intonation types. 
4. Each final tone has a higher intensity in question intonation than in statement 
intonation and the difference between them is the largest for Tone2 and the smallest 
for Tone4. 5. Both the F0 at the end and the F0 slope of the final Tone2 are higher in 
question intonation than in statement intonation. 6. F0 at the end of the final Tone4 is 
higher in question intonation than in statement intonation whereas the F0 slope is not 
different between the two intonation types.     

The perception results in section 2 suggest that a third mechanism is needed to 
explain the asymmetry in the effects of the sentence-final Tone2 and Tone4 on 
question intonation identification. I will argue that the third mechanism is a tone-
dependent mechanism functioning on the final tone. 

The final tone in question intonation is strengthened by the strength mechanism, 
which expands the F0 range of the final tone. If there is no other mechanism 
functioning on the final Tone4 in question intonation, the F0 at its end should stay 
low, as under focus [14]. The acoustic analyses above, however, showed that the F0 at 
the end of the final Tone4 is higher in question intonation than in statement 
intonation. Therefore, there must be another mechanism causing the F0 at the end of 
the final Tone4 in question intonation to be raised, therefore higher than in statement 
intonation.  

From the acoustic analyses we know that the F0 at the end and the F0 slope of the 
final Tone2 are greater in question intonation than in statement intonation. I propose 
that the third mechanism will increase the slope of the final Tone2 in question 
intonation if the slope can be naturally increased. Why can it not raise the F0 at the 
end? According to previous studies [14], sentence final Tone2 has a longer duration 
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under focus (strengthened). The sentence final Tone2 in question intonation (also 
strengthened), therefore, must be longer than in statement intonation if the third 
mechanism of question intonation does not affect the duration of the final Tone2. 
However, the acoustic analyses above show the contrary: The duration of the final 
Tone2 in question intonation is not longer than that found in statement intonation. If 
we assume that the third mechanism of question intonation raises the F0 at the end of 
the final Tone2, it will be very difficult to explain why the final Tone2 in question 
intonation is not longer than in statement intonation. There is no such difficulty if we 
assume that changing the rising slope is the mechanism. If the slope is steeper, it will 
take less time to finish a span, which is, from the speakers’ point of view, a pitch 
range that is large enough to indicate question intonation and also natural. 

From the discussion above, we can see that the third mechanism of question 
intonation is different from the phrase curve mechanism and the strength mechanism 
in the following ways: First, it is a strictly local mechanism that functions only on the 
last tone; second, it is tone dependent; it flattens the falling slope of the final Tone4 
and steepens the rising slope of the final Tone2. The intuition of the mechanism is 
simple: If there is a falling tone at the end of question intonation, the falling tone goes 
down more slowly; if there is a rising tone at the end of question intonation, the rising 
tone goes up more quickly. The idea that the realization of intonation type is sensitive 
to tonal identity was first developed in Shih (1988) [15]. Most of the Chinese 
intonation models in the literature do not, however, capture this aspect of tone and 
intonation interaction. 

The tone-dependent mechanism may conflict with the strength mechanism on the 
final Tone2. This mechanism requires that the final Tone2 in question intonation go 
up more quickly or as soon as possible. The strength mechanism, however, requires 
that the beginning low part of the final Tone2 in question intonation be lengthened, or 
not go up soon [14]. This probably explains why question intonation is more difficult 
to realize if there is a Tone2 at the end of a sentence.  

I have paid little attention to the F0 contours of the final Tone1 and Tone3, partly 
because they are difficult to study: In an utterance, Tone1 can be either a target or a 
high-level contour and Tone3 can have either a rising end or not. Although the third 
mechanism is tone dependent, whether it functions on different versions of Tone1 
(having a level contour or not) or Tone3 (having a rising end or not) in the same way 
or in different ways is neither clear nor a trivial question, and remains a question for 
further research. 

4   Conclusions 

Results from the perception experiments demonstrate that statement intonation is 
easier to identify than question intonation, and, while the tone of the last syllable does 
not affect statement intonation identification, it does affect question intonation 
identification. The intonation identification test was a forced choice test: listeners 
must identify the intonation type of each utterance as either statement or question 
intonation. That question intonation identification was less accurate means that many 
question intonation utterances were identified as statement intonation. This suggests 
that statement intonation is a default or unmarked intonation type; listeners fall back 
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on this option when there is not enough information suggesting ‘question.’ The 
conclusion is also supported by the fact that the tone of the last syllable does not 
affect statement intonation identification. Question intonation, however, is a marked 
intonation type. It can only be identified if listeners actually hear the ‘question’ 
features/mechanisms.  

Three mechanisms of question intonation have been proposed: an overall higher 
phrase curve, higher strengths of sentence final tones, and a tone-dependent 
mechanism that flattens the falling slope of the final falling tone and steepens the 
rising slope of the final rising tone. The phrase curve and strength mechanisms were 
revealed by the computational modeling study and verified by the acoustic analysis as 
well as the perceptual study: 1. Overall, the F0 and intensity of question intonation are 
higher than statement intonation (phrase curve mechanism). 2. The F0 and intensity 
difference between question intonation and statement intonation becomes higher 
toward the end of the sentence (strength mechanism). 3. The syllables in question 
intonation are shorter than those in statement intonation in every position except the 
last syllable, which is longer in question intonation (strength mechanism). 4. Focus at 
the end of a sentence makes statement intonation harder to identify but makes 
question intonation easier to identify. Question intonation makes focus at the end of a 
sentence easier to identify whereas statement intonation does not (strength 
mechanism). The third mechanism, a tone-dependent mechanism, was suggested by a 
result from the perceptual study: Question intonation is easier to identify if the 
sentence-final tone is falling whereas it is harder to identify if the sentence-final tone 
is rising. Neither the phrase curve mechanism nor the strength mechanism can explain 
this result. The phrase curve mechanism is global and tone-independent and the 
strength mechanism is partially global and also tone-independent. The asymmetry of 
the effects of the final Tone2 and Tone4, however, is local and tone-dependent. 
Acoustic analyses on the final Tone2 and Tone4 suggested that the tone-dependent 
mechanism of question intonation flattens the final falling tone and steepens the final 
rising tone. 

The tone-dependent mechanism may conflict with the strength mechanism on the 
final Tone2: This mechanism requires that the final Tone2 in question intonation go 
up more quickly or as soon as possible. The strength mechanism, however, requires 
that the beginning low part of the final Tone2 in question intonation be lengthened, or 
not go up soon. This likely explains why question intonation is more difficult to 
realize as well as identify if there is a Tone2 at the end of a sentence.  
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Abstract. Although there have been many studies on the prosodic structure of 
spoken Mandarin as well as many proposals for labeling the prosody of spoken 
Mandarin, the labeling of prosodic boundaries in all the existing annotation 
systems relies on auditory perception, and lacks a direct relation to the acoustic 
process of prosody generation. Besides, perception-based annotation cannot 
ensure a high degree of consistency and reliability. In the present study, we 
investigate the phrasing of spoken Mandarin from the production point of view, 
by using an acoustic model for generating F0 contours. The relationship 
between perceived prosodic boundaries at various layers and phrase commands 
derived from the model-based analysis of F0 contours is then revealed. The 
results indicate that a perception-based prosody labeling system cannot describe 
the prosodic structure as accurately as the model for F0 contour generation. 

Keywords: prosodic hierarchy, perceived prosodic boundary, F0 contour, 
phrase, command-response model, Mandarin, perception, production. 

1   Introduction 

While the units and structures of a written message are largely well-defined within the 
framework of a given grammar, it is not the case for the units and structures of a 
spoken message, since they have traditionally been defined on the basis of subjective 
impressions, without referring to objective acoustic-phonetic characteristics of 
speech. In order to have definitions based on physically observable characteristics, 
Fujisaki defined prosody as the systematic organization of various linguistic units into 
an utterance, or a coherent group of utterances in the process of speech production 
[1]. As such, its units and structures can be described in terms of acoustic-phonetic 
characteristics of speech. 

It turns out that the units and structures of prosody thus defined are not identical, 
though generally closely related to, the units and structures of syntax of the linguistic 
message that underlies the utterance. It is also known that the units of prosody and 
their acoustic-phonetic manifestations are not language-universal but somewhat 
language-specific. For instance, the units of prosody of an utterance of spoken 
Common Japanese were defined by Fujisaki et al. [2] to be prosodic word, prosodic 
phrase, prosodic clause, and prosodic sentence, on the basis of accent commands and 
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phrase commands extracted from the voice fundamental frequency contour (i.e., F0 
contour), as well as pauses, but tone languages such as Mandarin certainly need 
different definitions. In the present paper, we shall look into the units and structures 
of prosody of spoken Mandarin. 

Although there have been many studies on the prosodic structures of spoken 
Mandarin [3]-[8], no consensus has been attained on the hierarchy and the definitions 
of various prosodic units. This is in line with the fact that there is no consensus on the 
syntactic hierarchy of Chinese, especially considering the ambiguity in defining a 
‘word’ as well as a certain degree of randomness in specifying the punctuations. 

Among others, the C-ToBI system [7], [8] proposes a five-layer hierarchy: syllable 
(SYL), prosodic word (PW), minor prosodic phrase (MIP), major prosodic phrase 
(MAP), and intonation group (IG). In contrast, another ToBI-like system proposed by 
Tseng [3]-[5] defines a prosodic structure of six layers: syllable (SYL), prosodic word 
(PW), prosodic phrase (PPh) or utterance, breath group (BG), prosodic phrase group 
(PG), and discourse (DIS); the boundaries for these units, from small to large, are 
associated with the break indices B1 to B5, respectively. In these two systems, MAP 
and BG may approximately coincide, though they are defined from different 
perspectives. 

However, the annotation of prosodic boundaries (break indices) in all these 
labeling systems relies more or less on auditory perception. This inevitably results in 
two problems. 

First, the annotation based on perceived prosodic characteristics is irreversible. In 
other words, it is not possible to reproduce the prosodic characteristics of the original 
speech signals because annotation involves symbolization which discards quantitative 
information, nor is it possible to restore the underlying events in prosody production 
from the results of annotation because the inverse process cannot be operated. It is no 
doubt that strong relations exist between speech production and speech perception, 
and all the perceived prosodic characteristics should have the corresponding events in 
prosody production; however, there is by no means one-to-one correspondence, since 
both production (encoding) and perception (decoding) of prosody information are 
complex and multilayered (especially considering that perception is also affected by 
linguistic information). Besides, it is also concerned with the limited capability of 
human’s perception of prosodic details (e.g., the local details of pitch movements [9]). 

Second, the prosodic labels based on perception are subjective and the results may 
vary with transcribers. This is an intrinsic flaw of any ToBI-like systems [10], though 
one of their design goals was a high degree of inter-transcriber reliability. It was 
reported in [7] that the consistency between four transcribers in labeling break indices 
of C-ToBI on a read speech corpus is 78%, not to mention spontaneous speech. A 
similar test was also conducted for Tseng’s labeling system [3], showing that inter-
transcriber inconsistency is maintained even after the exchange of notes for labeling. 

Thus, perception-based prosodic labeling systems cannot be used efficiently in the 
study of prosody generation for the purpose of speech synthesis. 

In order to conduct a more objective investigation into the prosodic structure, we 
need to look into the acoustic evidences. There have been many studies on the 
acoustic cues for perceiving various prosodic boundaries. For example, it is shown in 
[11], [12] that pause, pre-boundary segment/syllable lengthening, and F0 reset are 
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major cues for prosodic boundaries, either in read speech or in spontaneous speech of 
Mandarin. Besides, they are correlated with or complementary to each other. 

Among the three major cues, pause duration can be measured directly, and 
segment/syllable duration can also be reliably measured after an appropriate 
normalization to remove the segmental effects. The changes in F0, however, have not 
been carefully investigated. Direct comparison of local F0 values is not adequate even 
after a kind of tone normalization, because it is well known that the F0 contour also 
contains the information of wide-range utterance intonation which directly reflects the 
organization of various prosodic units. 

Based on these considerations, we shall investigate the phrasing of spoken 
Mandarin from the production point of view, by using a generative model for F0 
contours, which separates local lexical tones and global utterance intonation. On the 
basis of the same speech material, the relationship between the perceived prosodic 
boundaries and the model-based phrase commands can then be revealed. 

2   The Model for the Generation of F0 Contours 

There are many approaches to analyzing F0 contours, but only a few of them are 
capable of giving fully quantitative representations to F0 contours. Since in the current 
study we are concerned with the perspective of production, a model for the process of 
generating F0 contours should be the best choice. Therefore, we use the command-
response model [1], [13] proposed by Fujisaki and his coworkers. 

The command-response model for the process of F0 contour generation describes 
F0 contours in the logarithmic scale as the sum of phrase components, accent/tone 
components, and a baseline level lnFb. The phrase commands produce phrase 
components through the phrase control mechanism, giving the global shape of F0 
contours, while the accent/tone commands generate accent/tone components through 
the accent/tone control mechanism, characterizing the local F0 changes. Both 
mechanisms are assumed to be critically-damped second-order linear systems. It has 
already been shown that phrase and accent/tone commands have good correspondence 
with various linguistic and paralinguistic information of speech. 

The details of the model formulation are described in [1], [13]. Following the 
previous works, the constants , , and  are set at their respective default values 3.0 
(1/s), 20.0 (1/s), and 0.9 in the current study. 

Unlike most non-tone languages that need only positive accent commands, tone 
languages usually require tone commands of both positive and negative polarities due 
to faster local tonal changes. For a specific tone language, a set of tone command 
patterns needs to be specified in the model. 

Mandarin has four lexical tones: T1 (high tone), T2 (rising tone), T3 (low tone), 
and T4 (falling tone). Our previous work [14] has shown that the inherent tone 
command patterns for these four tones are: positive for T1, negative followed by 
positive for T2, negative for T3, and positive followed by negative for T4. Besides, 
Mandarin also has a so-called neutral tone (T0), which does not have an inherent tone 
command pattern; instead, the polarity of tone command for T0 varies largely with 
the preceding tone. Any lexical tones in Mandarin can be neutralized in an unstressed 
syllable. 
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If we disregard the minor effects of microprosody, an entire F0 contour can be 
reproduced from a set of commands and parameters. Thus, unlike perception-based 
annotation, the modeling of F0 contours is essentially a reversible process. Moreover, 
the underlying events in F0 production can be induced in the framework of the model, 
because physically observable F0 contours can be analyzed more closely with a 
mathematical process which inspects both local features and global trends. 

3   Speech Data 

The speech data used in the current study is a small portion of the COSPRO05 speech 
corpus of Taiwan Mandarin [16] collected and annotated by the Phonetics Lab, 
Institute of Linguistics, Academia Sinica, and kindly provided by Dr. Tseng. The 
speech corpus was recorded by two native speakers of Taiwan Mandarin (one male 
and one female) at their normal speech rates (4.33 and 4.23 syllables/sec, 
respectively). Both speakers were radio announcers under 35 years of age at the time 
of recording. 

There are six discourses in the current speech data which are the reading of three 
paragraphs by the two speakers (each discourse here is a single paragraph). The three 
paragraphs consist of 93, 168, and 369 syllables, respectively. 

The perception-based annotation of prosodic boundaries follows the hierarchy 
proposed in [3], purposely making no reference to lexical or syntactic properties. Five 
layers of boundaries, from small to large, are labeled with their respective break 
indices: B1, a syllable boundary at SYL layer where usually no break is perceived; 
B2, a perceived minor break at PW layer; B3, a perceived major break at PPh layer; 
B4, a perceived break at BG layer where the speaker is out of breath and about to take 
another full breath; and B5, a long break at PG layer after a perceived trailing-to-a-
final-end. From B3 up, actual pauses occur at the boundaries. 

The perceived prosodic boundaries were manually labeled by three trained 
transcribers independently. As stated in [4], intra- and inter-transcriber comparisons 
were conducted continually to ensure a high degree of intra- and inter-transcriber 
consistencies and hence the reliability of the labeled break indices. The annotation 
was not adopted until over 85% of inter-transcriber consistencies were attained. 

The F0 contours of the speech were extracted by the modified autocorrelation 
analysis of the LPC residual, and then were analyzed within the framework of the 
command-response model. During the model-based analysis, no reference was made 
to the prosodic annotation. 

4   Model-Based Analysis 

Although the inverse problem of the model, viz., induction of the underlying 
commands from a measured F0 contour, is not analytically solvable, with the aid of 
linguistic information a linguistically meaningful solution can be derived by the 
method of analysis-by-synthesis, which includes two steps: manual initial estimation 
(automatic method is under development [17]), and successive approximation. 
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On the basis of the information of tone identity and syntactic structure, an initial 
estimation is conducted manually to deconvolve an F0 contour into the underlying 
commands and a baseline frequency to give a solution in line with the linguistic 
constraints. For a constant style of read speech by a given speaker, the baseline 
frequency Fb can be initialized at a constant. 

Basically, tone commands in each syllable should comply with the inherent 
command pattern of the specific tone type (various tone changes should be taken into 
consideration here, including tone sandhi and tone neutralization), though a pair of 
tone commands in T2 and T4 may be degraded into a single tone command in certain 
contexts of coarticulation in continuous speech. 

The occurrences of phrase commands, on the other hand, are largely aligned with 
major syntactic boundaries and can be determined by comparison of local F0 values 
between neighboring tones. Phrase commands are only assigned when necessary and 
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Fig. 1. Model-based analysis of the F0 contour of the utterance: Shui2 nai3 tian1 
xia4 zhi4 qing1 zhi1 wu4 er2 cha2 you4 wei2 shui3 zhong1 zhi4 

qing1 zhi1 wei4 (Water is the clearest thing in the world, while tea has the purest 
taste in the water.) 
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Fig. 2. Model-based analysis of the F0 contour of the utterance: You3 yi4 hui2 bei3
feng1 gen1 tai4 yang2 zheng4 zai4 na4 er0 zheng1 lun4 shei2 de0 
ben3 shi4 da4 (Once the north wind and the sun were there arguing who was more 

capable.) 
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linguistically meaningful.  For example, at many positions, whether to add a very 
small phrase command or not usually has little effect on the accuracy of 
approximation; in this case, we do not add it. 

The details of the procedure can be referred to in [15], which is on the modeling of 
Cantonese but the principle is the same. After initial estimation, successive 
approximation is conducted through a hill-climbing search in the space of model 
parameters to obtain an optimal solution giving the least RMS error between the 
measured and the approximated F0 contours in the logarithmic domain. 

Even if initial estimation is done manually, a better inter-analyst consistency can 
be attained than for perception-based labeling systems, because the analysis is based 
on objective measurements instead of subjective impressions. Moreover, successive 
approximation decreases the inconsistency in initial estimation automatically. 

Since each discourse in the current study was read in a constant style, the variation 
of the value of Fb in a discourse is constrained within a range of 10 Hz. For a pause 
longer than 0.3 sec, an F0 reset is assigned at the beginning of the pause. 

Figures 1 and 2 show the results of analysis on the F0 contours of two utterances 
read by the female speaker, respectively. The crossed symbols indicate the measured 
F0 values, while the solid lines, the dotted lines, and the dashed lines indicate the 
approximated F0 contours, the baseline frequencies, and the contributions of phrase 
components, respectively. The difference between the approximated F0 contour and 
the phrase components corresponds to the tone components. 

The utterance in Fig. 1 has a pause of 0.3 sec between the two clauses, and hence 
F0 is reset to the baseline value at the end of the first clause; for both clauses, the 
clause-initial phrase commands are conspicuously larger than the others. In Fig. 2, the 
utterance does not have any internal pauses, and the utterance-initial phrase command 
is notably larger than the others. In both figures, all the utterance-medial phrase 
commands coincide with certain syntactic boundaries, but they do not follow the 
hierarchy of syntax. For the two utterances, the RMS errors between the measured 
and the approximated lnF0 values within the voiced intervals are 0.015 and 0.012 
respectively, equivalent to a relative error of 1.5% and 1.2% in F0, indicating a very 
high accuracy of approximations of F0 contours attained by the model. 

5   Analysis Results 

In most cases, the time for occurrence of a phrase command corresponds with (to be 
exact, slightly before) the segmental onset of a prosodic boundary at a certain layer; 
but not vice versa. Among the total of 282 phrase commands in the data, there are 
only 12 exceptions which do not occur at any labeled boundary – in 8 instances out of 
them, the phrase command is only one syllable apart from a boundary. These 8 
exceptional instances are listed below, where the slashes indicate the labeled PW 
boundaries (B2),1 while the vertical lines indicate the approximate positions of phrase 
commands we have detected. 

                                                           
1 In fact, there still lacks a very clear definition of ‘prosodic word’ in the multi-layer labeling 

system, as in most other works on Mandarin. It also increases the ambiguity in labeling. 
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The male speaker: 
    
    

The female speaker: 
    
     
       
    
    
     

  

Fig. 3. Magnitudes of phrase commands at the prosodic boundaries in Paragraph 1 read by the 
male speaker 

 

Fig. 4. Magnitudes of phrase commands at the prosodic boundaries in Paragraph 1 read by the 
female speaker 
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Fig. 5. Magnitudes of phrase commands at the prosodic boundaries in Paragraph 2 read by the 
male speaker 

 

Fig. 6. Magnitudes of phrase commands at the prosodic boundaries in Paragraph 2 read by the 
female speaker 

In each of these instances, there is a phrase command which is about one syllable 
apart from the nearest PW boundary – this syllable between the command and the 
boundary is always a monosyllabic syntactic word, and in most cases it is a function 
word like , , , , . In fact, there is always an ambiguity in grouping these 
monosyllabic syntactic words into prosodic units, especially when judged by 
perception. 

From the data including the above instances, we also observe that many PW 
boundaries are not accompanied by a phrase command. Hence, the claim that F0 reset 
is a major cue for prosodic word boundary [7] is not supported; in fact, it also 
contradicts with the results on the comparison of mean F0 values in the pre- and post-
boundary syllables as given in [12]. We conjecture that some other cues may play 
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more important role in perceiving PW boundaries. Meanwhile, we believe that the 
assignment of PW boundaries is more or less affected by syntactic information. 

Figures 3 to 6 show the magnitudes of phrase commands at various layers of 
prosodic boundaries in four discourses, respectively. Here the phrase commands that 
are only one syllable apart from the corresponding boundaries are also counted. It is 
observed that the prosodic structures of the speech for the same text are different 
between the two speakers, though a certain degree of similarity exists. 

Although there is an overall tendency that higher-layer boundaries correspond to 
larger phrase commands, considerable overlaps in the magnitude of phrase command 
are observed between the boundaries of different layers, especially between B3, B4, 
and B5. 

To give a better view, Tables 1 and 2 show the statistics of boundary breaks at 
various layers as well as of the corresponding phrase commands, for the two speakers, 
respectively. Both the mean and the standard deviation of the magnitude of phrase 
command are given. The values given in the parentheses indicate the statistics 
calculated only on non-zero phrase commands. 

Although higher-layer prosodic boundaries B4 and B5 are always accompanied by 
a phrase command, it is not always the case for lower-layer prosodic boundaries, 
especially for PW boundary (B2) which only shows a rate of occurrence of phrase 
commands at 36% and 29% for the two speakers respectively. 

For prosodic phrase boundaries (B3), most of them (93% for the male speaker and 
86% for the female speaker) are accompanied by a phrase command. Moreover, by 
looking closely into the 15 instances that are not accompanied by a phrase command, 
 

Table 1. Statistics of prosodic boundaries and the corresponding phrase commands in the data 
of the male speaker 

Break Index 
Num. of 

labeled breaks
Num. of phrase 

commands  
Mean of 

magnitude 
Std. of 

magnitude 
B2 170 61 0.06 (0.16) 0.08 (0.06) 
B3 69 64 0.31 (0.33) 0.17 (0.15) 
B4 15 15 0.46 0.12 
B5 8 8    0.52 *    0.11 * 

   * If counting the phrase command immediately after the filler in the case where the PG begins  
    with a filler, the mean and the standard deviation at B5 are 0.58 and 0.05, respectively. 

Table 2. Statistics of prosodic boundaries and the corresponding phrase commands in the data 
of the female speaker 

Break Index 
Num. of 

labeled breaks
Num. of phrase 

commands  
Mean of 

amplitudes 
Std. of 

amplitudes 
B2 177 51 0.05 (0.18) 0.09 (0.08) 
B3 69 59 0.31 (0.36) 0.19 (0.16) 
B4 15 15 0.48 0.08 
B5 9 9    0.49 *    0.10 * 

   * If counting the phrase command immediately after the filler in the case where the PG begins  
    with a filler, the mean and the standard deviation at B5 are 0.51 and 0.09, respectively. 
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we found that at least 10 of them should be labeled as B2 instead of B3, according to 
the definition that B3 be accompanied by a pause [3]-[5]. The mislabeling results 
from the confusion between physical ‘pause’ and perceived ‘break’ – the latter may 
result from other cues such as duration lengthening, intensity change, or F0 reset. 
Especially, in many of these instances the closure of a stop was regarded mistakenly 
as a pause; in fact, a similar problem in labeling C-ToBI has also been noted in [12]. 

From these observations, we recognize that the perception-based labeling of 
prosodic boundaries is not always reliable, even if a few trained transcribers have 
attained a high degree of consistency. Meanwhile, the confusion between B2 and B3 
indicates that there still lacks an explicit definition of ‘prosodic word’ and ‘prosodic 
phrase’ for spoken Mandarin, as also noted in the study of C-ToBI [7]. In our view, 
prosodic phrase boundaries are always accompanied by phrase commands, though the 
occurrence of a phrase command does not necessarily indicate a prosodic phrase 
boundary – it can also occur at certain prosodic word boundaries. In this sense, the 
model-based analysis can also be used to verify the annotation of break indices. 

On the whole, phrase commands tend to be larger at higher-layer boundaries, 
though the ranges of magnitudes overlap considerably. A notable exception is that no 
significant difference is observed between B4 and B5. Nevertheless, when we looked 
more closely into the data, we found that the results for B5 could be corrected 
slightly. Two PGs in the data of the male speaker and one PG in the data of the female 
speaker begin with fillers like “OK” or “soon.” Since fillers usually have very low F0 
values, in the study of phrasing we can skip them and count the magnitude of the 
phrase command immediately after the filler instead. In this way, the average phrase 
command at B5 becomes slightly larger, as indicated below the two tables. Hence, for 
the male speaker it is larger than at B4, but for the female speaker the difference 
between B4 and B5 is still negligible. 

The big overlaps between the magnitudes of phrase commands at B3, B4, and B5 
indicate that F0 is not the major cue for distinguishing between these layers. Then the 
question is: what are the major cues for identifying these break indices? Here, we also 
investigate pause duration at these perceived boundaries, because pause is well 
recognized to be an important cue for prosodic structure of spoken Mandarin, and it is 
also suggested in [3]-[5] that B5 is associated with a perceived longer break than B4. 

 

 
(a) The male speaker.                                    (b) The female speaker. 

Fig. 7. Duration of pauses at the prosodic boundaries in the discourses of Paragraph 1 
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Figure 7 shows the duration of pauses at B3, B4, and B5 boundaries in the 
discourses of Paragraph 1 by the two speakers. Among B3 labels in the data, only 
those accompanied by an actual pause are counted here. Although panel (a) for the 
male speaker shows a tendency that higher-layer boundaries are associated with 
longer pauses, panel (b) for the female speaker shows a big overlap in the distribution 
of pause duration at different layers of boundaries. Hence, pause duration is not 
always an important cue for identifying the break indices. We conjecture that several 
acoustic cues work jointly in determining the layers of perceived prosodic boundaries, 
and the information of syntax and semantics may have an impact as well. In fact, 
there still lacks an explicit and objective criterion for identifying different layers of 
prosodic units in spoken Mandarin. 

6   Conclusions 

On the basis of the command-response model for the process of F0 contour 
generation, we have analyzed the distributions of phrase commands at various layers 
of perceived prosodic boundaries in continuous speech of Mandarin. 

The prosodic labeling system proposed by Tseng [3]-[5] was used as a test case, 
but the results can be applied similarly to any other perception-based labeling systems 
like C-ToBI [7], [8] since they differ only slightly in the definitions of prosodic units. 
Likewise, we used the command-response model as the best choice for studying the 
production of F0 contours, but we believe that similar conclusions will be reached 
with any other production-based (i.e., objectively-measured) approaches. 

Our analysis has shown that there is only partial and qualitative correspondence 
between the production of phrase commands and the perception of prosodic 
boundaries. On the one hand, the majority of phrase commands correspond with a 
prosodic boundary at a certain layer. It indicates that most phrase commands give rise 
to a perceived prosodic boundary. On the other hand, only higher-layer prosodic 
boundaries are always accompanied by a phrase command, while it is not always the 
case for lower-layer prosodic boundaries, especially for prosodic word boundary 
(B2). The perception of prosodic word boundaries may be attributed more to the cues 
other than pitch, and may also be affected more or less by syntactic information. 

Likewise, the magnitude of phrase command is only partially correlated with the 
layer of perceived boundary. Although an overall tendency is observed that higher-
layer boundaries tend to be accompanied by larger phrase commands, the ranges of 
phrase command magnitudes overlap considerably between different layers of 
boundaries, especially between B3, B4, and B5. 

In principle, prosodic boundaries are perceived on the basis of an integration of 
various acoustic cues such as pitch, duration, intensity, and pause, which are 
sometimes mutually complementary. Hence, perceived boundaries cannot give an 
explicit description of each individual prosodic feature, which however is required for 
synthesizing speech signals. To make the things worse, the annotation of perceived 
prosodic boundaries lacks a high degree of reliability due to its subjective nature. 

Although the perception-based annotation of prosodic boundaries is helpful for the 
study of prosody perception, it cannot be used directly in the study of prosody 
generation for the purpose of speech synthesis, which requires a fully quantitative 
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description of the physically observable prosodic characteristics. In order to have a 
better definition as well as a deeper understanding of the hierarchical structure for the 
prosody of spoken Mandarin, we should study the issue not only from the perception 
perspective (subjectively) but also from the production perspective (objectively). 

Acknowledgements. We wish to thank Dr. Chiu-Yu Tseng at the Phonetics Lab, 
Institute of Linguistics, Academia Sinica, for discussion and kindly providing the 
annotated speech data. 
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Linguistic Markings of Units in Spontaneous Mandarin 
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Abstract. Spontaneous speech is produced and probably also perceived in some 
kinds of units. This paper applies the perceptually defined intonation units to 
segment spontaneous Mandarin data. The main aim is to examine spontaneous 
data to see if linguistic cues which mark the unit boundaries exist. If the 
production of spontaneous speech is a kind of concatenation of these "chunks", 
we can deepen our understanding of human language processing and the related 
knowledge about the boundary markings can be applied to improve language 
models used for automatic speech recognizers. Our results clearly show that 
discourse items and repair resumptions, which are typical phenomena in 
spontaneous speech, are mostly located at the boundary of intonation unit. 
Moreover, temporal marking of items at unit boundary is empirically identified 
through a series of analyses making use of segmentation of intonation units and 
measurements of syllable durations. 

Keywords: Spontaneous speech, repairs, discourse items, tempo variability. 

1   Introduction 

To understand spontaneous speech production means more than to recognize the 
phonetic details of the speech signal. The final aim is to understand the content, i.e. 
the meaning of the signal. For human communication, a variety of cues are used to 
help the understanding of speech, e.g. world knowledge, prosody, gesture, and mimic. 
But for automatic speech recognizer, the only source comes from the speech signal 
itself. But spontaneous speech is continuous and more complicatedly it contains a lot 
of reductions and merging. Especially, interruptions and incomplete utterances often 
occur. Therefore, to deal with understanding of spontaneous speech production cannot 
only be associated with detection of individual phonetic information, but rather with 
information retrieval from the highly reduced linguistic information. The task is how 
to obtain the most useful cues from the limited phonetic content. For extracting units 
of meaning, an intermediate unit between word and utterance for segmenting 
spontaneous speech is necessary, because a unit with optimal length which at the 
same time deals with phonetic and semantic contents is required. This paper adopts 
the concept of intonation units from the field of conversation analysis, which are 
defined according to perceptual judgment of prosodic and semantic phrasing. Our aim 
is to test whether the unit boundary is marked by lexical and temporal cues 
specifically. In conversation, discourse items consisting of particles, markers, and 
fillers, normally mark locations within utterances where discourse functions need to 
be revealed. Repairs are important phenomenon in spontaneous speech and location 
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of re-initiation of repairs also directly indicates a processing unit boundary. Moreover, 
changes in tempo provide clear cues to prosodic phrasing and furthermore indicate the 
presence of unit boundaries. In this section, literature review in the field of intonation 
units and tempo variability as well as discourse items in spoken Mandarin will be 
summarized. 

1.1   Intonation Units 

Various terms have been used for unit segmentation in the spoken language, for 
instance intonation phrases, intonation units, and turn constructional unit. They all 
base on a same pre-assumption that the prosodic structure in the spoken language 
does not necessarily correspond to the grammatical structure proposed for the written 
language. Intonation units are selected to segment our data, because they are 
associated with semantic, intonation and pragmatic information in conversation [7], 
[18], and our data have the form of conversation. Hirst and Bouzon [10] use z-scores 
of segment duration to study the lengthening effect of segments in stressed and 
unstressed words, in different positions within words and intonation units. In their 
result of British English, the effect of final lengthening of segment duration on the 
intonation unit boundary is clearly found, but not in word boundary. This empirically 
approves the statement that the final item of an intonation unit is often lengthened. 
Similarly, Dankovicova [5] analyzes the rhythmic patterns of spoken Czech. The 
duration of phonological words is measured and it was found that the first 
phonological word within an intonation phrase is usually spoken faster and final 
lengthening in terms of phonological words is also found at intonation phrase-final 
positions. These studies provide empirical supports for the relevance of the domain 
"intonation units" in the analysis of tempo variability. More importantly, in the study 
of prolongation in Mandarin conversation carried out by Lee et al. [11], final 
lengthening occurs more at the constituency units "word" and "phrase". At the level of 
"sentence", lengthening is produced mostly in sentence-medial position. Also, in 
modern Mandarin, the majority of words are mono- or disyllabic, so it is not 
especially surprising that prolongation is often located at the word boundary. Only the 
intermediate unit equivalent to "phrase" is left as a possible candidate. Based on the 
properties of intonation units mentioned above, intonation units are chosen to segment 
the spontaneous Mandarin data for later analyses. 

1.2   Tempo Variability 

Empirical evidence have been obtained, indicating the Czech has a more or less 
rallentando timing pattern (slowing down), where English tends to have an 
accelerando pattern [4]. Final lengthening is significantly more often observed in 
Singapore English than in British English [14]. These results imply that different 
languages, or even the same language, but spoken in different speaker communities, 
may have different timing templates governing the speech production. Furthermore, 
pause structure and boundary features are also important in communicative 
interaction, and may be determined spontaneously along the course of conversation 
[21]. In conversation, restarts, including repairs and repetitions, occur very often. 
Also relevant to spontaneous speech production, a reduced articulation rate in the case 
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of disfluency has been reported in [16]. Fowler and Housum [8] mention that repeated 
words should require less processing time and therefore are uttered faster. Tseng [19] 
states in a study on the same set of data used in this paper that the re-initiation of 
repairs in Chinese is marked by a fast speaking tempo and a weaker intensity in 
comparison to the comparable position in the reparandum. The fact that the f0 values 
at the beginning of the reparandum and the alteration are not significantly different 
indirectly indicates a pitch reset. The features of the re-initiation process of speech 
repairs are similar to those of a new intonation unit relative to the preceding one. 
Therefore, in one of the subsequent analyses we will investigate the interaction of the 
repair resumption point and the intonation unit boundary. Also, temporal markings 
within repeated words are presented in many studies [3], [17], [12]. One reason may 
be that when there is a need to strengthen the difference between the new and given 
information, durational differences provide an efficient help for a quick and 
emphasized contrast [8]. More directly related to spontaneous speech production, O’ 
Shaughnessy [15] finds that three factors are regarded relevant to word durations in 
spontaneous speech: the number of phonemes in each word, whether it is a function 
word or a content word, and whether the word forms part of a common sequence of 
words. Regarding the relation of duration to syntactic units, he found a tendency for 
words at the beginning of a syntactic unit to be slightly shorter than those at the end of 
the unit.  

1.3   Discourse Items in Mandarin 

Discourse items form a considerable part in Mandarin conversation. In Lee et al. [11], 
discourse particles and markers are the word class on which the prolongation is most 
frequently produced. Chao [1] states that grammatical and discourse types of particles 
are produced in neutral tones and interjections are more associated with intonational 
patterns. In Li and Thompson [13], six particles are discussed in detail. But no clear 
differentiation is made between particles serving grammatical functions and particles 
serving mainly pragmatic function. For processing our data, discourse particles in 
Mandarin are regarded as items whose pragmatic functions in discourse play an 
essential role other than syntactic structures or lexical meanings. They rarely contain 
concrete, substantial, lexical meaning. More importantly, in the Chinese writing 
system, some of the discourse particles are written in conventionalized characters 
which also appear as lexical entries in lexicon. Grammatical particles are normally 
unstressed, whereas discourse particles are often accompanied with an emphasized 
pitch type, prominent intensity or duration realization to express the pragmatic 
meaning they are supposed to deliver to the recipients. While processing our 
spontaneous Mandarin data, we are encountered with a wide variety of discourse 
items used in Taiwan. Because the definition and the difference of particles is elusive 
in the literature [1], [13], we propose here a system of discourse items consisting of 
discourse particles, discourse markers, and fillers, but excluding particles serving 
grammatical functions such as aspect marker (le), question marker (ma), structure 
particle (de) etc. 
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Table 1. This list contains discourse items in spoken Taiwan Mandarin. Please note that dp 
stands for discourse particles, dm for discourse markers, and fl for fillers. With regard to the 
column origin, M and S stand for Mandarin and Southern-Min, respectively. 

Item Written
form 

Group Origin Item Written
form 

Group Origin Item Written
form 

Group Origin 

A dp M MA dp M NEI - dp M 
AI YA dp M NOU dp M ON - dp M 

AIYOU dp M O dp M EIN - dp S 
BA dp M OU dp M HAN - dp S 

E dp M WA dp M HEIN - dp S 
EN dp M WA SAI dp M HO - dp S 

HAI dp M YE dp M UHN - fl - 
HE dp M YI dp M UHM - fl - 

HEI dp M YOU dp M NHN - fl - 
HWA dp M AI YE - dp M MHM - fl - 

LA dp M EI - dp M NAGE dm M 
LIE dp M HEN - dp M NA dm M 
LO dp M HON - dp M   

Table 1 lists important discourse items in Taiwan Mandarin with information about 
the transcription, the corresponding character, the classification, and the origin. All 
these discourse items are not associated with any fixed lexical tones. Instead, the pitch 
types are directly associated with particular, pragmatic functions. Filled pauses such 
as uhn in English have counterparts in Mandarin, i.e. the particle EN and the filler 
UHN. EN has the main function of hesitation and is conventionally written as , 
whereas UHN is often used in conversation for signaling response. Discourse markers 
include word or word sequences whose original, syntactic function and content are 
lost in conversation, but used more for discourse purposes, e.g. hesitation. To take the 
word sequence determiner + classifier (NA+GE) as example, NAGE (well) is often 
used in conversation to make the utterance sound continuous, but without any 
syntactic role. When used for this purpose, it sometimes precedes a proper noun, 
which is redundant and ill-formed for determiner and classifier. 

2   Data and Methodology 

The data used for this study are extracted from the Taiwanese Putonghua Corpus 
(TWPTH) issued by the Linguistic Data Consortium [6]. The language under 
investigation is Taiwan Mandarin. Three free conversations are annotated in terms of 
intonation units and repairs. Detailed information about the speakers can be found in 
[20]. The definition of intonation units is based on the principles given in [18]. An 
intonation unit is regarded as a sequence of words which provide a coherent meaning 
for the annotators perceptually. Similar definitions of phrasing are often applied in 
speech synthesis to make a TTS system sound more naturally [9]. The first 
segmentation of intonation units has been done by the author. A second annotation by 
another annotator achieved about 85% consistency with the first annotation. The final 
data used for this study is the result of intensive discussions between the two 
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annotators. The annotation of speech repairs follows those principles given in [19]. In 
order to process the data more efficiently, we have merged immediately adjacent, 
simple repairs into complex repairs. So the total number of the repairs is slightly 
different from that given in [19]. Table 2 summarizes the general statistics of the data 
analyzed in this paper. 

Table 2. Data summary 

Subjects 1-A 1-B 2-C 2-D 3-E 3-F 

# of syllables 2,713 586 1,381 1,448 1,787 803 
# of identified repairs 96 24 39 50 52 28 
# of identified units 578 181 314 296 345 148 
# of monosyllabic units (%) 91(15.7%) 43(23.8%) 48(15.3%) 61(20.6%) 24(7%) 15(10.1%) 
# of polysyllabic units (%) 487(84.3%) 138(76.2%) 266(84.7%) 235(79.4%) 321(93%) 133(89.9%) 
# of units with final pauses(%) 198(34.3%) 37(20.4%) 158(50.3%) 141(47.6%) 210(60.9%) 80(54.1%) 

Meaningful speech stretches containing repairs are manually cut out from the 
sound files of the dialogues and annotated by using the software PitchWorks 
developed by SCICON R & D. The segmented sound files are then manually labeled 
in two tiers: syllables and intonation units. The labeling of the sound data was 
checked by a second labeler. One important thing to note is that the annotation works 
of intonation units and repairs are done in two different stages independently. 
Subsequently, the two kinds of annotations were merged into a syllable-based 
database consisting of acoustical measurement results and boundary position marks of 
repair and intonation units. Fig. 1 demonstrates the data annotation of the following 
example. 

1-A ( PAUSE)IU ( )IU ( PAUSE)IU (  
(Qian2ban4duan4 hao3xiang4shuo1 PAUSE) (jian4zao4) (jian4 PAUSE)                 

              (he2ge2 
 (the first phase it seems PAUSE) (construct) (cons-PAUSE) (qualified  

1-B (EN)IU 
1-A )IU ( )IU 

  he2fa3 yi3hou4) (hou4mian4 zai4) 
  legal afterwards) (after that then) 

1-B (EN EN)IU 

Fig. 1. Boundaries of syllables and units of two speakers are annotated in different tiers 
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In the example, there are seven intonation units and two speech repairs. Speech 
repairs are not annotated to the sound files directly, but integrated into the merged 
syllable-based database mentioned above. "Jian4zao4 jian4" and "he2ge2 he2fa3" are 
annotated as two speech repairs. As a result, the former one is produced as two 
intonation units, where the latter one is produced in one single intonation unit. 
Making use of the labeled data, we investigate lexical and temporal cues at the 
boundary. Lexical cues include discourse items and repair resumption items. 
Temporal cues refer mainly to the items identified at the boundary. If linguistic 
evidence can be found marking the boundaries, it implies that intonation unit is a 
suitable unit which may reflect the process of language planning and production. 

3   Results 

3.1   Lexical Cues - Discourse Items 

Discourse items are always associated with certain discourse functions. Assuming that 
intonation units can be regarded as a production (processing) unit for spontaneous 
speech, the type and location of discourse items in relation to their position in 
intonation units may reflect characteristics of their discourse functions. Table 3 lists 
types of discourse items found in the data. In a study on discourse particles of 
Mandarin done on the Mandarin Conversational Dialogue Corpus (MCDC), it was 
found that discourse items are mainly located in utterance-medial positions in 
spontaneous speech, when the investigation domain is set to be "utterance", instead of 
"intonation unit" [20]. Although it is often argued that discourse particles are 
utterance-final for Mandarin, in spontaneous speech, the segmentation and 
 

Table 3. Please note that in case of unit-initial and -final discourse items, only those occur 
more than once are included in this table. The underlined, boldfaced items are relatively 
frequently used by the individual speakers. 

  All discourse items Unit-initial  
discourse items 

Unit-final  
discourse items 

1-A A AI BA EI EN ER HAI HEI HONG HOU LA 
LE LEI MA NA NE O OU WA YA YO YOU 

A EI EN A E EN HONG HOU LA 
LE LEI MA NA NE O 
YA YO YOU 

1-B A EI EN HAI HEI HOU LA NE O YA YO 
YOU 

EI EN HEI HOU 
O 

A EN HOU LA NE O 
YA 

2-C A AI AIN E EIH EIHN HA HEIN HEN HO 
HON HUHN LA MA MHM MHMHM NA 
NHN OH ON OU UH UHM UHN WA YA 

EIHN (2) A HO HON LA NA OH 
OU UH YA 

2-D A AN EH EI EIH EIHN HA HAIN HEIHN 
HEIN HEN HO HON HUHN LA LAI LE MA 
MHM NA NE NEI NHN O OH OHN ON UH 
UHN YA 

A OH UH A HEIN HON LA NA 
NE UH YA  

3-E A EIHN HEIN HON LA MA MHM NA O YA 
YO 

A HEIN A LA NA O 

3-F A EIHN HEIN LA MA MHM MHMHM NUO 
O 

A A MA 
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verbalization of the so-called "unit of meaning" seem to be different from what we 
expect from a written sentence. In Table 3, it is clearly demonstrated that the particles 
A and HOU are used in both initial and final positions (unit-final occurrences are 
much more often than unit-initial ones). But MA and LA can only be used in final 
positions. It has to do with the discourse functions with which they are associated. MA 
and LA are usually referred to the whole utterance with an additional overtone. 

We furthermore study discourse items in terms of their position within intonation 
units. Table 4 summarizes the result. When discourse items are used in spontaneous 
speech, about 90% of them are found at the boundary irrespectively of speakers. This 
means that whenever a discourse item is produced, it either initiates or ends the 
verbalization unit of a new idea. Discourse items in spoken Mandarin mark the 
endings of intonation units much more often the beginnings. 

Table 4. D-IUs refer to intonation units whose initial or final item is a discourse item. 
Monosyllabic D-IUs refer to intonation units composed of monosyllabic discourse items only. 

Subjects 1-A 1-B 2-C 2-D 3-E 3-F 

Total # of discourse items 215 148 131 200 74 40 
# of monosyllabic D-IUs 36 31 35 40 9 8 
# of unit-initial discourse items 18 36 10 21 9 10 
# of unit-final discourse items 143 67 71 103 51 20 

% of total D-IUs/all discourse items 92.1% 90.5% 89.3% 87% 93.2% 95% 

3.2   Lexical Cues - Repair Resumption 

To know whether repair structure interacts with the unit boundary, we have examined 
the re-initiation point, because where to resume a repair has been proved to be marked 
prosodically [12], therefore relevant to phrasing of speech production. Table 5 gives 
the result in terms of the position of repair items within intonation units. More than 
half of the repair resumptions (re-initiation) are located in initial positions, even 
though speech repairs are one of the most typical spontaneous phenomena and are 
particularly irregular, as it is difficult to predict their location and form. This indicates 
that it is preferred to re-initiate an idea verbalization by means of a new intonation 
unit, despite unpredictable spontaneous language planning and production. The other 
interactions of repair structure and intonation units do not show such a clear tendency. 
Interestingly, 3-E and 3-F are young, fast-speaking, male speakers. Both of them 
clearly favor resuming a repair process with a new intonation unit (95% and 93%, 
respectively). Whether this has to do with sociolinguistic factors such as age or 
gender needs further investigation.  

Table 5. Result of unit-initial repair resumption at the boundary 

Subjects 1-A 1-B 2-C 2-D 3-E 3-F 

Total # of repairs 96 24 39 50 52 28 
# of resumed syllables in repairs 121 29 42 53 56 29 
# of unit-initial repair resumption 69 18 29 37 53 27 
% of unit-initial resumption 57% 62.1% 69.1% 69.8% 94.6% 93.1% 
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3.3   Temporal Cues - Articulation Rate and Unit Size 

Examination of unit length sheds light on the speaker’s preference and ability in 
speech production for verbalizing pieces of concepts. Chafe [2] reports for English an 
average length of 4 words per intonation unit. In Tao [18], the mean of length is 3-4 
words per intonation unit. In our study, we chose syllables for the calculation. The 
reason is threefold. It is widely accepted that Taiwan Mandarin is a syllable-timed 
language. And in Taiwan Mandarin only grammatical particles are unstressed, so 
stress is not an essential contrast which needs to be considered to balance the prosodic 
weighting within words. Moreover, word segmentation is ambiguous for the Chinese 
writing system, as there are no blanks separating words in texts. Different native 
speakers may have different ways of segmenting words. As a result, Table 6 lists the 
correlation between mean articulation rate and the unit size in syllables. It 
demonstrates a clear tendency: the faster a speaker speaks, the more syllables are 
produced in intonation units. That the relationship between the unit size and the 
articulation rate is stable implies that it is highly likely that intonation unit is a 
suitable unit for defining production units in Mandarin speech. This also shows that 
looking at the mean size is not enough, we need to take into account the speaking 
tempo, too.  
We furthermore examine whether the speaking tempo changes consistently along 
different unit sizes. Fig. 2 illustrates the relationship between the mean articulation 
rate of each unit and the unit size in syllables. Generally speaking, monosyllabic (for 
 

Table 6. Unit size in syllables 

Subject 1-A 1-B 2-C 2-D 3-E 3-F 

Articulation rate (ms/ syllable) 175.7 195.7 193.3 184.3 154.6 159.7 

Mean of IU size (# of syllables) 4.7 3.2 4.4 4.9 5.2 5.4 

Median of IU size (# of syllables) 4 2 4 4 5 5 
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Fig. 2. The x axis is unit size in number of syllables, and the y axis is syllable duration means 
(msec) of the units of corresponding sizes. The syllable duration means decline, as the unit size 
increases. 
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all six speakers) and disyllabic (for five out of six speakers) intonation units have 
slower articulation rates, compared to those of other sizes. And the graphics show that 
when the unit size in syllables increases, the duration of each syllable in the unit 
decreases. The articulation rate and unit size in syllables correlate with each other 
consistently. This provides a further support for our choice of intonation unit as the 
segmentation unit and syllable as the measurement object.  

3.4   Temporal Marking of Boundary Items 

If intonation units are the units on which the language planning is based, then we 
should be able to find clear indication of their existence in speech production. As 
mentioned earlier, intonation units often end with a pause (40%-50% of the overall 
intonation units), and it is more likely that an intonation unit ends rather than starts 
with a discourse particle. To look for more indications of the existence of units, we 
calculated the syllable duration mean for all unit-initial and -final items. Unit-final 
syllables are significantly longer than unit-initial syllables for all speakers, as 
illustrated in Fig. 3. Compared with the overall syllable means, except speaker 1-B, 
all unit-initial syllable means are shorter and unit-final syllable means are longer. This 
temporal marking at boundaries seems to be a general and perhaps language-specific 
feature, independent of speakers and speaking situations. 
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Fig. 3. Black, gray, and white bars are syllable means of unit-initial, overall, and unit-final 
syllables produced by each speakers. Unit-final items are significantly longer than the unit-
initial items. 

In addition to analysis of syllable mean applied on all data, we want to study 
whether the temporal marking at the boundary can be applied to each intonation unit. 
In conversation, a speaker may utter fast or slow "chunks" depending on the speaking 
situation and intention. We then calculated the syllable means of each units and 
compared them unit-wise with the corresponding unit-initial and –final syllable 
means. For this analysis, we applied one-way ANOVA to the duration of individual 
unit-initial and -final syllables dependent on the average syllable duration of each 
corresponding intonation units. Table 7 shows a very clear tendency supporting the 
notion that regardless of the types of the boundary items, the unit-initial items are 
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significantly shorter than the average speech rate of the intonation units they are 
located in; and the unit-final items are significantly longer than the average speech 
rate of the intonation units.  

Table 7. Unit-wise temporal marking at boundary 

Subjects Unit-initial Unit-final 
1-A F(1,486)=1.596; p=0.01 F(1,486)=2.964; p<0.001 
1-B F(1,137)=4.191; p=0.037 F(1,137)=17.115; p<0.001 
2-C F(1,265)=3.38; p<0.001 F(1,265)=5.799; p<0.001 
2-D F(1,234)=5.135; p<0.001 F(1,234)=5.172; p<0.001 
3-E F(1,320)=2.074; p=0.007 F(1,320)=1.884; p=0.015 
3-F F(1,132)=0.485; p=0.883 F(1,132)=0.731; p=0.742 

Given an item, we also need to check the temporal relationship between its 
occurrences at the boundaries and the overall occurrences, i.e. item-wise comparison. 
Therefore, we analyzed all syllables (including lexical items and discourse items) 
which occur at the boundary more than once (i.e. either initial or final). For these 
items, two-tailed t-test was applied to the average duration of all the unit-initial 
occurrences and the average duration of the overall occurrences for all six speakers to 
test whether the difference is significant. The same process was also undertaken for 
the unit-final items. Because the data sample is not large enough, not all pairs are 
statistically significant. However, the tendency that unit-initial syllables are shorter 
than average and unit-final syllables are longer than average is clearly supported. 

Table 8. Item-wise temporal marking at boundary 

Subjects Items (unit-initial) Items (unit-final) 
1-A t(67)=-1.5; p=0.138 t(70)=4.181; p<0.001 
1-B t(27)=0.738; p=0.467 t(20)=0.85; p=0.405 
2-C t(38)=0.031; p=0.975 t(43)=1.446; p=0.155 
2-D t(42)=-0.684; p=0.498 t(30)=0.886; p=0.383 
3-E t(53)=-2.034; p=0.047 t(46)=5.659; p<0.001 
3-F t(24)=-2.959; p=0.01 t(29)=3.528; p<0.001 

3.5   Temporal Characteristic of Discourse Items 

This section analyzes the durational differences of discourse items at the boundary. 
As shown in Fig. 4, discourse items are normally longer than the overall syllables. 
The relationship between the overall syllable mean, the mean of discourse items, and 
the mean of syllables excluding discourse items is consistent across the speakers. 
Also, monosyllabic D-IUs are much longer than ordinary syllables and discourse 
items. These features may be language-specific, as all speakers behave themselves in 
a similar way. But such a consistency regarding the articulation rates of unit-initial 
and –final discourse items is not observed. In conversation, discourse items with 
different kinds of discourse functions and emphasis may be used in combination with 
differently varying speaking rates. This may be associated with the position regarding  
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Fig. 4. The y axis represents the syllable duration mean (msec). It is observed that the behavior 
of the items to the left is similar across speakers, but those to the right are rather inconsistent. 

intonation unit. This is illustrated in Fig. 4. Different degrees of tempo variability of 
discourse items at the boundary may be a speaker-specific feature, as the behavior 
across the speakers is very different. 

4   Conclusion 

Our study has shown that spontaneous Mandarin is segmented in terms of an 
intermediate unit between word and utterance, and it is likely that the unit is 
intonation unit. The fact that discourse items and repair resumption are preferably 
found at the boundary indicates that these lexical cues signal a kind of phrasing of 
spontaneous speech. Especially, discourse items mark important discourse locations, 
because more than 90% of them are located at intonation unit boundaries. Rallentando 
pattern seems to be a preferred rhythmic pattern for spoken Taiwan Mandarin, i.e. 
first fast, final slow pattern. And it is clearly found within the domain of intonation 
unit. The very different uses of speech tempo of discourse items indicate that the 
discourse functions associated with different kinds of discourse items may play an 
essential role. As a whole, this paper identifies the importance of intonation units in 
segmenting spontaneous speech, and works on finding more boundary cues such as 
intensity and pitch contours in terms of intonation units are in progress. For automatic 
speech recognition system, to first segment long speech data into smaller units like 
intonation units, then to retrieve the phonetic and semantic content of the units may be 
an effective strategy concerning spontaneous speech processing. This solution may 
help overcome the extreme difficulty of resolving the semantic content from the 
highly reduced phonetic information of spontaneous speech. 
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Abstract. The article investigates the phonetic and phonological property of focal 
accents conveyed by disyllabic focused words with various tonal combinations in 
Standard Chinese. Phonetically, the effect of focal accents upon f0 resides in two 
aspects: the manner and the condition of focal accents. Phonologically, the 
distribution of focal accents is mainly concerned. Acoustic and perceptual 
experiments and the underlying tonal target of focused constituents are employed 
in both phonetic realization and phonological analysis. Major findings are that: f0 
ranges of focused words are expanded as the H tones of both focused syllables 
are raised; the f0 of the post-focus syllables are compressed obviously in the way 
the H tones of Tone1 and Tone2 are lowered; the realization of accents is closely 
related to the tonal target of the focused words; specifically, accents influence the 
acoustic performances of tones; furthermore, the combination of H/L determines 
the distribution of accents.  

Keywords: focal accents; phonetic realization; phonological analysis; tonal 
target. 

1   Introduction 

In previous literature on English focus, in the phonetic aspect, Xu [1] proposed that 
narrow focus is realized by expanding the pitch range of the on-focus stress syllables 
and by suppressing the pitch range of the post-focus syllables while leaving the pitch 
range of the pre-focus syllables intact. In the phonological aspect, Ladd has highlighted 
the relation between focus and intonational nucleus placement [2] [3]. To this relation, 
Ladd adds the role played by abstract prominence patterns: the nucleus signals the 
focus of the utterance, and the nucleus is assigned to the element that bears the sentence 
stress in the sentence-level prominence pattern. 

Studies of focus in Standard Chinese concentrate on the phonetic realization of 
focused constituents. Xu [4] investigates the formation of f0 under the influence of 
focus by examining short Mandarin sentences with systematically varied tonal 
components and focuses. Results of his experiment demonstrate that the f0 range is 
expanded by focus: the high points of H tones are raised while the low points of L tones 
are lowered. Further, the f0 of all the words following the focus are substantially 
lowered no matter whether the f0 of the focused words are raised or lowered. In contrast 
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with the on-focus raising and post-focus lowering, the f0 of the pre-focus syllables are 
barely changed. 

Although the existing studies have reported changes in f0 triggered by focus, 
phonetic and phonological explorations on the Chinese disyllabic words as a whole 
entities bearing focus, especially on the underlying factors constraining the distribution 
of these focal accents, have still been far less than those on English focus, and even 
absent at all. In this regard, we intend to examine the phonetic and phonological 
property of focal accents conveyed by Chinese disyllabic focused words with 
exhaustively various tonal combinations, and to offer a description of the effect of focal 
accents upon f0 by the very means to reduce the tonal combination to tones in terms of 
H and/or L. We further endeavor to disclose the underlying forces constraining the 
distribution of the accent patterns. 

2   Methodology 

2.1   Experiment Designing 

Focused words adopted in the acoustic and perceptual experiments are all disyllabic and 
with the morphosyntactic structure represented as Modifier-Head1, or MH for short. 
Sixteen kinds of tonal combinations for the focused word of MH structure emerge from 
the formula of “[Tone1+Tone1] … [Tone4+Tone4]”. And the composing syllables fall 
into a couple of sets: {Gan1, Tang2, Biao3, Da4} as the set of the first syllables, and {Ge1, 
Yi2, Jie3, Mei4} the set of the second. A certain focused word is thus constituted by the 
combination of each member from the first set and each from the second. All these words 
are set in four patterns of target sentences: 1) Jin1 Tian1 + [focused words] + Fei1 Dong1 
Jing1; 2) Jin1 Chen2 + [focused words] + Hui2 Dong1 Jing1; 3) Jin1 Wan3 + [focused 
words] + Fan3 Dong1 Jing1; 4) Jin1 Ye4 + [focused words] + Qu4 Dong1 Jing1. It has 
been made apparent in previous studies that focal accents exert certain effect upon f0 of the 
adjacent syllables. In the present study, however, the adjacent syllables are allocated with 
the four tones for the purpose of deliberating the effects imposed by the focal accents upon 
f0 of these adjacent syllables under every tonal circumstance. The tones of the syllables 
apart from the focused words and the adjacent syllables are set invariably in Tone1. To 
approach to the different types of focus, we employ guide sentences which are mainly 
composed of wh-question equivalents. The guide sentence for all broad focus expressions 
in this article is invariably the interrogative of “Fa1 Sheng1 Le0 Shen2 Me0 Shi4? (What 
happened?)” And for narrow focus sentences we employ the guide sentences generally 
formulated as “Jin1 Tian1/Chen2/Wan3/Ye4 Shei2 Fei1/Hui2/Fan3/Qu4 Dong1 Jing1? 
(Who fly to/go back to/go back to/go to Tokyo today/this morning/this evening/tonight?)”. 

2.2   Experiment Procedures 

Four Standard Chinese speakers, one female and three males, ranging from 20 to 45 of 
age, were invited as the subjects. The recording was conducted in the sound-treated 
booth at the Institute of Linguistics, Chinese Academy of Social Sciences. The subjects 
                                                           
1  Phonetic realization of focused words is different due to the different morphosyntactic 

structure of focused words (Jia, Xiong and Li) [5]. 
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were seated comfortably in front of the computer screen, and the microphone was 
placed a hand away from mouth. During the recording, each sentence appeared on the 
screen three times in random order; meanwhile, the guide sentences were broadcast and 
the subject was asked to read aloud the displayed sentences as the response to the 
question in normal speed without any irregular pause. Sounds were recorded and saved 
directly into computer through sound recording software as “wav” file.  

The target sentences in which the clause-middle focused words have 16 kinds of tonal 
combinations pronounced by a male and a female speaker were chosen for perceptual 
experiment samples. As has been mentioned above, each target sentence was recorded 
three times; only one was collected for each target sentence so as to reduce the 
unnecessarily huge amount of data. Since in this experiment the subjects are only 
required to give judgments over the patterns of the focused words in terms of Weak or 
Strong, and hardly any correlation exists between the circumferential tones and the 
focused words, thus, we render the tones both preceding and following the focused words 
as being Tone1. Totally three females and five males were invited to participate in the 
perceptual experiment. They are all standard Chinese speakers and show rather sensitive 
and stable perception. In order to minimize the negative analogical effect and perceptual 
fickleness, all the sentences involved were broadcast in sheer random order through 
perceptual software, and each sentence was perceived by as many repetitions as the 
subjects required in order to confirm their judgment. Thus, for each focused word we had 
two target sentences to provide to the subjects for judgment, and finally we got 8×2=16 
samples for the word with the same tonal combination. Each subject was asked to finish 
the experiment individually, without any interpersonal consultation. During the 
experiment, four options appeared with the icons worded as: “the first syllable strong2“, 
“the second syllable strong”, “both strong” and “both not strong”. The subject was 
expected to choose one of these options according to their decisive judgment of the 
weight of the focused words in target sentences. 

2.3   Data Labeling and Extraction 

Speech was first labeled by automatic segmentation software, and then the syllable 
boundaries were modified by hand. Before extracting the data, the manual refinement 
of the pitch tier was conducted in order to ensure the accuracy of the data. The data 
were retrieved by praat script with each syllable for 10 points, and the duration of the 
utterances was normalized. Finally, SPSS10.0 was used to get the means of f0 for each 
target sentence. 

3   Phonetic Realization of Focal Accents 

In this part, two aspects of the effect of focal accents upon f0 will be discussed: 1) the 
manner of effect, specifically taken to mean rising or lowering the f0, and 2) the 
condition of effect, which means whether the lowering or rising imposes the effect on 
H or L tones. The fundamental unit we apply to describe these effects is the underlying 
tonal target, H or L; specifically, we render each focused syllable separately to divide 
                                                           
2  Since each focused words in our experiment consists of a couple of syllables, it is sensible to 

require the subjects to tell which of the two syllables or whether both are strong, or not strong. 
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it into its original tones and in this manner to observe the performance, rather than deal 
with a single syllable as the descriptive unit.  

The following two figures are the mean f0 curves of sentences: “Jin1 Tian1 [Gan1] × 
[Ge1, Yi2, Jie3, Mei4] Fei1 Dong1 Jing1”, focused words [Gan1] × [Ge1, Yi2, Jie3, 
Mei4] are under both broad and narrow focus conditions. These sentences are adopted 
for the comparison among the pitch range changes of the second syllables of the 
focused words. 

 

Fig. 1& 2. f0 means of “Jin1 Tian1 [Gan1]×[Ge1, Yi2, Jie3, Mei4] Fei1 Dong1 Jing1” 

[Broad and Narrow Focus Conditions] 

MH indicates that the morphosyntactic structure of focused word is Modifier-Head, 
“0” means the focus type is broad and “2” is narrow focus, the following “2” illustrates 
the position of the focused word is middle, the following “11” demonstrates the tonal 
combination is Tone1+Tone1 and “12” is Tone1+Tone2, etc, the last “1, 2, 3 and 4” show 
the tones adjacent to the focused word are Tone1, Tone2, Tone3 and Tone4.  

Comparison of the two graphs shows that the pitch range of the second syllable is 
expanded by the focal accent, from the specific values, the pitch range of the broad focus 
syllable is 104Hz-215Hz and the difference of 215 minus 104 equals to 111Hz, while this 
difference of the second syllable range under narrow focus condition presents 137 Hz, 
which demonstrates that the pitch range of the second syllable of the focused words is 
expanded by the focal accent for 25Hz. 

The following two graphs read “Jin1 Tian1 [Gan1, Tang2, Biao3, Da4]×[Ge1] Fei1 
Dong1 Jing1” under both broad and narrow focus conditions from which the changes of 
pitch range of the first focused syllables can be seen. 

 
Fig. 3 & 4. f0 means of “Jin1 Tian1 [Gan1, Tang2, Biao3, Da4]×[Ge1] Fei1 Dong1 Jing1” 

[Broad and Narrow Focus Conditions] 
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The above two figures illustrate that the pitch ranges of the first syllables are expanded 
by the focal accent, specifically, the pitch ranges of the first syllables of the broad focus 
words are within 114Hz-218Hz, and the pitch ranges of the narrow focused syllables are 
122Hz-240Hz, meaning that the pith range of the first syllable is enlarged by 14Hz. 

The above paragraph demonstrates that the pitch range is expanded by focal accents and 
the internal cause for the pitch range changes is analyzed through the direct comparison of 
the focused words under different focus conditions in the following figures. The following 
figure is the mean f0 curves of sentence: “Jin1 Tian1 Gan1 Ge1/Gan Mei4 Fei1 Dong1 
Jing1”, focused word “Gan1 Ge1” and “Gan1 Mei4” are under both narrow and broad 
focus conditions.  

 

Fig. 5 & 6. f0 means of “Jin1 Tian1 Gan1 Ge1/Gan1 Mei4 Fei1 Dong1 Jing1” 

Examination of the above two figures reveals that focal accents lift the f0 of the H 
tones of the two syllables of the focused words while the L tone of the focused syllable 
resembles that of the broad focused syllable. The realization of focal accents manifests 
on the two focused syllables differs from English that the raising of the pitch is on the 
stressed syllable at the sentential level. 

In general, the manners and conditions of the effect of focal accents upon f0 in 
under-focus domain can be generalized in three aspects: firstly, the pitch range is 
expanded by the focal accent; secondly, the essential cause for the expansion of the f0 
range is the increase of the f0 of the H tones, which indicates that the effect imposed by 
focal accents upon pitch mainly manifests itself on the H tones; thirdly, the effect 
exerted by focal accent on L tones is by no means obvious and systematic; fourthly, the 
manifestation of the effect of the focal accent on both of the focused syllables 
characterizes the feature as being language-specific of Chinese. 

Figure 7 and 8 illustrate the effect of focal accents on f0 range of the syllables in 
pre-focus and post-focus domain. Target sentences in Figure 7 are under broad focus 
atmosphere while Figure 8 under narrow one. The model of target sentences presents: 
“Jin1 Tian1 (Chen2/Wan3/Ye4)+[Gan1 Ge1]+ Fei1 (Hui2/Fan3/Qu4) Dong1 Jing1”. 
As the pitch changes imposed by focal accents are under direct discussion, the tones of 
the focused words are set as Tone1. 

Figure 7 and 8 demonstrate that the pitch range of the syllables following the focused 
word is compressed remarkably by focal accents while the pitch range of the syllables 
preceding the focused word remain much the same. 

The intrinsic cause for the compressing of the pitch range of post-focus syllables can be 
obtained from Figure 5 and the following two graphs. The follow figures are the f0 curves of 
“Jin1 Chen2/Ye4 Gan1 Ge1 Hui2/Qu4 Dong1 Jing1”. 
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Fig. 7 & 8. f0 means of “Jin1 Tian1 (Chen2/Wan3/Ye4)+[Gan1 Ge1]+Fei1(Hui2/Fan3/Qu4) 
Dong1 Jing1” 

[Broad and Narrow Focus Conditions] 

 

Fig. 9 & 10. f0 means of “Jin1 Chen2\Ye4 Gan1 Ge1 Hui2\Qu4 Dong1 Jing1” 

Generally in the above mentioned three graphs have been discussed the phonetic 
realization of the focused word “Gan1 Ge1” with the differently assigned tones in 
surrounding. What is unanimously represented among the four figures is that f0 in the 
focus position behave in the same manner, i.e., the f0 of the H tones are remarkably raised 
under the effect of the focal accents. Pre-focus f0 of the four tones, irrespective of whether 
being H or L tones, show either no perceptible difference or only slight disparity that is too 
erratic to be of any statistical significance. Post-focus f0, however of the H tones of Tone1 
and Tone2 are significantly compressed while those of the H tone of Tone4 show a minor 
height difference over that under broad focus condition, the reason why the H tone of 
Tone4 are not affected obviously is that the H tone locates itself in the transition part, and 
contains the L tone. All the L tones are hardly subject to the effect of the focal accents, 
with only quite negligible changes that also lack statistical importance. 

4   Phonological Analysis of Focal Accents 

Within the frame of Structure-based FTA3  theory (Ladd & Gussenhoven)[2][6], the 
linguistic description of accent patterns involves two complementary but essentially 
separate aspects: a statement about which parts of an utterance are focused, and a statement 
about how a given pattern of focus is determined by the location of the accent. They argue 
that the speaker’s decision about what to focus is subject to all kinds of contextual 

                                                           
3  Gussenhoven proposes the “Focus-to-Accent” (FTA) approach. In very general terms, the FTA 

theory is that words and constituents in utterances can be focused for various reasons, and that 
focused words and constituents are marked by pitch accents. 
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influences that are difficult to identify. They also notice that once the focused part of the 
utterance is specified, the accent pattern follows more or less automatically by 
language-specific rules or structural principles. Therefore, in this part, the accent patterns of 
focused words at the sentential level with various tonal combinations will be described 
through the theoretical model of Metrical Phonology [7] based on the data obtained from 
the perceptual and experiments, further, the language-specific rules for restricting the 
distribution of the focal accents will be analyzed.  

Table 1 demonstrates the perceptual results of accent patterns for each focused 
words. 

Table 1.  Perceptual results of focused words 

Tonal 
Combinations 

Both 
not 

strong 

Both 
strong 

First 
Strong 

Second 
Strong 

Total 

Tone1+Tone1  3  13 16 
Tone1+Tone2  2 11 3 16 
Tone1+Tone3 1 4 7 4 16 
Tone1+Tone4  6 8 2 16 
Tone2+Tone1  5  11 16 
Tone2+Tone2  6 2 8 16 
Tone2+Tone3 2 4 6 4 16 
Tone2+Tone4  6 1 9 16 
Tone3+Tone1  3  13 16 
Tone3+Tone2 1 3 2 10 16 
Tone3+Tone3  4 7 5 16 
Tone3+Tone4  5 1 10 16 
Tone4+Tone1  5 3 8 16 
Tone4+Tone2 1 6  9 16 
Tone4+Tone3  1 10 5 16 
Tone4+Tone4  5 1 10 16 

It is can be seen from Table 1 that the first syllables of 8 focused words with the tonal 
combination of “Tone1+Tone4” were judged by the subjects to be “strong”, which occupies 
50% of the total number 16, whereas the “both strong” 37.5% and “second strong” 12.5%. In 
light of the phonetic realization shown by Figure 6, the accent pattern of “Tone1+Tone4” 
displays “s-w” relationship. Similar method can be adopted to approach the accent 
patterns of the other focused words with different tonal combinations, specifically, the 
accent patterns of the focused words of “Tone1+Tone2”, “Tone1+Tone3”, 
“Tone1+Tone4”, “Tone2+Tone3”, and “Tone3+Tone3” reflect “s-w” relationship; 
while the tonal combinations of “Tone2+Tone1”, “Tone3+Tone1”, “Tone3+Tone2”, 
“Tone3+Tone4”, “Tone4+Tone1”, and “Tone4+Tone3” show the opposite accent 
relationship of “w-s”. The remaining five tonal combinations, “Tone1+Tone1”, 
“Tone2+Tone2”, “Tone2+Tone4”, “Tone4+Tone2”, and “Tone4+Tone4”, invariably 
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show the “w-s” pattern through the perceptual experiment. The explanation for this 
strong tendency is to be made in Table 6. 

The following tables show the accents distribution pattern of 16 different tonal 
combinations of MH structure from the word level to the sentential level through 
metrical grids (in the grids below, Line 0 stands for syllabic level, Line 1 for lexical 
level, and Line 2, sentential, “()” indicates syllable boundary): 

Table 2.  Phonological representation of [Gan1]×[Ge1, Yi2, Jie3, Mei4] 

Gan1 Ge1 Gan1 Yi2 Gan1 Jie3 Gan1 Mei4
Line2 × Line2 × Line2 × Line2 ×
Line1 × × Line1 × × Line1 × × Line1 × ×
Line0 (s) (s) Line0 (s) (s) Line0 (s) (s) Line0 (s) (s)  

 
Lin [8] investigates the stress pattern of Mandarin disyllabic words in citation forms 

through perceptual experiment, and proposes that when disyllabic words are in normal 
stress, there is no absolute fixed stress pattern. This indicates that each syllable of MH 
structure words can bear word stress in citation forms. 

As can be seen from the above table, the sentential accent dwells on the second 
syllable “Ge1” in “Gan1 Ge1”, and the accents dwell on the first syllable in “Gan1 
Yi2”, the first syllable in “Gan1 Jie3”, and the first syllable in “Gan1 Mei4”. 

Table 3.  Phonological representation of [Tang2]×[Ge1, Yi2, Jie3, Mei4] 

Tang2 Ge1 Tang2 Yi2 Tang2 Jie3 Tang2 Mei4 
Line2 × Line2 × Line2 × Line2 ×
Line1 × × Line1 × × Line1 × × Line1 × ×
Line0 (s) (s) Line0 (s) (s) Line0 (s) (s) Line0 (s) (s)  

And the table above shows that the syllables on which the sentential accents occur 
are “Ge1” in “Tang2 Ge1”, “Yi2” in “Tang2 Yi2”, “Tang2” in “Tang2 Jie3”, and 
“Mei4” in “Tang2 Mei4”. 

Table 4.  Phonological representation of [Biao3]×[Ge1, Yi2, Jie3, Mei4] 

Biao3 Ge1 Biao3 Yi2 Biao3 Jie3 Biao3 Mei4 
Line2 × Line2 × Line2 × Line2 ×
Line1 × × Line1 × × Line1 × × Line1 × ×
Line0 (s) (s) Line0 (s) (s) Line0 (s) (s) Line0 (s) (s)  

From the above table can be seen that “Ge1” in “Biao3 Ge1”, “Yi2” in “Biao3 Yi2”, 
“Biao3” in “Biao3 Jie3”, and “Mei4” in “Biao3 Mei4” are the four syllables on which 
the sentential accents are located.  
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Table 5.  Phonological representation of [Da4]×[Ge1, Yi2, Jie3, Mei4] 

Da4 Ge1 Da4 Yi2 Da4 Jie3 Da4 Mei4 
Line2 × Line2 × Line2 × Line2 ×
Line1 × × Line1 × × Line1 × × Line1 × ×
Line0 (s) (s) Line0 (s) (s) Line0 (s) (s) Line0 (s) (s)  

And this table shows that the focal accents occupy the four positions of “Ge1” in 
“Da4 Ge1”, “Yi2” in “Da4 Yi2”, “Da4” in “Da4 Jie3”, and “Mei4” in “Da4 Mei4”. 

We would like to explore the more unified explanation for the underlying causes for 
the shifting of the stress and the specific distribution patterns shown by the tables 
above. Sharing the very morphosyntactic structure of MH, the accent distribution 
patterns of these words, however, vary with the various tonal combinations. The pair of 
“Tang2 Ge1” and “Tang2 Jie3”, for instance, gives the accent patterns of “strong-final” 
and “strong-initial” respectively. The cause for the shifting of the stress from the first 
syllables to the second at the sentential level can seemingly be reduced to the simple 
fact that with the first syllable being the same in both words the only difference 
between them lies in the tones of the second syllables, Tone1 and Tone3 respectively. 
The accent distribution of above minimal pair of “Tang2 Ge1” and “Tang2 Jie3” 
implies that the explanations can be sought if the traditionally termed four tones have 
been reduced to the original tones marked duly by the very permutations of H and L, 
that is, Tone1 is transformed into HH, Tone2 LH, Tone3 LL, and Tone4, HL. 
Concretely, therefore, in “Tang2 Ge1” the syllable “Ge1” claims the accent just 
because “Ge1” can be re-rendered as “HH”, compared with “Tang2” as “LH”. “HH” 
overtakes “LH” in number of “H” and therefore appears strong. Similar situation holds 
true for “Tang2 Jie3” in which “H” in the “LH” pattern of “Tang2” outnumbers that of 
“LL” of “Jie3” and thus claims the accent. This correlation can be attested for the 
patterns of the other words listed below: “Strong-initial” patterns are found for “Gan1 
Yi2”, “Gan1 Jie3”, “Gan1 Mei4” and “Da4 Jie3” because they can be re-written 
respectively as “HH LH”, “HH LL”, “HH HL” and “HL LL”; another “Strong-initial” 
pattern notably exists for “Biao3 Jie3”, which can be attributed to the tone sandhi of 
“Biao3 Jie3  Biao2 Jie3”, that is, “LH LL”. Correspondingly, “Strong-final” patterns 
occur for “Biao3 Ge1”, “Biao3 Yi2”, “Biao3 Mei4” and “Da4 Ge1”, with the respective 
renderings of “LL HH”, “LL LH”, “LL HL” and “HL HH”.  

However, a seemingly disturbing case emerges for five words in each of which the 
combination pattern in terms of “H/L” for the first syllables is totally identical in 
number of H to the corresponding second ones, as in “Gan1 Ge1” re-rendered as “HH 
HH”, “Tang2 Yi2” as “LH LH”, “Da4 Mei4” as “HL HL”, “Tang2 Mei4” as “LH HL”, 
and “Da4 Yi2” as “HL LH”. Solely from the perspective of “H/L” pattern the above 
five words should all have the pattern in which the first and the second syllables are 
equally strong. The fact both revealed by the perceptual experiment as well as phonetic 
graphs4, however, turns out to be that it is the second syllables of the five words that 
bear the sentential accents and they fall into the “strong-final” pattern.  

Therefore, by permutation, then, three patterns of contrast in terms of the amounts of 
H tones come into being. And they are, of the two syllables: 1) the first with more H 
                                                           
4 As has been discussed above, the raising of f0 is mainly manifested on the H tones.  
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tones, 2) the second with more H tones, and 3) each containing equally numbered H 
tones. The result of “more Hs claiming strong” can be explained through the phonetic 
analysis of focal accents that the realization of the focal accents mainly manifested on 
the H tones of the focused syllables. What, then, accounts for the pattern with “H/L” 
pattern being equal? Pierrehumbert [9] proposes that when two stressed syllables sound 
equal in pitch, the second is actually lower and when the perception of pitch is equal in 
height the second syllable bears more stress. In view of this, the height of the pitch of 
the H tones is the crucial factor accounting for the accent patterns of the word with 
equal number of H tones.  

The following table provides the mean maximum pitch values of the H tones of the 
focused words under narrow focus condition with the tonal combinations of 
Tone1+Tone1, Tone2+Tone2, Tone2+Tone4, Tone4+Tone2 and Tone4+Tone4 (H1 
indicates the mean pitch values of the H tones of the first focused syllable and H2 is the 
second, the unit for these values is Hz).  

Table 6.  Maximum pitch values of H tones 

Tonal 
Combination 

Tonal 
Feature 

H1 (Hz) H2 (Hz) 

T1+T1 HH + HH 237 242 
T2+T2 LH + LH 222 231 
T2+T4 LH + HL 179 265 
T4+T2 HL + LH 244 242 
T4+T4 HL + HL 242 240 

The extraction of the above values of f0 under the circumstances of focus is achieved 
by smoothing off the influences exerted by the tones preceding and following the 
focused words, and thus by obtaining the means of the 16 focused words, each of which 
contains 48 samples. 

The puzzling fact can be explained from the above values that the mean maximum 
pitch values of the second focused syllable are higher than the first ones in the tonal 
combinations of Tone1+Tone1, Tone2+Tone2 and Tone2+Tone4. And in the tonal 
combinations of Tone4+Tone2 and Tone4+Tone4 the heights of the H tones of the two 
syllables nearly equals each other. All these data demonstrate that the second syllables 
of the focused words of these tonal combinations bear stronger accent. 

Therefore, in this part, we provide the phonological description of focused word with 
various tonal combinations through the theoretical model of Metrical Phonology. From 
the representation of the accent pattern of these focused words we offer the unified 
explanation for the underlying causes for the distribution of the accents by the means of 
re-rendering the tones of each syllable of focused word into the original H/L tones or 
the combinations of these two tones. When the underlying tonal combinations are 
different (this difference lies in the tonal combinations of each syllable between the 
focused words), the determining role of restricting the distribution of the accents is 
attributed to the amount of the H tones; however, when the underlying tonal 
combinations are identical, a predominant tendency exists of being always 
“strong-final”. These results strongly indicate that the phonological composition of the 
focused syllable is the primary cause for restricting the distribution of the accents.  
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5   Conclusion 

In this study, an integrated work of phonetic and phonological analysis for focal accents 
conveyed by disyllabic words in Standard Chinese has largely been done. Major findings 
are achieved from all the above analyses are expressed in both the phonetic and 
phonological aspects: for the phonetic perspective we have: 1) in the focus position under 
narrow focus condition, the pitch range of f0 is enlarged as the H tones under narrow focus 
condition is significantly higher than under broad focus condition, and L tones show on 
obvious differences in f0 under narrow focus condition, if there were, from those under 
broad focus condition, but the differences are by no means systematic and worthy of note. 
This finding, however, differs from that made by Yi Xu [4], who argues that under focus 
conditions f0 of H tones becomes higher and of L tones, lower. 2) In the positions 
preceding the focus, f0 range remains much the same, whether H tones or L tones, f0 is but 
slightly subject to the effect exerted by the focus, and this finding bears no considerable 
divergence from that of Xu [4].  3) Extremely significant effects imposed by the focal 
accents are found on the post-focus pitch range of syllables, which slightly but notably 
differs from the finding made by Xu [4] that the pitch range of f0 of the post-focus 
syllables is considerably compressed by the focus. Our study, however, offers a more 
refined discovery that the focal accents do lower the f0 of the H tones of Tone1 and 
Tone2, but exert only insignificant effects on the f0 of the L tones of Tone2, Tone3 and 
Tone4 and of the H tones of Tone4. For phonological perspective, the underlying causes 
for the distribution of the focal accent are explored through the phonological description 
of the accent patterns of the focused words. The manifestation and distribution of focal 
accents are closely related with the underlying tonal target of the focused words that the 
realization of the tones is influenced by accents and the phonological composition of the 
focused constituents determines the distribution of the focal accents. We would therefore 
agree with Ladd [3] that once focus is identified in accordance with the speaker’s intent 
and with the context, it is the language-specific structural factors that determine the 
accent distribution. In Standard Chinese, the phonological combination of the focused 
constituents is the primary causes that determine the distribution of the focal accents, this 
analysis also identical with Chomsky [10] that phonological characteristics determine the 
nature of the accents.  
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Abstract. This paper studies how focus, lexical stress and rising boundary tone 
act on F0 of the last preboundary word. We find that when the word is non 
focused, the rising boundary tone takes control almost from the beginning of the 
word and flattens F0 peak of the lexical stress. When the word is focused, the 
rising boundary tone is only dominant after F0 peak of lexical stress is formed. 
This peak is even higher than F0 height required by the rising boundary tone at 
the end of the word. Furthermore, the location of lexical stress restrains the 
height at F0 peak and high end to be reached. The interaction of these three 
factors on a single word leads to F0 competition due to limited articulatory 
dimensions. The study helps to build prosodic model for high quality speech 
synthesis. 

Keywords: boundary tone, focus, lexical stress. 

1   Introduction 

Pitch contour is the acoustic manifestation of intonation. Fundamental frequency (F0) 
is the physical parameter to describe this variation. F0 is also used to convey 
linguistic distinctions, such as surd/voicing, tones in tone languages, lexical stress in 
stress languages; prosodic features, such as breaking and prominence; and 
paralinguistic features, such as the affective information denoted by the speaker. As 
they are encoded in the same F0, all these features have to compete and compromise 
to a certain extent in the manifestation of their functions, and this is one reason for the 
complexity of intonation. 

The research of intonation basically concerns break and focus [3][4] 
[10][14[15][17][19]. Break is signaled by F0 changes of certain type right before the 
break. It reflects prosodic hierarchy, i.e. sentence, prosodic phrase, prosodic word, 
and foot. At certain levels, break carries a boundary tone, which uses a section of F0 
right before the break. Focus directs attention towards the important or the new in an 
utterance [6]. In most cases F0 develops a peak to illustrate prominence (cf. low 
accent in [15]). Both boundary tone and focus can be competitive candidates in 
dominating F0, which can be judged by the height to be reached. 

The variation of intonation leads to different sentence types. Declaratives typically 
have a gradual decline in F0 from the beginning, and questions usually adopt a rising 
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intonation contour. [1][11][18] demonstrated that contrast between statements and 
questions could be seen clearly the more to the rightward of the sentence. Some 
researchers [21] concluded the difference between the two types existed in a longer 
temporal domain: F0 of the entire question was raised. Other researchers [8][13] 
reckoned the basic distinction of the two sentence types was due to terminal F0 
movement determined by the word at the end of the sentence and the boundary tone 
of the prosodic unit. However, some experiments suggested the final rise for 
questions was not obligatory. In [7], for example, only about half of the questions had 
rising contours in the survey of yes-no questions in radio and television programs. 

Besides boundary tones, many studies suggested that focus was also involved in 
the shaping of pitch contour [2][20]. In [5][9][12][16], for example, the relation of 
focus location or focus F0 height and sentence final F0 track were discussed.  

To summarize briefly, most studies agreed that the basic distinction between 
statements and questions were concerned with boundary tones, usually falling for 
statements and rising for questions. The competing effect between the boundary tone 
and focus changed the shape of F0 finals: lifting statements and reducing questions. 

The matter becomes more complicated, when a third factor involves in the 
competence, lexical stress of the word. The location of lexical stress differs, F0 of this 
preboundary word changes accordingly. 

This paper therefore studies how the boundary tone, focus and lexical stress act on 
F0 based on the words that carry the rising boundary tone from a large English 
synthesis corpus. The study results provide useful information to prosodic control of 
high quality speech synthesis.  

2   Methods 

2.1   Corpus and Speaker 

The speaker was a male American in his thirties. The recording was done in a sound-
treated booth and the speaker was asked to read in a steady and natural way. The 
corpus contained 2640 sentences and was of the news broadcasting style.  

2.2   Corpus Labeling 

The corpus was labeled by two English majors who had phonetics training. The 
transcribers fully relied on their perception to annotate the corpus. Their task was to 
find boundaries in sentences, assign appropriate boundary tones and weigh the 
focused words in these sentences. 

A break was labeled where boundary was sensed. The boundary was usually 
followed by obvious stops in the utterance. 

Boundary tones fell into three categories, namely rising tone, falling tone and 
plateau. They were annotated according to what the labelers actually heard, after the 
place where a break existed was determined.  

Focus of the sentence was assigned to those perceptually strong words.  

2.3   Material Selection 

In order to check how F0 was schemed to realize various features in the very limited 
articulatory dimensions, the final word before the boundary was selected. Besides the 
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stressed syllable, the word of this type carried the major part of boundary tone, and 
might take focus of the sentence at the same time.  

In this experiment, the final word before the boundary carrying a rising tone was 
chosen. Because we assumed, if the stressed information was usually presented by the 
pitch in the upper part of a speaker’s frequency range, then the realization of falling 
track of this peak may be very interesting when there was also an urgent need to reach 
the high pitch target of the rising tone carried by the word itself. In a word, we would 
like to check how these three features were achieved in one single word: lexical 
stress, sentence focus and boundary tone. 

Due to the restricted numbers of suitable four syllable words in the labeled corpus, 
we chose monosyllable, disyllable and trisyllable words as final materials. Besides, 
compound words were not included in the material, as to its twofold stresses in 
nature. The number of word in each word type could be found in Table 1, where “S” 
in word type refers to lexical stress. Thus, TriS2, for example, means trisyllable word 
with lexical stress on the second syllable. 

Table 1. Word structures and material numbers. Mon, Di, and Tri means the word is with 
single, two and three syllable(s). S1, S2, S3 means the location of the word lexical stress is on 
the first, second and third syllable respectively. 

Type Mon DiS1 DiS2 TriS1 TriS2 TriS3 
Focused Word 67 117 12 83 33 0 
Non Focused Word 235 186 40 55 32 0 

2.4   F0 Measurement 

The pitch contour of each word was inspected and the errors detected were manually 
corrected.  

 

Fig. 1. Three measured points in the word “valley”. Peak: the highest point of the stressed 
syllable; Valley: the lowest point after peak; Tail: the highest point after valley. The vertical 
line in the middle of the figure indicates the syllable boundary. 
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For each word, the pitch value at three points was measured. They were: the 
highest point of the stressed syllable (peak), the lowest point after peak (valley), and 
the highest point after valley (tail). Figure 1 takes the word “valley” as an example to 
show the measured points. 

3   Results 

In this part, di- and trisyllable words are compared. Monosyllable words would be 
discussed later in Section 4.2. 

3.1   Non Focused Word 

Theoretically speaking, peak, valley and tail are also the measured points for non 
focused category. However, after one-by-one check, we notice that word that is not 
carrying sentence stress does not have such a clear trajectory where obvious peak and 
valley could be defined. F0 movement of the stressed syllable is rather flat in this 
category, thus both peak and valley are actually nominal. In Table 2, peak is listed to 
prove that non focused word is with a tail higher than the highest point in the stressed 
syllable. Moreover, in DiS2, the nominal peak shares the same point with tail due to 
F0 shape of rising in general, thus peak is not measured in this type.  

Table 2. Mean (M) and standard deviation (SD) of the value at peak and tail of non focused 
word 

Peak  Tail  Type/Number 
M(Hz) SD M(Hz) SD 

DiS1 /186 85.9 4.7 95.4 8.1 
DiS2 /40 / / 96.8 11.0 
TriS1 /55 85.4 5.0 95.9 8.0 
TriS2 /32 84.7 4.8 96.1 8.0 

The analysis of the figures in Table 2 shows that tail in non focused word is higher 
than the nominal peak (DiS1, t=19.85; TriS1, t=10.65; TriS2, t=8.65; p<.05), while 
the height of tail in four categories is the same (F(2, 270)=0.18, p>.05). 

Valley is not listed in Table 2, because the location of valley varies. 165 out of 186 
in DiS1, 23 out of 55 in TriS1 are in the first syllable. The remaining samples in these 
two types take rising from the second syllable. Besides, the lowest point after peak in 
all TriS2 samples is in the lexical stress, however, this valley is not necessary the start 
of rising. Further investigation shows that 22 out of 33 words in TriS2 take the rising 
from the first syllable, instead of the stressed second syllable. 

3.2   Focused Word 

Compared with their non focused counterparts, those sentence stresses have salient 
peaks, though they are carrying a rising boundary tone at the same time. Statistics 
show if this preboundary word is a sentence focus, the peak of the stressed syllable 
would have a higher value than its rising tail (DiS1, t=19.72; DiS2, t=7.72; TriS1, 
t=14.78; TriS2, t=13.78; p<.05).  
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Table 3. Mean (M) and standard deviation (SD) of the value at measured points of focused 
words 

Peak  Valley  Tail  Peak-Valley Tail-Valley Type/ 
Number M(Hz) SD M (Hz) SD M(Hz) SD M(Hz) SD M(Hz) SD 

Di_S1 /117 118.4 13.0 87.0 5.1 97.5 7.3 31.4 13.1 10.5 5.4 
Tri_S1 /83 116.0 14.7 83.0 5.8 95.2 8.1 33.0 15.1 12.2 6.8 
Tri_S2 /33 114.6 9.3 88.8 5.4 96.7 7.2 25.7 7.1 7.8 4.0 
Di_S2 /12 114.9 11.2 90.5 5.2 98.0 7.5 24.4 9.4 7.5 4.6 

Table 4. Multiple Comparisons with valley, peak-valley, tail-valley as dependent variables. 1, 
2, 3, 4 in (I) type and (J) type represents DiS1, TriS1, TriS2, DiS2 respectively. When test of 
homogeneity of variances shows significancy, Tamhane test is applied instead of Bonferroni. 
The figure in bold means the mean difference is significant at the .05 level. 

Valley (Bonferroni) Peak-Valley (Tamhane) Tail-Valley (Tamhane) (I) T
Y

P
E

(J) T
Y

P
E

Mean 
Diff 
(I-J) 

Std. 
Error 

Sig. Mean 
Diff 
(I-J) 

Std. 
Error

Sig. Mean 
Diff 
(I-J) 

Std. 
Error

Sig. 

1 2 4.0 0.8 0.00 -1.6 2.1 0.97 -1.7 0.9 0.30 
  3 -1.8 1.1 0.56 5.7 1.7 0.01 2.7 0.9 0.02 
  4 -3.5 1.6 0.21 7.0 3.0 0.18 3.0 1.4 0.29 
2 1 -4.0 0.8 0.00 1.6 2.1 0.97 1.7 0.9 0.30 
  3 -5.8 1.1 0.00 7.3 2.1 0.00 4.4 1.0 0.00 
  4 -7.5 1.7 0.00 8.6 3.2 0.08 4.7 1.5 0.04 
3 1 1.8 1.1 0.56 -5.7 1.7 0.01 -2.7 0.9 0.02 
  2 5.8 1.1 0.00 -7.3 2.1 0.00 -4.4 1.0 0.00 
  4 -1.7 1.8 1.00 1.3 3.0 1.00 0.3 1.5 1.00 
4 1 3.5 1.6 0.21 -7.0 3.0 0.18 -3.0 1.4 0.29 
  2 7.5 1.7 0.00 -8.6 3.2 0.08 -4.7 1.5 0.04 
  3 1.7 1.8 1.00 -1.3 3.0 1.00 -0.3 1.5 1.00 

One-way ANOVA on mean F0 was conducted, with peak, valley, tail, peak-valley, 
tail-valley as dependent variables and word type as independent factor. The analysis 
of the statistics in Table 3 classifies these words into two categories: front stressed 
(DiS1 and TriS1) and back stressed (DiS2 and TriS2). 

The four word types do not differ on peak (F(3, 241)=1.10, p>.05) and tail (F(3, 

241)=1.64, p>.05). However, F0 height at valley is not even (F(3, 241)= 15.82, p<.05). 
Post hoc test (Table 4) shows the lowest valley in all word types goes to TriS1. 
Meanwhile, detailed check shows the valleys of those TriS1 words mostly occur at 
the beginning of the last syllable (61 out of 83 cases), and the remaining occur later in 
the second syllable.  

Compared with back stressed word, TriS1 climbs much higher from valley to tail 
(F(3, 241)=5.92, p<.05). However, it does not differ from DiS1.  

Another trisyllable word, TriS2, is lower both on relative peak (peak-valley) (F(3, 

241)=3.49, p<.05) and relative tail (tail-valley), compared with front stressed word.  
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4   Discussion 

4.1   Di - and Trisyllable Words 

Judging from the materials collected in our corpus, focus that carries a rising 
boundary tone would have a salient peak at lexical stress of the word. The value of 
peak is even far beyond the high rising tail at the end of the word. The rising tail has 
to compromise and develop a sharp movement only after the lexical stress reaches its 
peak. This result implies that in the competence of F0 movement required by the 
rising tone and the focus, the latter wins. The boundary tone carried by the word 
resumes its control after the peak, also suggesting the last syllable of the last word is 
the most important place for the completion of boundary tone. Figure 2 describes the 
trend of F0 tracks of focused words of four types with each syllable normalized to the 
same length. 

In contrast, the peak of lexical stress of non focused word is blurred by the rising 
boundary tone. The location of valley in this type suggests most of the rising starts 
within the stressed syllable. Because the lexical stress is not prominent in the sentence 
as the one takes the sentence focus, in F0 formation of lexical stress and rising 
boundary tone, the latter takes the dominant position almost at the beginning of the 
word and makes lexical stress rather flat. 

In details, TriS1 has the lowest valley. The reason might be that most of TriS1 
valleys occur at the beginning of the last syllable (61 out of 83 cases). Thus while the 
first syllable of TriS1 is contributed to develop F0 peak, the word still has sufficient 
time to decline to the right point in later syllables and then complete the rising easily 
using at least the last syllable. In DiS1 and TriS2, though peak and valley forms in 
two separate syllables and the valley occurs much later than the one in TriS1, it does 
not guarantee a lower valley because a high end required by rising boundary tone is 
waiting. If the valley goes lower, the high tail of boundary tone can not be reached.  

Meanwhile, TriS1 has a relative tail higher than back stressed word. However, it 
does not differ from DiS1. It can be inferred from the valley position of TriS1 that the 
rising tail of TriS1 is given comparatively sufficient time. Consequently, relative tail 
of DiS1 and TriS1 is the same, though at valley TriS1 is much lower. 

For back stressed word, the height between valley and tail is compressed. In TriS2, 
both relative peak and relative tail are lower than front stressed word. The existence 
of the first syllable in TriS2 might postpone F0 peak in the stressed second syllable. 
The even more limited time restrains F0 to get down to a lower place and does not 
allow a higher tail. This can also explain the fact that DiS1 enjoys a higher relative 
tail than TriS2 

Presumably, DiS2 would have lower relative peak and relative tail, as in DiS2 both 
peak and valley are in the same syllable. Theoretically, before an ideal peak could be 
generated, the pitch contour has to turn downward to prepare for the rise. However, 
the result is out of our expectation: DiS2 only differs from TriS1 statistically on 
relative tail. Nevertheless, we should notice this type only has 12 samples, which is 
quite limited in number. Further research is expected when enough samples are 
available, and we anticipate a different result.  
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Fig. 2. F0 trend of focused word of four types. Each syllable is normalized to the same time 
period. 

4.2   Monosyllable Word 

While non focused monosyllables are just like other non focused types, having a 
rising contour in general, the focused monosyllable is very special. This type is 
originally supposed to be like DiS2, with peak and valley in one syllable. However, it 
behaves in a more diverse way. In all 67 samples, 16 are with an almost monotonous 
rising contour, and 20 has a lower peak than the tail, suggesting monosyllable words 
to be characteristically different at some place. One reason for so many variances 
might be that the single syllable word is very sensitive to the previous syllable. This is 
also a point that needs further studies. 

5   Conclusion 

In general, F0 movement of the last preboundary word that carries a rising boundary 
tone behaves with certain patterns. Due to limited articulatory dimensions, lexical 
stress of the word, focus information and the rising boundary tone carried by the same 
word have to compete for its share of F0 on this single word. The dominant factor 
differs with focus as the switch. When the word is non focused, boundary tone 
controls F0 almost from the beginning of the word, leaving F0 peak of lexical stress 
rather flat. When the word bears focus, the information of lexical stress is in the 
superior position. The rising boundary tone is dominant after F0 peak of lexical stress 
is formed. This peak is even higher than F0 height at the end of the word required by 
the rising boundary tone. Furthermore, the location of lexical stress restrains this F0 
peak and end to be reached. The moving of lexical stress to the right end of the word 
may elicit the compressing of peak-valley, tail-valley range, suggesting a less 
thoroughly realized peak and tail, thus focus and boundary tone. The results prove 
that, each prosodic feature has its own dimension of realization in F0, but the 
extension and intensity of its performance is negotiable and competitory. 
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Abstract. A robust voice activity detector (VAD) is expected to increase the 
accuracy of ASR in noisy environments. This study focuses on how to extract 
robust information for designing a robust VAD. To do so, we construct a noise 
eigenspace by the principal component analysis of the noise covariance matrix. 
Projecting noise speech onto the eigenspace, it is found that available 
information with higher SNR is generally located in the channels with smaller 
eigenvalues. According to this finding, the available components of the speech 
are obtained by sorting the noise eigenspace. Based on the extracted high-SNR 
components, we proposed a robust voice activity detector. The threshold for 
deciding the available channels is determined using a histogram method. A 
probability-weighted speech presence is used to increase the reliability of the 
VAD. The proposed VAD is evaluated using TIMIT database mixed with a 
number of noises. Experiments showed that our algorithm performs better than 
traditional VAD algorithms. 

Keywords: Voice activity detection, Principal component analysis, Auto-
segmentation, Local noise estimation. 

1   Introduction 

The performance of speech processing systems such as Automatic Speech 
Recognition (ASR) systems, speech enhancement and coding systems, suffers 
substantial degradations in noise environments. By applying a robust Voice Activity 
Detection (VAD) algorithm to those systems, their performances can be improved in 
the adverse environments. In clean conditions, the VAD systems using short-term 
energy or zero-crossing features work fairly well [1], but in noisy conditions, a 
traditional VAD is no longer robust when speech signal is seriously contaminated by 
noise. It is still a challenging problem to design a robust VAD for noise 
environments. 

In the past twenty years, many researches have been conducted to obtain a robust 
VAD in adverse environments. Some of the researches paid attention to the intrinsic 
speech features such as periodic measure [2]. The other methods focused on the 
statistical model of speech and noise signals, such as the Gaussian statistical model 
based VAD [3] [4], Laplacian model based VAD [5] and high-order statistical VAD 
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[6]. However, in low Signal-to-Noise Ratios (SNR) condition, speech features and 
speech statistical characteristics were not easy to be obtained. To reduce the noise 
effect, recently, a method combining speech enhancement with VAD was proposed 
[8]. Their method, however, has the two problems in the speech enhancement stage: 
residual noise and speech distortion, which brought error to VAD. 

In this paper, we propose a novel approach to realize a robust VAD. The basic 
consideration is that speech usually has a different distribution from noises in the 
energy domain. If we can sort the components that have low power for noise and high 
power for speech, it is possible to extract more reliable information for speech even if 
the average SNR of the noisy speech is low. For this purpose, first, a noise 
eigenspace is constructed based on an estimated covariance matrix of noise 
observations using Principal Component Analysis (PCA). Projecting the noisy speech 
onto the noise eigenspace, the reliable information can be found out in the sub-
eigenspace with smaller eigenvalues. Thus, a robust VAD can be realized based on 
the reliable information. Section 2 introduces the principles of noise eigenspace 
projection. Section 3 shows the implementation of the algorithm. In Section 4, we 
give the experimental evaluation, and compare our algorithm with some leading 
algorithms.  

2   Projection in Noise Eigenspace 

This section first investigates the SNR distribution property in a noise eigenspace. 
Then, we describe how to obtain the noise eigenspace in real application. 

2.1   SNR Distribution in Noise Eigenspace 

The noise eigenspace is used to describe the property of noise energy distribution. It is 
constructed from by principal component analysis of noise covariance matrix. Using 
eigenvalue decomposition, we can get the following relationship between eigenvalues 
and eigenvectors: 

k k kCϕ λ ϕ= ,  1, 2,...,k K=                                          (1) 

where C  is the covariance matrix of a zero mean noise signal n , ( )kϕ  is the 

eigenvector corresponding to eigenvalue kλ . By sorting the eigen-coordinates based 

on eigenvalues order
Kλλλ >>> ,...,21

, we get the corresponding 

eigenvectors { }Kkk ,...,2,1=ϕ . The projection of a noisy speech frame x on the kth 

eigen-coordinate then is written as: 

kk xy ϕ⋅=                                                           (2)                  

Since the noise energy centers on some coordinates, when projecting noisy 
speech into the noise eigenspace, it is possible to find a sub-eigenspace with few 
noise energy, hence higher SNR, where we can extract available information. Here, 
we use a specific noise to demonstrate the idea how to extract available information 



78 D. Ying et al. 

from noisy speech based on the noise eigenspace. We construct a noise eigenspace 
from a period of destroyer-engine noise. A speech sentence is mixed with the period 
of noise at 0dB. Both the speech and noise are respectively projected into the 
eigenspace. Since covariance matrix is calculated from the whole period of mixed 
noise, noise projection energy is actually the noise eigenvalue of the corresponding 
eigen-coordinate. The results of this processing are shown in Fig. 1. The left panel of 
Fig. 1 illustrates the initial distribution of projection energy in the original 
eigenspace. The blue curve is noise projection energy and the red is the projection 
energy of the clean speech. We sort eigenvalues in a descending order and rearrange 
the coordinate of the eigenspace according to the sorted order, where speech 
projections will move with the noise eigenvector in pair. For example, the channel 
with the maximum noise and the projected speech, shown by the dashed line in the 
left panel, are transferred to the lowest channel in the sorted noise eigenspace. Thus, 
a monotonically descending curve of the noise energy is obtained as shown in middle 
panel of Fig. 1, and the corresponding speech projections are shown in red curve with 
non-monotonic changes. In the rearranged space, one can see that in the high 
coordinates the speech’s energy is higher than that of noise even though the average 
SNR is equal to zero or lower. Especially in last coordinates, the SNRs are much 
larger than the original SNR, as shown in right panel of Fig.1.  

 

Fig. 1. Energy distributions in a noise eigenspace 

For investigating the generality, the noisy speech projections are testified using 
eigenspaces of other types of noises out of the NOISEX’92 database. We mixed the 
noises with clean speech sentences from TIMIT database at given SNR levels. In real 
application, it’s impossible to calculate the noise covariance matrix from the whole 
period of mixed noise. So, we estimate the covariance matrix by the non-speech 
period at each sentence beginning (as described in section 2.2).  

Then, we project the noise and speech onto the sorted eigenspace and measure the 

SNR at each coordinate. Here we define the projection SNR iξ  of the ith coordinate 

as the difference between the ith coordinate SNR and the mixture SNR, as described in 
formula (3):  

( ) ( )NSNS iii /log10/log10 1010 −=ξ                                (3) 
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where S and N are the total energy of a speech sentence and the mixed noise 

respectively. iS and iN are the projection energy of speech and noise at the ith 

coordinate respectively. The energy in the original space equals the summation of 
projected energy at each coordinate: 
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Thus, we further rewrite the formula as: 
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From formula, we can find out that projection SNR iξ is only concerned with the 

percentage of energy distribution at the ith coordinate. Since, projection SNR has no 
relationship with the global average SNR, we can easily represent the relationship 
among projection SNR, eigen-coordinate index and distribution probability by a 
three-dimension color image.  

The color image is constructed by this way. For each sentence, we can calculate 
its projection SNR at each coordinate. At a given coordinate, we construct a 
histogram to describe the projection SNR distribution of all noisy sentences, and 
represent the value as probability of occurrence. So, the probability summation of 
each coordinate equals to 1. We combine the histograms at all coordinates into a 
colored image. In this algorithm, the speech sampling rate is 16 kHz, frame length 
0.02s and frame shift 0.01s. Thus, the full eigenspace has 320 eigen-coordinates.  

 

Fig. 2. Projection SNR distribution in noise eigenspace. Vertical axes describe the projection 
SNR. The color represents its distribution probability. 

From the figure, it’s easy to understand that the SNR of the projected signal on 
high dimensional coordinates is greater than that of projection on low dimensional 
coordinates. In another word, the SNR have an increasing tendency from the low to 
high coordinates. The statistics experiment shows the projections on eigen-
coordinates with smaller eigenvalues always associate with high SNR. Therefore, it’s 
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possible to utilize the information of coordinates with smaller eigenvalues and ignore 
the coordinates with larger eigenvalues to carry out robust VAD.  

2.2   Noise Eigenspace Estimation 

Noise covariance matrix is the basis of eigenspace calculation. Before implementing 
VAD in eigenspace, it is necessary to obtain a reliable estimation of noise covariance 
matrix from noisy speech. Suppose there is somewhat a non-speech period in the 
beginning of each sentence, an initial covariance matrix can be estimated from this 
period. Then, the covariance matrix is updated stepwise using the detected noise. 

To obtain a credible estimation of the initial noise covariance matrix, the frame 
shift is reduced to 0.375ms so that we can obtain 350 noise frames within 140ms at 
the beginning of sentences. The noise eigenspace is updated based on a time-varying 
estimation of the covariance matrix ( )nĈ ( KK × ). Giving an initial estimation ( )0Ĉ , it 

is successively updated as: 

( ) ( ) ( ) ( ) ( )nxnxnCnC Tαα −+−= 11ˆˆ                                      (5) 

where n is time (frame) index, α is a low-pass, forgetting factor with value 0.98, 
( )nx is the observed noisy signal vector. 

As known, eigenvalue decomposition is a time-consuming operation. Since noise 
is much more stationary comparing to speech signal, it’s possible to doing eigenvalue 
decomposition periodically. On one hand, a longer period for eigenvalue 
decomposition can save computation time. On the other hand, a shorter period will 
benefit to an accurate estimation of noise eigenspace. So, a tradeoff is made between 
computation time and the accuracy of eigenspace. 

3   Voice Activity Detection in Noise Eigenspace 

In this section, we address how to detect the voice activity in the sub-eigenspace with 
high SNR. Before the noisy speech projected into noise eigenspace, the input signal is 
partitioned into homogenous segments as units for VAD decision. We construct 
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channels using high-SNR coordinates and realize a sub-VAD at each channel. At last, 
the reliable channels with greater SNR will give a voting. The processing block 
diagram is shown in Fig. 3. 

3.1   Auto-segmentation and Channel Construction  

Firstly, we use auto-segmentation to partition the frame sequence into homogeneous 
segments. It is based on the consideration that, in noisy speech signal, the voiced and 
unvoiced blocks usually occur as segments consisting of several consecutive frames. 
The decision results should not transfer between speech and noise frame by frame. 
Here, homogeneous segments are taken as units for VAD decision, which reduces the 
problem of spurious changes of speech detection and limits speech-noise transfer 
times in the decision. The algorithm is a dynamic programming based procedure to 
minimize the segmentation cost [9]. In our algorithm, eight-dimension MFCC 
features including the log-power energy are used for auto-segmentation. 

Secondly, the noisy speech frames are projected onto the noise eigenspace. Then, 
the every 10 adjacent projections are grouped into one channel by using the logarithm 
of the absolute magnitude summation to form a smoothed envelope. There are totally 
32 grouped, projected channels in our algorithm.  

The constructed channels located at the low dimensional coordinates have low 
SNR. Those channels bring much speech false alarm and contribute a little to speech 
hit rate. Therefore, those channels should be ignored in decision. Here, the channel 
SNR is used to evaluate each channel’s reliability. It is estimated based on 
eigenvalues (average noise energy) and observed projection energy. According to 
experiments, the channels with SNR less than 2dB should be ignored in VAD 
decision. The left channels are used for VAD. 

3.2   Histogram Based Local Noise Estimation 

For making a correct final VAD decision, we carried out a sub-VAD decision at each 
channel. To do so, an appropriate threshold for each channel should be given. We 
propose a histogram-based method to estimate the sub-VAD threshold. The sub-VAD 
threshold is decided by noise level and variance of noise log-power. Suppose that the 
noise log-power of each channel obeys a Gaussian distribution, the problem arrived 
at estimation of the mean (noise level) and variance of the Gaussian function. 

Many approaches such as clustering [9] and GMM fitting [7] have been proposed 
to estimate noise level in noisy speech. All these methods are based on the following 
observations in the histograms of log-power energy of noisy speech [10]: 

a. In the two peak mode of the histogram, the peak in lower region is usually 
contributed by background noise, while the peak in lower region is contributed 
by speech. 

b. In general, the noise mode has a salient peak and its variance is smaller than that 
of speech. The reason is that, as commonly assumed, the energy of the 
background noise is more stationary than that of speech. 
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c. The two modes are clearly separated in high SNR conditions. As SNR is 
decreasing, the two modes are getting closer and eventually merge into one 
mode. 

However, in most situations, the two-peak mode assumption is not kept well. There 
may be only one peak model in speech pause duration or the mode with more than 
two peaks on the histogram. Traditional ways for estimation of noise level can not 
deal with those situations. It is necessary to design a local noise estimation method to 
deal with one peak, two peaks, and several peaks cases. Our estimation method only 
concern with noise mode, since noise mode is more salient than speech mode. Based 
on the basic observation in (a), (b) and (c), we present a local noise estimation 
method, as following steps: 

i. Taking a dynamic range (0~9dB relative to minimum power) to construct the 
40-bin histogram. This range is wide enough to include the noise level.  

ii. Using a 3-point median filter to smooth the occurrence number, and taking the 
first peak at left side as the noise level location. 

The noise level is the average of noise log-power Gaussian model. It is also 
assumed that noise log-power less than the noise level is affected little by speech as 
shown by shadow in Fig. 4. Then, its variance is estimated by the data less than the 
noise level. Based upon the local noise Gaussian model, we can define a sub-VAD 
threshold: 

γσμ += Threshold                                                  (6) 

where   μ is the noise level,  σ is the estimated variance, γ  is the coefficient for tuning 

the threshold. Fig. 5 illustrates the sub-VAD threshold estimation of noisy speech at 
5dB in factory noise situation using the histogram method. The thick curve in the 
upper panel is noisy speech power envelope; the thin curve is clean speech power 
envelope. The dark segments in the middle panel are the detected speech segments. 
The threshold is calculated using formula (6). The centroids of homogenous segments  
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partitioned by auto-segmentation are compared with sub-VAD threshold. Our local 
noise estimation method can deal with all cases, whether in speech pause, high or low 
SNR conditions. 

The coefficient γ tuning the sub-VAD threshold in formula (4) should adapt to 

channel SNR. In high SNR channels, γ should be smaller to make the sub-VAD 

sensitive to speech and be larger in low SNR channels to avoid speech false alarm. 
According to experiments, whenγ is linearly interpolated 1.3~1.1 between 2dB~8dB, 

it achieves better tradeoff between speech false alarm rate and hit rate. If channels’ 
SNR is higher than 8dB, γ equals 1.1.  
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Fig. 5. Noise estimation by histogram 

3.3   Voting and Parameter Adaptation 

As mentioned in section 3.1, the channels with SNR less than 2dB are ignored. Only 
those channels with SNR larger than 2dB take part in the voting. So, the numbers of 
voting channels varies with average SNR conditions, it’s necessary to normalize the 
votes by channel numbers. If the normalized votes exceed the threshold δ , the 
homogenous segments will be decided as speech. Fig. 6 is the voting result of a 
speech sentence mixed with babble noise at SNR=0dB. There are 30 channels with 
SNR larger than 2dB, taking part in the voting. In the middle panel, the red part is the 
detected speech segments. 

Considering the tradeoff between noise and speech hit rate, in real application, we 
adapt the voting threshold δ  to the average SNR level as: 
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(7) 

where 
hSNR and

lSNR  are the highest and lowest SNR levels respectively in real 

applications; 
hδ  and 

lδ  are the voting thresholds corresponding to the highest and  
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Fig. 6. Detection results of 0dB babble noise 

lowest SNR levels. For SNR between lowest and highest levels, the voting threshold 
is linearly interpolated between 

lδ  and
hδ ; round is the nearest integer function. 

4   Experimental Evaluation  

To evaluate the effectiveness of our VAD algorithm, we measured the detection 
probability (including speech hit rate HR1 and noise hit rate HR0) for a number of 
noisy speech paragraphs. The experiment data were taken from the TIMIT database. 
We connected every ten sentences from one speaker into a speech paragraph and 
mixed it with noise taken from NOISEX’92 database at variant SNR situations. Our 
experiment data consisted of 168 paragraphs with duration of about half a minute. 
The VAD references were labeled based on energy envelopes of clean speech signals. 

In the detection, the paragraphs were chopped into 4-second segments. The noise 
eigenspace was estimated as described in section 2.2. For every 4 seconds, the noise 
eigenspace was updated by the detected noise. The adaptive voting threshold was 
calculated using formula (7), where the parameters were set as 1=lδ  for dBSNRl 5−=  

and 6=hδ for dBSNRl 20= . 

Table 1. Experimental results 

 
G.729B 

AFE 
(Wiener Filtering ) 

Proposed VAD 

HR1 77.91% 89.91% 94.77% Factory 
 HR0 84.43% 40.76% 58.48% 

HR1 74.79% 86.43% 91.18% Babble 
HR0 74.99% 45.30% 55.81% 
HR1 77.21% 90.86% 94.62% 

Tank 
HR0 85.25% 36.75% 64.74% 
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Table 1 shows the experiment results of our proposed algorithm with the 
traditional VAD algorithms. The values in the table are the noise hit rate (HR0) and 
speech hit rate (HR1) averaged over noisy speech different SNR from -5dB to 20dB. 
In this table, one can see that, in noisy environments, our algorithm works much 
better than G.729B [1] and AFE [11] algorithms. 

5   Conclusions 

In this paper, we proposed a noise eigenspace based VAD algorithm. A local noise 
estimation method was implemented in the proposed method to increase the 
robustness of the detection. The experiments showed that our algorithm were much 
more robust than traditional VAD algorithms, such as G.729 and AFE VAD 
algorithms.  
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Abstract. In this paper, a novel pitch mean based frequency warping (PMFW) 
method is proposed to reduce the pitch variability in speech signals at the front-
end of speech recognition. The warp factors used in this process are calculated 
based on the average pitch of a speech segment. Two functions to describe the 
relations between the frequency warping factor and the pitch mean are defined 
and compared. We use a simple method to perform frequency warping in the 
Mel-filter bank frequencies based on different warping factors. To solve the 
problem of mismatch in bandwidth between the original and the warped 
spectra, the Mel-filters selection strategy is proposed. At last, the PMFW mel-
frequency cepstral coefficient (MFCC) is extracted based on the regular MFCC 
with several modifications. Experimental results show that the new PMFW 
MFCCs are more distinctive than the regular MFCCs.  

Keywords: Pitch, frequency warping, MFCC. 

1   Introduction 

State-of-the-art speech recognition systems have to face with a lot of variability in the 
acoustic signal. For example, context variability, style variability, speaker variability 
and environment variability are some typical types of variability [1] that may cause 
mismatch between training and test data of automatic speech recognition (ASR) 
systems. A lot of schemes have been developed in the past few years to compensate 
for this mismatch in order to improve the accuracy of the ASR system. Two major 
schemes are acoustic features transformation and acoustic model parameters 
adaptation. 

Speaker variability and speaking style variability are two major factors that might 
cause mismatch between the trained acoustic models and the actual speech to be 
recognized. To reduce speaker variability, vocal tract length normalization [2, 3, 4] is 
commonly used to transform acoustic feature for ASR. The correlation between a 
speaker's average pitch and the vocal tract length was also exploited in [5]. On the 
other hand, even for a same speaker, his/her speech will change much with different 
speaking styles, therefore the speaking style variability also need to be considered. 
The pitch contour is one of the important features to classify different speaking style. 
There is a correlation between the pitch contour and the speaking style. Thus both the 
speaker variability and the speaking style variability correlate with the pitch 
frequency. 
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Automatic speech recognition should be based on speech features that contain 
relevant information capable of discriminating different speech sounds. The dynamic 
features of pitch are useful in speech recognition, especially for Chinese. Yet speech 
signals with different average pitches could contain the same phonetic information. 
Even the phase vocoder can manipulate the signal in frequency-domain, enabling 
pitch-shifting without changing the phonetic information [6, 7]. Thus the average 
pitch of speech is not the relevant feature to discriminate different phonetic 
information in speech for ASR. Commonly used speech features such as MFCCs are 
affected by changes of the pitch in speech signals. One way to alleviate the 
disturbance of pitch is to find speech features that are less sensitive to changes of 
pitch, yet capable of retaining good discriminative properties. 

In this paper, a pitch mean based frequency warping (PMFW) method is proposed 
in feature extraction to compensate for the pitch-mismatch in speech signals. In [8, 9], 
the formant-based frequency warping was discussed for speaker normalization. 
However, the motivation of this paper is not only implementing speaker 
normalization. Because the average pitch is not directly proportional to the vocal tract 
length [5], using pitch explicitly for speaker normalization is not so reasonable as 
expected. On the other hand, the average pitch of the speech segment does have 
relations to both the speakers and the speaking styles. Effects of the pitch-mismatch 
need to be considered separately in ASR. Our work presents an approach that warps 
the frequency according to the average pitch of a speech segment. The motivation 
here is to integrate the PMFW into the acoustic feature extraction at the front-end 
with a little computation and make the new PMFW features more discriminative for 
ASR. 

2   Pitch Mean Based Frequency Warping 

2.1   ASR and Pitch  

Pitch plays an important role in speech perception. The pitch is not a characteristic of 
the vocal tract length and does not directly affect the resonant frequencies. However, 
the information about pitch can be used to improve ASR systems. There are three 
typical methods that use the pitch information in ASR systems.  

First, the pitch can be used as an acoustic feature and modeled using hidden 
Markov models (HMMs) and/or Artificial Neural Network (ANN). For example, in 
[10], the dependency between the hidden state and the pitch was modeled implicitly. 
The ASR system could achieve significant improvement by incorporating the pitch 
frequency. 

Second, the pitch can be used to synchronize the frame size and/or the shift. A 
constant frame size and a constant shift are always used in ASR systems. The power 
spectral estimation may include artifacts without aligning the frames to the natural 
pitch cycles. A pseudo pitch synchronous method was proposed in [11] which 
improved the robustness and accuracy for low SNR speech.  

Third, the pitch can be used for frequency warping factor estimation. In [5, 12], the 
correlation between a speaker's average pitch and the vocal tract length was exploited 
and the probability distribution of warp factors conditioned on pitch observations was 
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modeled. That pitch-based warp factor estimation can be an effective method of 
improving ASR performance. 

In ASR systems, the MFCC is one of major acoustic features. MFCC features are 
calculated from the power spectrum, and include some harmonic structure related to 
the pitch. Variations in pitch could cause variations in features. As a result the pitch 
mismatch and the variability in features have effects on speech recognition systems. 
On the other hand, the pitch variability and the speaker variability do not have direct 
relations. Even the same speaker could have pitch variability, such as at different 
mental conditions. The variability due to pitch will be implicitly alleviated by training 
a speech recognition system on a corpus collected from a large, diverse collection of 
speakers. However, the explicit reduction or elimination of pitch-included feature 
variability could lead to better recognition performance. 

2.2   Pitch Mean Based Frequency Warping 

Frequency warping is a typical kind of methods for feature transformation. The 
frequency axis is scaled by a warping function fα(ω), where α is a warping factor. 
Given the power spectrum, X(ω), of a speech signal, the warped spectrum is 

( )( )( )Y X fαω = ω  (1) 

The warping function fα(ω) is always assumed invertible, i.e. strictly monotonic 
and continuous [3]. The warping function should conserve the bandwidth and 
information contained in the original spectrum in theory. However, there is redundant 
information in the original spectrum and only a subband of spectrum is useful for 
frequency warping. In our work, a linear frequency function is used, i.e. fα(ω) = α ω. 
The reason for using a linear frequency function is that it has explicit physical 
meaning. According to the Fourier transformation, the compressing or stretching in 
frequency axis is equivalent to the re-sampling of the waveform in time axis, i.e. X(α 

ω) = 
1

α
x(t/α). Thus warping frequency with a linear function could alleviate the 

pitch-mismatch in the speech signal. Generally speaking, the phonetic information is 
‘hidden’ in the relative spectrum. The frequency warping adjusts the spectrum to 
determine more distinctive bands for ASR in some sense. It has been proved that the 
Maximum-Likelihood (ML) based frequency warping is effective for ASR [2], 
however, it requires more data and computation. Because perceiving pitch is natural 
for human and human can process speech properly with pitch variations, such as 
singing and speaking, we will focus on the relations between the pitch and the 
warping factor. 

How to determine the warping factor α is important for frequency warping. In our 
method, the warping factor is dependent of the average pitch of a certain speech 
segment. We can assume that the warping factor α is a function of the average pitch 
as follows 

( )g pα =  (2) 
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where p is the pitch mean of a speech segment. Our goal here is to determine an 
analytic approach to expressing the relationship between the warping factor and the 
average pitch. Thus, two monotonic and continuous functions are exploited and 
compared in our experiments. Two typical functions are defined as follows 

min
min max min

max min

( )
( ) ( )

( )

p p
g p

p p

−= α + α − α
−

 (3) 

( ) ( )( )
( )

2
2 min maxmax min

2 max min

log
( ) 1

2 log

p p p
g p

p p

α − α
= +  (4) 

where pmin and pmax are the minimal and maximal pitch values of the human voice, 
respectively, αmin and αmax are the lowest and highest bounds of the warping factor, 
and p is the pitch mean of a speech segment. Empirically the pitch range of human 
voice is from 50 Hz to 500 Hz approximately. In our experiments, the range of the 
pitch is from 55 Hz to 440 Hz for convenience and any pitch with its value lower (or 
higher) than 55 (or 440) Hz is set to 55 (or 440) Hz. αmin (or αmax) is also determined 
empirically as 0.85 (or 1.15) in our experiments. Equation (3) is in a linear form 
meaning that the warping factor is proportional to the average pitch in a linear space 
while Equation (4) is in a nonlinear form meaning that the warping factor is 
proportional to the average pitch in an octave space. 

The pitch mean of the speech segment is calculated as 

0
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p p
N

=

=
≤ ≤

=  (5) 

where T is the total frame number of a speech segment, pt is the pitch value at frame t 
(if no pitch value is successfully estimated at frame t, pt is set to 0 in the above 
equation), and N is the total number of frames at which pitch value is successfully 
estimated. Note that T could be set as a fixed time period such as 2 seconds, however, 
for convenience, in our experiments, each sentence is considered as a speech segment 
and T is set to its length.  

In practice, errors in pitch estimation are inevitable. However the average of pitch 
in a speech segment can be calculated with little bias if the speech segment is long 
enough. The method in [13] can be used to balance the doubling error rates and the 
halving error rates in pitch estimation to get more accuracy pitch mean in a speech 
segment. 

2.3   PMFW Derived Feature 

The proposed PMFW is integrated in the feature extraction at the front-end without 
additional computation in the training and the decoding procedures. The PMFW 
features are based on the standard MFCCs with two additional steps added as shown 
in Fig. 1. 

First, the pitch mean based frequency warping is performed in the Mel-filters 
frequencies. The frequency warping can be implemented by simply varying the 
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spacing and width of the component filters of the filter bank without changing the 
original speech signal [2]. The PMFW is implemented as follows 

( ) ( ), 0,1,..., 1B k B k k N′ = α = +  (6) 

where B(k) is the start frequency of Mel filter k (for example, B(0), B(1), B(2) are 
start, middle and end frequencies of the first Mel filter, respectively), and N is the 
total number of Mel filters. Equation (6) means that a male speaker with a smaller α 
would use a relative low band of frequency to calculate features, and vice versa. It can 
be assumed that male speakers’ phonetic information is hidden in relative low 
frequency bands and female speakers’ is hidden in relative high frequency bands. 
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Fig. 1. Schematic diagram for PMFW feature extraction 

Second, Mel filters are selected. Different warping factors will bring mismatch in 
bandwidth between different speech signals. In [2, 3], the piecewise warping 
functions were used to solve this problem. Using the piecewise warping function 
ensures that the full frequency band is used in features at different warping factors. 
However, the full band is not used in our method. We determine stable sub bands by 
cutting off a fixed number of lowest/highest bands at different warping factors. The 
selected sub bands should contain the same number of Mel filters. The number of 
filters that should be cut off is determined by 

max max

max
( )

arg max ( )
B k f

n B k
α ≤

= α  (7) 

where fmax denotes the maximal signal bandwidth. The filter start frequencies selected 
after PMFW are B'(N+1-n), …, B'(n). Both the lower and the higher filters will be cut 
off. For the experiments described in this paper, the sampling rate is fixed at 16 kHz, 
imposing a limit on the maximum signal bandwidth of 8 kHz. 35 (N=35) Mel filters 
are used and n=34 calculated by using Equation (7). Thus B'(2), …, B'(34) are selected 
to use for feature extraction after PMFW. 
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3   Experiments and Discussion 

3.1   Experimental Setup 

Experiments were designed to compare the performance of systems using traditional 
MFCCs and PMFW MFCCs. A subset of 863CSL corpus [14], which is a continuous 
speech database, was used in our experiments. The training set contained 20 male 
speakers' data and 20 female speakers' data, totally 21,749 sentences (10,824 
sentences for male and 10,925 for females) for about 22 hours. The test set contained 
another 8 male speakers' data and 8 female speakers' data, totally 8,941 sentences 
(4,524 for males and 4,417 for females) for about 9 hours. 

In our experiments, we used HTK version 3.2 [15] for training, testing, and the 
baseline’s MFCCs feature extraction. The PMFW MFCCs were extracted by our own 
program using the algorithm proposed in this paper. The pitch, MFCCS and PMFW 
MFCCs were extracted every 12 milliseconds. Both PMFW MFCCs and traditional 
MFCCs were 26 dimensional, consisting of 13 static coefficients and corresponding  
 

Table 1. Recognition results with gender matched/mismatched training and test data (‘Linear’ 
means using Equation (3) to calculate the warping factor while ‘Octave’ using Equation (4) to 
calculate the warping factor; n M (or n F) means the training or testing set contains speech data 
by n male (or female) speakers; the performance is evaluated in syllable accuracy rate, in %) 

Training Set 
 

Test Set 
Method 20 M (%) 20 F (%) 

Baseline 67.69 15.42 
Linear 69.90 48.59 8 M 
Octave 69.31 44.60 

Baseline 20.71 78.90 
Linear 53.87 81.03 8 F 
Octave 48.78 80.56 

Table 2. Recognition results with gender independent training (n M (or n F) means the training 
or testing set contains speech data by n male (or female) speakers; the performance is evaluated 
in syllable accuracy rate, in %)) 

Training Set 
 

Test Set 
Method 20 M +20 F (%) 

Baseline 67.27 
Linear 70.99 8 M 
Octave 70.02 

Baseline 78.04 
Linear 80.77 8 F 
Octave 80.19 

Baseline 72.59 
Linear 75.82 8 M + 8 F 
Octave 75.04 
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13 delta coefficients. The 5-state 8-mixture Hidden Markov Model (HMM) topology 
was adopted to model the toneless tri-IFs where IF means either a Chinese initial or a 
Chinese final. The speech recognition units were 397 Chinese syllables (with tone 
disregarded). 

3.2   Results and Discussion 

The first experiment was designed to compare the performance between traditional 
MFCCs and the PMFW MFCCs on gender dependent models. Table 1 illustrates that 
when the traditional MFCCs are used, there will be very large drops in syllable 
accuracy rate when there is gender mismatch between the training speakers and the 
testing speakers. When the PMFW MFCCs are used, the accuracy rate will be 
improved considerably no matter the training speakers and the test speakers match in 
gender or not. 

Traditional MFCCs perform badly when the training and test speakers gender 
mismatch. Thus some ASR systems use gender dependent models and perform gender 
recognition before speech recognition. The PMFW MFCCs could alleviate variations 
caused by gender mismatch. Although the accuracy rates in the gender mismatch test 
are lower than that in the gender matched test when PMFW MFCCs used, the 
accuracy will be remarkably increased in contrast to traditional MFCCs. Comparing 
two functions for calculating the warping factor, we can see that using a linear 
function to restrict the warping factor and the pitch mean could achieve higher 
accuracy at all tests in contrast to the octave function. 

The second experiment was designed to compare the performance between 
traditional MFCCs and the PMFW MFCCs on the gender independent models. The 
percentages correct for the baseline when tested with 8 male and 8 female speakers 
were 67.27% and 78.04%, respectively, which were lower than those (67.69% and 
78.90%, respectively) in the first experiment. The size of the training set in the second 
experiment was about twice larger than that in the first experiment, however, the 
accuracy rates were lower. The reason for that could be that traditional MFCCs of 
male and female speech are relatively diverged in the feature space, although the 
acoustic models used in two experiments both were 5-state 8-mixture based HMMs. 
Thus, it might be more difficult to model the distributions of the gender independent 
features than the gender dependent features when the acoustic model parameter size is 
fixed. 

According to the first experiment, the linear function for warping factor calculation 
had better performance, so here we will only discuss the results when using the linear 
function here. When using PMFW MFCCs, the percentages correct when tested with 
8 male and 8 female speakers were 70.99% and 80.77%, respectively, in the second 
experiment, and 69.90% and 81.03%, respectively, in the first experiment. It shows 
that the accuracy for males has been increased by 1.09%, while that for females has 
been decreased by 0.26%. Compared with traditional MFCCs, the PMFW MFCCs 
could have better performance, in other words, the PMFW MFCCs can have more 
convergence in the feature space than traditional MFCCs. Furthermore, in 16-speaker 
test (8 male and 8 female), there was a syllable error rate reduction of 11.8% when 
linear PMFW MFCCs were used in contrast to the traditional MFCCs. 
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4   Conclusion 

The motivation of this paper is to extract more distinctive features at the front-end 
with little extra computation. By exploiting the correlation between the pitch and the 
speech, we propose an effective pitch mean based frequency warping method. To 
alleviate the pitch variations in speech signals, the warping factor is considered as a 
function of the average pitch of a speech segment. Then, two typical functions of the 
pitch mean are defined to calculate the warping factor. Furthermore, a simple method 
for performing frequency warping in the Mel-filter bank frequencies is described. The 
Mel filters selection strategy is presented for solving the mismatch in bandwidth 
between the original and the warped spectrum. Based on these operations, the PMFW 
MFCCs is extracted instead of the traditional MFCCs. Experimental results show that 
the PMFW MFCCs have better performance than traditional MFCCs 
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Abstract. A study on acoustic-phonetic features for the obstruent detection and 
classification based on the knowledge of Mandarin speech is proposed. Seneff 
auditory model is used as the front-end processor for extracting acoustic-
phonetic features. These features are rich in their information content in a 
hierarchical decision process to detect and classify the Mandarin obstruents. 
The preliminary experiments showed that accuracy of obstruent detection is 
about 84%. An algorithm based on the information of feature distribution is 
applied to further classify the obstruents into stops, fricatives, and affricates. 
The average accuracy of obstruent classification is about 80%. The proposed 
approach based on the feature distribution is simple and effective. It could be a 
very promising method for improving the phone detection in continuous speech 
recognition. 

Keywords: knowledge based approach, obstruent detection, obstruent 
classification. 

1   Introduction 

In typical Automatic Speech Recognition (ASR), a set of features is defined to specify 
the characteristics of speech in each frame. This set of features is used for recognizing 
all speech units. The statistical models based on this set of features are generated 
using speech databases. However, the corpus-based speech recognition approach 
cannot catch the specific characteristics of each individual phone, so that the 
performance of ASR is far from the performance of human speech recognition. 
Toward the next generation ASR, a paradigm integrating the knowledge sources with 
the recognition system was proposed [1][2]. This approach is based on the knowledge 
of articulatory phonetics and acoustic landmarks. Obstruents are the potential 
landmarks for ASR. Due to their noisy, dynamic, relatively short, weak, speaker- and 
context-dependent nature, the automatic detection and classification of obstruents are 
the most challenging tasks. 

This study concerns the extraction of acoustic-phonetic features for the detection 
and classification of obstruents in the continuous Mandarin speech. Seneff auditory 
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model is used as the front-end processor [3][4]. Some works based on auditory 
models had been reported [5][6][7][8][9]. Our focus is on obstruents of Mandarin 
speech. The proposed method is to combine the acoustic-phonetic knowledge in 
statistical frameworks. Then several sets of features derived from Seneff auditory 
model outputs are applied for the speech segmentation and the obstruent detection. 
Another set of features is used to further classify the obstruents into stops, fricatives, 
and affricates. 

The remainder of this paper is organized as follows. The function of front-end 
processor is described in Section 2. The features for detecting silence, sonorant, and 
obstruent in the continuous Mandarin speech are derived in Section 3. The procedure 
of obstruent classification is presented in Section 4. The feature selection and 
statistical models for the obstruent classification are explained also. Section 5 shows 
the experiment results. A conclusion is given in Section 6. 

2   Front-End Processor 

The proposed system is composed of three subsystems: the front-end processor, the 
obstruent detector, and the obstruent classifier. The details of three subsystems are 
explained in the following subsections. 

 

Fig. 1. System flow chart of Seneff auditory model 

The front-end processor used in our system is a biologically-oriented filter-bank 
system. It is based on the system developed by Seneff [3][4]. The Seneff model is 
composed of 3 stages. The functional blocks are given in Fig.1. Stage I contains a pre-
filter and a Bark-scaled filter bank. The former provides the function of eliminating 
high and low frequency components. The latter consists of 40 filters with 
20dB/decade high frequency preemphasis. Stage II is called the hair cell synapse 
model. It consists of four steps to simulate the functions of transformation from 
basilar membrane vibration to probabilistic response and the properties of the auditory 
nerve fibers. Stage III gives two set of outputs, namely the Envelope Detector (ED) 
output and the synchrony detector (SD) output. Each output is a set of 40 components 
corresponding to 40 Bark-scale filters. The envelope detector (ED) output is the 
mean-rate output which enhanced sharpness of onset and offset of speech segments. 
The synchrony detector (SD) output can be modified to the Average Localized  
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Synchrony Detector (ALSD) output [5] which enhances spectral peaks due to vocal 
tract resonances. Our system is designed to use two kinds of outputs, ED and ALSD, 
for the extraction of acoustic-phonetic features. Fig. 2 demonstrates the example of 
ED output and ALSD output. 

 

Fig. 2. An example of the outputs of ED and ALSD 

3   Detection of Obstruents 

To perform the obstruent detection, we categorize speech signal into three kinds of 
events, i.e., silences, sonorants, and obstruents. Fig. 3 shows the training phase and 
the testing phase of the obstruent detection. The 3-stage process starts with silence 
detection and follows by sonorant detection and obstruent detection. Finally, it uses 
continuity constraints to obtain the detection results.  

In the following computation, the signal is sampled at 16 kHz. The frame length is 
256 samples (16 ms) and the frames are overlapped by 84 samples (5.25 ms). Several  
 

 

Fig. 3. System flow chart of obstruent detection 
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features are examined based on the knowledge of articulatory phonetics. The 
histogram analysis is applied to determine which features will be used for 
categorizing the speech signal and for classifying obstuents. For obstruent detection, 
different feature detectors are used in three stages. The statistical information of each 
feature is obtained in the training phase by performing the histogram analysis of the 
extracted features. 

3.1   Silence Detection 

Three features are designed for the silence detection; the all-band normalized energy 
from ED ( jEDABNE , ), the all-band normalized energy from ALSD ( jDABNE ,ALS ), 

and the high-band normalized energy from ED ( jEDHBNE , ). The subscript j is the 

frame index. 

40 40

,
1 1

( ) /(max{ })ED j ij ij
j

i i
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= =

=  (1) 

40 40

,
1 1
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= =
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40 40
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i i
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The signal is sampled at 16 kHz. The output ED at j-th frame is a set of 40 

components, ijED , i = 1, 2, …, 40, corresponding to the frequency range of 0-8 kHz. 

Similarly, the output ALSD at j-th frame is a set of 40 components, ijALSD , i = 1, 

2, …, 40. The high bands of component index 37 to index 40 correspond to 3.5 kHz to 
8 kHz. The distribution of each feature is obtained from the training data extracted 
from Mandarin speech database TCC300 which was recorded in the universities in 
Taiwan. Fig. 4 shows the histograms of three features. The threshold of equal error 
rate (EER) for each feature in discriminating the silence is marked also. 

 

Fig. 4. Histograms of features used for silence detection 
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A frame is said to be a silence if either one of the following criteria is satisfied. 

(1) Both jEDABNE ,  and jALSDABNE ,  are less than their corresponding thresholds.  

(2) jEDHBNE ,  is less than the threshold. 

3.2   Sonorant Detection 

Next step is to detect sonorants in the speech signal. Three features are designed for 
the sonorant detection; the low-band energy from ALSD ( jALSDLBE , ), the all-band 

energy from ALSD ( jALSDABE , ), and the largest spectral peak location from ALSD 

( jALSDLSPL , ). 
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LBE ALSD
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=  (4) 

40
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ALSD j ij
i

ABE ALSD
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Fig. 5 shows the histograms of three features. The threshold of equal error rate 
(EER) for for each feature in discriminating the sonorant is marked. 

 

Fig. 5. Histograms of features used for sonorant detection 

The low-band corresponds to the frequency range of 0-500 Hz. A frame is said to 
be a sonorant if either one of the following criteria is satisfied. 

(1) Both jALSDLBE ,  and jALSDABE ,  are greater than their corresponding thresholds. 

(2) jALSDLSPL ,  is less than the threshold. 

3.3   Obstruent Detection 

The last step is to detect obstruents in the region of no silence and no sonorant. Five 
features are designed for the obstruent detection; the low-band energy from ALSD 
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( jALSDLBE , ), the largest spectral peak location from ALSD ( jALSDLSPL , ), the 

spectral center of gravity from ED ( jEDSCG ,  ), the energy difference between high-

band and low-band from ED ( jEDHLD ,  ), and the energy ratio of high-band to low-

band from ED ( jEDHLR ,  ).  The first two features are defined in Eq (4) and Eq(6). 

The others are defined as follows; 
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Fig. 6 shows the histograms of five features with the thresholds for discriminating 
the obstruent. 

 

Fig. 6. Histograms of features used for obstruent detection 

A frame is said to be an obstruent if either one of the following criteria is satisfied. 

(1) jALSDLBE ,  is less than the threshold 

(2) Both jALSDLSPL ,  and jEDSCG ,  are greater than their corresponding 

thresholds. 
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(3) jEDHLD ,  is greater than the threshold. 

(4) jEDHLR ,  is greater than the threshold. 

3.4   Post Processing 

When a frame does not belong to any of three categories, an additional process is 
required to assign the undefined frame to a category of its closest neighbor frames. 
Other criteria for adjusting the detection result are based on the phonetic knowledge 
of Mandarin speech; (a) The duration of sonorant must be longer than three frame 
shifts (32 ms), (b) A segment must be ended with a sonorant, and (c) A single 
obstruent can not be a segment. An example of the obstruent detection is shown in 
Fig. 7. The utterance is a sentence spoken in Mandarin and labeled by Pinyin, “

( ke2 sou4 yao4 chang2 chan4 you3 qi2 ta1 cheng2 fen4). 

 

Fig. 7. An example of the obstruent detection results 

The small circles (ο) indicate the manually labeled boundaries. The stars ( ) 
indicate the detected boundaries. Fig. 7 shows that most of obstruents are detected. 

4   Classification of Obstruents 

In Mandarin speech, the obstruents can be classified into fricatives, affricates, and 
stops. The flowchart for the obstruent classification is shown in Fig. 8. This process is 
performed on obstruent segments only. The scheme combines the acoustic-phonetic 
features and statistical model, GMM, to perform the automatical classification of 
obstruents. At first, the segment duration is used to discriminate stops and fricatives. 
The segment is a stop if its duration is less than 18 ms. The segment is a fricative if 
the duration is greater than 125 ms. For those obstruent segments with duration  
18 – 125 ms, the Gaussian mixture model (GMM) method is applied to classify them 
into stops, fricatives, or affricates. 

Six features are used in GMM classifier. They are the segment duration ( DUR ), 

the average zero crossing rate ( jAZCR ), the spectral center of gravity from ED 
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Fig. 8. System flow chart of obstruent classification 

( jEDSCG , ), the energy difference between high-band and low-band from ED 

( jEDHLD , ), the energy ratio of high-band to low-band from ED ( jEDHLR , ), and the 

rate-of-rise-to-duration ratio (RRDR). The RRDR is computed by the following 
equations [6]; 
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Fig. 9 shows the histogram of six features.  
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Fig. 9. Histograms of features used for obstruent classification 

5   Experiments 

The speech data sets for the experiments were extracted from Mandarin speech 
database, TCC300. Speech data of 2 male and 2 female speakers were selected as the 
training data. Each speaker provided 20 utterances. This training data set contains 268 
silence segments, 521 sonorant segments, and 467 obstruent segments. Other speech 
data of 2 male and 2 female speakers, with 10 utterances per speaker, were selected as 
the testing data. The testing data set contains 124 silence segments, 254 sonorant 
segments, and 232 obstruent segments. All the selected data were labeled manually. 

The obstruents in Mandarin speech is summarized in Table 1. 

Table 1. Obstruents in Mandarin Speech (Not including the voiced consonants, such as nasals 
and laterals) 

 Pinyin symbols 
stops /b/, /p/, /d/, /t/, /g/, /k/ 
affricates /z/, /c/, /zh/, /ch/, /j/, /q/ 
fricatives /f/, /s/, /sh/, /r/, /x/, /h/ 

 
For the obstruent detection test, the frame correct rates are given in Table 2. Table 

3 shows the accuracy of obstruents classification. 

Table 2. The frame correct rates (%)  

 detected as silence detected as sonorant detected as obstruent 
silence 76.3 12.2 11.5 
sonorant 2.4 93.1 3.5 
obstruent 2.7 12.9 84.4 
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Table 3. Accuracy of obstruent classification (%)  

 detected as stop Detected as affricate detected as fricative 
stop 92.2 5.2 2.6 
affricate 8.6 74.3 17.1 
fricative 10.9 19.6 69.5 

From Table 2 we can find that the error rate of obstruent detection is about 15.6%. 
Table 3 shows that the average accuracy rate of obstruent classification is about 80%. 
Among the obstruents, stops get highest accuracy (92.2%). 

6   Conclusions 

This paper presents a preliminary study on the features for obstruent detection and 
classification in Mandarin Chinese. A method based on the combination of acoustic-
phonetic knowledge and statistical models is proposed to detect silences, sonorants, 
and obstruents in the continuous Mandarin speech. The GMM method is applied to 
classify the obstruents into stops, affricates, and fricatives. The computation is simple 
and efficient. However, the accuracy rate of the proposed method is still low. To get 
more improvement, other feature selections and front-end processors need to be 
investigated. 
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Abstract. In this paper, the supervised maximum-divergence common 
component GMM (MD-CCGMM) model was used to the speaker-and-
environment change detection in broadcast news signal. In order to discriminate 
the speaker-and-environment change in broadcast news, the MD-CCGMM 
signal model will maximize the likelihood of CCGMM signal modeling and the 
divergence measure of different audio signal segments simultaneously. 
Performance of the MD-CCGMM model was examined using a four-hour TV 
broadcast news database. A result of 16.0% Equal Error Rate (EER) was 
achieved by using the divergence measure of CCGMM model. When using 
supervised MD-CCGMM model, 14.6% Equal Error Rate can be achieved. 

Keywords: speaker-and-environment change detection, common component 
Gaussian mixture model, maximum divergence measure. 

1   Introduction 

The segmentation of audio signal is an important technology because large amounts 
of information were delivered through the audio signal such as broadcast news 
everyday. A good segmentation scheme is useful for further processing to categorize, 
archive and retrieve the information in broadcast news. Lots of studies had been done 
before in the audio signal segmentation problem and they can be categorized into two 
classes, one is feature-analysis based method and the other is metric-based method. 

In feature-analysis based method, lots of distinctive features such as high ZCR 
ratio (HZCRR), low short time energy ratio (LSTER), spectrum flux (SF) [1], 
variance of the spectrum flux (VSF) and variance of the zero-crossing rate (VZCR) 
[2] were proposed in order to segmenting the complicate audio signal such as 
broadcast news. 

The metric-based method wants to find a good measure which can indicate the 
statistics similarity/dissimilarity between two audio segments beside a candidate 
point. Many similarity measures of audio signals were proposed in the past, they 
included symmetric Kullback Leibler distance (KL2) [3], divergence shape distance 
[4] and Bayesian information criterion (BIC) [2, 5]. They are all derived from the 
Jeffrey divergence measure [6], in order to carry out a simple formula, the signal was 
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assumed Gaussian distributed. In our previous study [7], a more precise signal 
modeling, the common component Gaussian mixture model (CCGMM) was used to 
model the statistics of audio signal segment. The Jeffrey divergence measure could be 
simplified into a discrete form in terms of the CCGMM coefficients. And, the 
performance of divergence measure using CCGMM coefficients was proved be better 
than the other metric-based methods. 

In this paper, a supervised training algorithm which will maximize the divergence 
measure (MD) criterion of the CCGMM model was proposed. The maximum 
divergence CCGMM model can not only model the statistics of broadcast news audio 
signal but also can discriminate the signal of different speakers and environments by 
maximizing the divergence measure between them. 

The paper is organized as follows. Section 2 describes the CCGMM-based 
divergence measure and the supervised training algorithm of maximum divergence 
measure CCGMM. Section 3 discusses the experimental results for the speaker-and-
environment detection for a television broadcast news database. Some conclusions are 
given in the last section. 

2   Modeling Audio Signal Using CCGMM and Maximum 
Divergence Training 

The Jeffrey divergence measure [6] was used to measure the dissimilarity of two 
random variables based upon the information theory. It is derived from the average 
discriminating information between the two random signals. It can be expressed by 

( )1( , ) ( ) ( ) ln1 2 1 2 ( )2

p
D p p p p d

p
= −

O
O O O

O
. (1) 

where ( ) and  ( )1 2p pO O  are the probability distributions of  the two signals which 

can be of two audio segments. In the our previous study, the distribution of two audio 
segments can be represented by the common component Gaussian mixture models 
(CCGMM), which was the mixture Gaussian density with common mixture 
components, i.e., 

1
( | ) ( | , )   1,2

0

M
p c N nn n in i i

i
λ

−
= ∀ =

=
O O . (2) 

where {( , , ); 0, , 1}c i Mn i i iλ = = −  are the parameters sets of two signals. 

Then, the divergence measure between two distributions, statistics of two adjacent 

audio segments, ',S SO O , can be approximated by [7] 

 '( , ) ( ) ln'
'

cS S isD c cis is ci is
≈ −O O . (3) 

Comparing the above divergence measure with the original definition of Jeffrey 
divergence shown in Eq. (1), we can find that they have the same form. And, the 
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divergence measure of CCGMM, as shown in Eq. (3), can therefore be treated as a 
divergence measure of two discrete random variables and can be carried out easily. 
By using the CCGMM, the divergence of two complicated audio signal segments can 
be precisely evaluated. 

In order to get better approximation in Eq. (3), a global diagonal covariance matrix 
 was used for all mixture components. The CCGMM for an audio segment becomes 

( | ) ( , | ) ( ; , )S S Sp p i c Nis i
i i

λ λ= =O O O . (4) 

The above CCGMM with global covariance matrix can be treated as using a set of 
Parzen windows with Gaussian kernels to estimate the distributions of signal sources. 
The mixture coefficients of CCGMM could, in fact, efficiently encode the data 
samples. And, the divergence of signal sources can be transformed into divergence of 
CCGMM coefficients. 

The set of Gaussian kernels,  { ( | , ); 0, , 1}N i Mi = −O , can be found from 

maximizing the likelihood of a training dataset, i.e.,  

( | , ),MAX c Ni t i
t iλ
∏ O . (5) 

where Ot  is the feature vector of the training signal at time t. In fact, the Gaussian 

kernel set is the universal background model (UBM) with global variance. For a 

segment of audio signal, ,SO t St ∈ , the CCGMM coefficients can be represented by, 

; 0, , 1c i Mis = − . And, the following re-estimation formula can be used to find the 

CCGMM coefficients of the audio segments. 

1 ( ; , )
( | , ) ; 1, ,  

( ; , )

s
is t i

s
t S js t j

j

c Nsc p i i Kis T c N
λ

∈
= = =

O
O

O
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where T is the length of audio segment. 
After the CCGMM coefficients of two adjacent audio segments were found, the 

divergence measure between them can be used to decide whether there is a signal 
change points between them. A simple threshold value for divergence measure was 
used in this paper to find the speaker-and-environment change points. A change point 
was detected if the local maximum in divergence curve was greater than the 

threshold, i.e., 1( , )
S Sk kD O O DTH

+ > , where Sk  and 1Sk +  are two adjacent audio 

segments. 
Although the CCGMM can precisely model the statistics of audio signal, but in the 

audio signal change point detection problem we want to maximize the divergence 
measure between two audio segments crossing a signal change point. In an audio 

signal contains a sequence of signal change points, denote as  { }; 1, ,T k Kk = . In this 
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paper, we want to find a CCGMM models, {( , , ); 0, , 1} ;c i Mi iλ = = −  which 

could simultaneously maximize the likelihood of all audio segments and also 
maximize the divergence measure between two audio segments crossing the change 
point, i.e., 

( | ),  SMAX p t
S t S

λ
λ

∏ ∏
∈

O . (7) 

and 

( , )
1

K s sk kMAX D
kλ

− +

=
O O . (8) 

where , S Sk k
− +  are audio segments before and after signal change points Tk . Thus, 

the maximum divergence CCGMM (MD-CCGMM) model can use all the 
information provided by the training data. And the iterative supervised MD-CCGMM 
training algorithm was shown in following steps. 

(1) First, a vector quantizer was used to get the initial 

model, {( , , ); 0, , 1}c i Mi iλ = = − . The Gaussian mixture mean, 

{ ; 0, , 1}i Mi = −  in λ , were set to the codewords of the vector quantizer and  the 

common covariance matrix, , was set to identity matrix. 

(2) Find a new model {( , , ); 0, , 1}c i Mi iλ = = −  for all audio signal S 

which maximized the likelihood of CCGMM, i.e., 

( | , )sMAX c N Oi t i
S t S iλ

∏ ∏
∀ ∈

. (7’) 

And, the new model, λ , can be found by using the re-estimation algorithm of 
ordinary GMM. 

(3) Given with {( , , ); 0, , 1}c i Mi iλ = = −  in step (2), we can find the 

mixture means, iμ , of new CCGMM models {( , , ); 0, , 1}c i Mis iλ = = − which 

maximize the divergence measure of those audio segments before and after signal-
change points, i.e.,  

1
( ) log

c
iskMAX c c

K cis isk i k k isk
λ

λ

−
−− +

+
. (8’) 

In order to get new mixture means, iμ  in λ , we can first express the 

{ ; 0, , 1; ( , | )}c i M S S S kis k k
− += − = ∀  in Eq. (8’) as 
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Then Eq. (8’) became a function of i , but the new mixture means i  of MD-

CCGMM model Sλ  which maximize the divergence measure was still very 

complicate. In this paper, the steepest descent method was used to find i  which will 

increase the divergence measure of those audio segments before and after signal-
change points. 

We first find the derivation of CCGMM coefficients,    
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Then, the gradient of divergence measure was shown as  
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Finally, the  i  can be updated using the following formula, 

,  0, , 1i Mi i iη= + ∇ = − . (12) 

where η  is the step size of the steepest descent method. The above mixture mean re-

estimation formula will move i  toward the mean of the audio segment with larger 

weights and away from the mean of the audio segment with smaller weights. 



 Speaker-and-Environment Change Detection in Broadcast News Using MD-CCGMM 111 

(4) The steps (2) and (3) will be iterated in order to simultaneous maximize the 
likelihood of audio segments and divergence measure at signal change points. 

3   Database and Experiments 

3.1   Database 

A television broadcast news database was used in the following experiments to 
evaluate the performance of the proposed method. It was recorded by the Public 
Television Service Foundation of Taiwan and is referred to as the Public Television 
Service News Database (MATBN) [8]. Each recording in the database consisted of a 
broadcast news episode of 60 minutes. A digital audio recorder (DAT) was used to 
record the database from the broadcasting machine. The signals were transformed to 
the form of 16-bit data with 16-kHz sampling rate. In the record, there included 
opening music, news report, weather report, and advertisement. And, the speakers 
included the studio anchors, field reporters, interviewees, weather anchors. The 
background conditions included clean, background music, noise and speech. The 
corpus was segmented, labeled and transcribed manually using the “Transcriber” 
developed by LDC. The transcripts were in BIG5-encoded form, with Standard 
Generalized Markup Language (SGML) tagging to annotate acoustics conditions, 
background conditions, story boundaries, speaker turn boundaries and audible 
acoustic events, such as hesitations, repetitions, vocal non-speech events, external 
noise, etc. Both orthographic transcription level and acoustic background level 
markers were extracted from the transcription information as correct answer of the 
following speaker-and-environment change detection experiments. 

Table 1. Statistics of 4 hours PTSND database 

Signal Conditions Percent (in 
time) 

Speech only 36.0% 
Speech with background 

music 
36.9% 

advertisements 10.0% 
Music or background sound 

only 
6.5% 

Silence 2.6% 
Speaker types Percent (in 

time) 
Speech of anchors and 

weather reporters inside studio 
25.2% 

Speech of reporters, 
interviewees 

in the field 
74.8% 
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One hour data in MATBN was used as the training data in our following 
experiment, and there were totally 407 speaker-and-environment change points in the 
training data. And, four hours data in MATBN, with 1797 change points, were used 
as the test data. Some statistics of environment conditions were shown in Table 1. 
From Table 1, we can find that there are many diverse audio sources and signal 
conditions in MATBN database that makes the signal-and-speaker change point 
detection more difficult. And, there are about 50 speakers - including anchor, weather 
reporter, reporters in the filed and interviewee were found in each recording. The 
speaker-and-environment conditions changed rapidly in MATBN, about 50% of them 
changed within 5 seconds. 

3.2   Experiments and Results 

In our experiments, all broadcast news recording were pre-emphasis by 11 0.97z−−  
and segmented into 30-ms frames with 10-ms frame shift. Twelve mel-frequency 
cepstral coefficients (MFCCs) were then extracted for each frame and taken as 
feature vectors. We first used one hour recording data to train a GMM model and 
took all its mixture components as the common components of CCGMM and the 
other four hours recording data will be used as test database. And the window 
length used to find the CCGMM coefficients of audio signal is 3 sec (300 frames) 
and the number of mixtures used in CCGMM is 256. Then, divergence measures 
were computed for candidate points which were equally spaced every 0.5 second 
over the test database. In order to reduce the computation time, the CCGMM 
coefficients were computed for 0.5 second sub-windows. Then the CCGMM 
coefficient of 3 second analysis windows can be fond from the average of six sub-
windows’ CCGMM coefficients, as shown in Fig. 1. With the use of 3-second 
analysis window, a change point was considered missing if there were no change 
points detected within a 3-second window centered on the true change point in the 
following experiments. 

First, only the maximum likelihood criterion was used to train the CCGMM and 
divergence measure was used to detect the speaker-and-environment change points. 
To show the effectiveness of the proposed CCGMM modeling method, an example is 
displayed in Fig. 2. In this example, the window length is 3 sec (300 frames) and the 
number of mixtures used in CCGMM is 256. As shown in Fig. 2(a), there are 6 
transcription level changes and 3 background condition changes in 50 sec audio 
signal. In Fig. 2(c), CCGMM weights of four pairs of consecutive windows are 
displayed. Weights of 10 common components corresponding to the largest weights 
of the second window are shown in gray level. It can be found from the figure that 
weights of the second and fourth window-pairs, which correspond to change points, 
are very different to each other. 

The false alarm rate (FAR) vs. miss detection rate (MDR) curves of the test data, 
with different threshold values for divergence measure, were shown in Fig. 3. And, a 
result of 16.6% equal error rate (EER) can be achieved. 

Then, the training algorithm described in section 3 was used to train a new 
supervised maximum divergence CCGMM (MD-CCGMM) model. By using the  
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Fig. 1. The block diagram of CCGMM coefficients extraction 

 

Fig. 2. An example of the proposed CCGMM-based method of speaker-and-environment 
change detection in broadcast news signals: (a) transcription information, (b) waveform 
(vertical lines indicate marks of change points), (c) the largest 10 CCGMM weights of for 
window pairs 

MD-CCGMM training algorithm, the average divergence measure at speaker-and-
environment change points for training data was increased from 56.38 to 59.36 and 
the likelihood of CCGMM will slightly decrease. But, the EER of testing data only 
decreased to 16.5%. 
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Fig. 3. The FAR-MDR curves of the CCGMM speaker-and-environment change detection 
scheme 

Because the MD-CCGMM is a supervised learning algorithm, compare with 
CCGMM, more training data were needed. So, in the following experiment, two 
hours recordings were used for training and the other three hours recordings were 
used for testing.  There are totally four different anchors in five recordings. One 
recording with female anchor and one with male anchor were choice as the training 
data. Now, there are totally 816, 1388 change points in training and test data. And, the 
false alarm rate vs. miss detection rate curves of the test data with different threshold 
values of signal divergence measure were also shown in Fig. 4. A result of 16.0% 
EER was achieved by using the CCGMM model, the performance will be slightly 
better when more data was used to train the CCGMM. When using the supervised 
MD-CCGMM model, EER reduce to 14.5%. About 10% EER reduction can be 
achieved by using the proposed supervised MD-CCGMM algorithm. 
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Fig. 4. The FAR-MDR curves of the CCGMM and MD-CCGMM speaker-and-environment 
change detection scheme 
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4   Conclusions 

In this paper, the supervised MD-CCGMM model was used in broadcast news 
change-point detection problem. The MD-CCGMM model can simultaneously 
maximize the likelihood of signal model and divergence measure between signal 
change points was introduced. The supervised MD-CCGMM can get better 
performance than the unsupervised CCGMM method, but more training data were 
needed. 
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Abstract. In this paper, a speaker segmentation method based on log-likelihood 
ratio score (LLRS) over universal background model (UBM) and a speaker 
clustering method based on difference of log-likelihood scores between two 
speaker models are proposed. During the segmentation process, the LLRS 
between two adjacent speech segments over UBM is used as a distance 
measure while during the clustering process the difference of log-likelihood 
scores between two speaker models is used as a speaker classification criterion. 
A complete system for NIST 2002 2-speaker task is presented using the 
methods mentioned above. Experimental results on NIST 2002 Switchboard 
Cellular speaker segmentation corpus, 1-speaker evaluation corpus and 2-
speaker evaluation corpus show the potentiality of the proposed algorithms. 

Keywords: Speaker segmentation, Speaker clustering, Multi-speaker, Speaker 
Detection. 

1   Introduction 

In real-world speaker verification tasks over telephone, there is an increasing demand 
that speaker verification systems can verify one specific speaker whether in a 
conversation or not. One of the solutions to this demand is speaker segmentation and 
clustering. The aim of speaker segmentation and clustering is to segment an N-
speakers' conversation into speech segments containing the voice of only one speaker 
(segmentation process) and to merge those speech segments belonging to a same 
speaker into one speech segment (clustering process). After speaker segmentation and 
clustering, a multi-speaker verification task can be simplified into several N single-
speaker verification tasks. Generally, no a priori information is available on the 
number and identity of speakers involved in the conversation. 

Previous researches have focused on two directions, distance based and model 
based. The former does not require any a priori information, but it is difficult to 
accurately describe the characteristics of a speaker with short speech segments which 
often occur in conversations over telephone and hence will result in a dissatisfactory 
performance during the clustering process. Methods in this direction include Bayesian 
Information Criterion (BIC) [1], [2], [3], Generalized Likelihood Ratio (GLR) [4], 
[5], Kullback-Leibler (KL) Distance [6], [7], DISTBIC [8], etc. The latter can achieve 



 UBM Based Speaker Segmentation and Clustering for 2-Speaker Detection 117 

a satisfactory result by building a model for each speaker in the audio recording and 
then using a global maximum likelihood score to find the best time-aligned speaker 
sequence (usually by using Viterbi algorithm). One of the difficulties in model based 
method is how to accurately build initial speaker models. The model based systems 
include LIA [9], ELISA [10], [11], etc. 

Usually, there are many short speech segments in conversations over telephone. 
Distance based segmentation criteria, such as BIC, have some difficulties in dealing 
with them [8]. The reason is that it is difficult to estimate the characteristics of a 
speaker with short speech segment. Model based segmentation can well deal with this 
issue, however, they need a priori knowledge of speakers in the conversation. In 
order to well describe the characteristics of short speech segments, in this paper, 
UBM is used as a priori knowledge of speakers during segmentation process. Given 
two adjacent short speech segments belonging to a same speaker, the log-likelihood 
ratio score (LLRS) of them over UBM is small, and vice versa. So LLRS over UBM 
is used as a distance measure for speaker segmentation. 

After segmentation, a conversation is divided into several speech segments. But the 
identity of each speech segment and the number of speakers are unknown. Because 
most conversations over telephone each contain only two speakers, the number of 
speakers in a conversation is set to 2 in this paper. Conventional speaker clustering 
methods mainly focus on finding out the closest speech segments while in this paper a 
method based on the difference of log-likelihood score between two speaker models 
is proposed to identify one speech segment as speaker A if it is the farthest one from 
speaker B. Over the NIST 2002 2-speaker segmentation Switchboard set, a system 
integrated with the proposed method can achieve a frame error rate of 6.8%, which 
will be detailed later. 

This paper is organized as follows. The speaker segmentation based on LLRS will 
be presented in Section 2, and the proposed speaker clustering method will be 
described in Section 3. In Section 4, experiments and results will be described. 
Finally, conclusions and perspectives will be given in Section 5. 

2   Speaker Segmentation Based on LLRS over UBM 

In this paper, a simple segmentation criterion based on LLRS over UBM is used. 
First, acoustic features are extracted from the input speech. Then the acoustic features 
are divided into several decision windows by a sliding window with a 2-second width 
and a 0.1-second shift. In each decision window, the acoustic features are divided into 
two parts X1=(x1, x2, ..., xi) and X2=(xi+1, xi+2, ..., xN); and LLRS (i) between them is 
defined as 

( ) ( ) ( )( )1 2| |LLRS i abs L X UBM L X UBM= −  (1) 

where i was set to the half position of the decision window. Because there may be 
some silence or noise in one decision window, the log-likelihood score of a speech 
frame over UBM is used as a measure to decide whether current frame is a speech 
frame or a non-speech frame. The bigger the log-likelihood score, the more likely 
current frame is a speech frame. A similar process is proposed in [12] which used the 
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log-likelihood score of one speech segment over UBM to separate the speech segment 
into three groups: confidential speech frames, doubtable speech frames, and non-
speech frames. So in Equation (1), the acoustic features in each half decision window 
used to calculate the log-likelihood score are those whose scores are among the top 
half. 

Finally, we can get a sequence of LLRS and the standard deviation σ can be 
estimated accordingly. In the LLRS plot (showed in Fig. 1), a peak is assumed to be a 
possible speaker turn point if 

andl rmax min max minασ ασ− > − >  (2) 

where α is an experiential value which is set to 0.5 in experiments in this paper, max 
is the LLRS at the peak position, and minl and minr are the left and right minima 
around the peak value point, respectively. More details about Equation (2) were 
described in [8]. 

 

Fig. 1. LLRS plot: decision of a speaker turn 

3   Speaker Clustering Based on Difference of Log-Likelihood 
Score Between Two Speaker Models  

The goal described here in this section is to cluster speech segments with a same 
speaker identity. As mentioned above, the number of speakers in one conversation is 
2. So given two speaker models (A and B) and several speech segments {Xi, i=1, 
2, …, N}, speech segment Xj is regarded to most likely belong to speaker model A if 

( ) ( )( )arg max | |i i
i

j L X A L X B= −  (3) 

where L(.) is the log-likelihood function. After speaker segmentation, there are many 
short speech segments which are not long enough to well train a speaker model. In 
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order to solve this problem, a multi-stage clustering strategy is used. First, a UBM 
with a small number of components is used to select suitable speech segments for 
initial model training. Then with sufficiently long speech segments, speaker models 
can be well trained from a UBM with large number of components. The proposed 
speaker clustering method is described as follows. 

Stage 1. Initial clustering 
1.1 First an initial speaker model S0 is adapted on the whole test utterance from 

UBM1 by MAP with only mean vector changed. 
1.2 After speaker segmentation, all the speech segments are scored on S0. The 

speech segment with the maximal log-likelihood score and longer than 2 seconds is 
selected for use of adapting speaker model S1 from UBM1. 

1.3 The remained speech segments are scored against S0 and S1, respectively. 
The difference of log-likelihood score, ΔS, is defined as 

( ) ( )0 1| |S L X S L X SΔ = −  (4) 

where X is the acoustic feature sequence from a speech segment. The bigger the ΔS is, 
the more likely X not belongs to S1. The speech segment with the maximal ΔS and 
longer than 2 seconds is selected for use of adapting speaker model S2 from UBM1. 
        1.4 Score the remained speech segments against S1 and S2. From those speech 
segments with score L(X|S1) bigger than L(X|S2), the speech segment with the 
maximal ΔS12 and longer than 1 second is selected for use of updating S1, where ΔS12= 
L(X|S1)-L(X|S2). From those speech segments with score L(X|S2) bigger than L(X|S1), 
the speech segment with the maximal ΔS21 and longer than 1 second is selected for 
use of updating S2, where ΔS21= L(X|S2)-L(X|S1). 

1.5 Repeat 1.4 until there is no speech segment longer than 1 second. 
1.6 Use S1 and S2 to calculate ΔS12 in speech segments belonging to S1 and ΔS21 

in speech segments belonging to S2. 

Stage 2. Refine the clustering 
2.1 Adapting a new speaker model S1 from UBM2 with speech segments 

belonging to previous S1 which ΔS12 is among the top half. 
2.2 Adapting a new speaker model S2 from UBM2 with speech segments 

belonging to previous S2 which ΔS21 is among the top half. 
2.3 Score each speech segment against S1 and S2, respectively. If ΔS12 is 

positive, the speech segment is assigned to S1, otherwise to S2. Meanwhile, calculate 
ΔS12 on those speech segments belonging to S1 and ΔS21 on speech segments 
belonging to S2 for use in stage 3. 

Here, UBM1 and UBM2 can be of different component sizes. In our experiments, 
UBM1 contains 16 components and UBM2 contains 1,024 components. 

4   Experiments and Results 

The features were extracted from speech signal at a frame size of 20 milliseconds 
every 10 milliseconds. The pre-emphasis factor was set to 0.97. The Hamming 
windowing was applied to each pre-emphasized frame. After that, a 256-point FFT 
was calculated for each frame and a bank of 30 triangular Mel filters were used. 
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Finally DCT was performed and 16-dimensional MFCC coefficients with the delta 
coefficients were obtained for each frame. 

The baseline system in our experiments was based on the Gaussian Mixture 
Model-Universal Background Model (GMM-UBM) [13] with the UBM gender-
independent, tree-structured [14], and containing 1,024 mixtures. No score 
normalization method was performed. 

4.1   Segmentation Results 

We tested the segmentation and the clustering methods on the NIST 2002 
Switchboard Cellular speaker segmentation corpus. This corpus contains 199 test 
segments (two minutes each) involving only two speakers (at an 8 kHz sampling 
rate). The evaluation method was the NIST official scoring (version 07) [15] which is 
a frame based error rate protocol. Table 1 shows the accuracy of initial speech 
segments selection for model S1 and S2 in the clustering process (Steps 1.1 to 1.3). 
The segmentation results of LIA and the proposed method on NIST 2002 
Switchboard Cellular speaker segmentation corpus are showed in Table 2. 

The LIA system is an HMM based speaker segmentation system. Each state of the 
HMM characterizes a speaker and the transitions model the changes between 
speakers. During the segmentation, the HMM is generated using an iterative process, 
which detects and adds a new state (i.e. a new speaker) at each iteration. 

We also compared the false alarm rates and the miss detection rates among BIC, 
GLR, DISTBIC, and the proposed method, listed in Table 3. 

Table 1. Initial speech segments selection results on NIST 2002 Switchboard Cellular speaker 
segmentation corpus 

Error Type Error Time Rate (%) 
Missed Speaker Time 0.1 
False Alarm Speaker Time 0.3 
Speaker Error Time 0.4 

Table 2. NIST 2002 speaker segmentation results for Switchboard Cellular speaker 
segmentation corpus 

System Missed Speaker Time 
False alarm Speaker 
Time 

Speaker Error Time 

LIA [16] 0.0% 0.0% 7.4% 
Propose method 0.1% 0.1% 6.6% 

Table 3. Segmentation performance comparison of BIC, GLR, DISTBIC, and the proposed 
method on the NIST 2002 Switchboard Cellular Speaker Segmentation Corpus 

System FAR(%) MDR(%) 
BIC 25.2 35.6 
GLR 33.2 19.5 
DISTBIC 30.8 20.3 
Propose method 29.3 18.9 
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The total segmentation error rate of CLIPS is 8.6% and the fusion of LIA and 
CLIPS can achieve an error rate of 5.7% on NIST 2002 Switchboard Cellular speaker 
segmentation corpus [10]. Compared with LIA and CLIPS, the proposed method can 
achieve a comparative performance. 

4.2   1-Speaker Detection (1D) Results 

The training set contains 330 speech segments (two minutes each) by 139 males and 
191 females. The test set contains 3,570 speech segments by 1,442 males and 2,128 
females with about 15 to 45 seconds for each segment. The detection results are given 
in Fig. 2. Comparison result of LIA is showed in Fig 3 [16]. 
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Fig. 2. 1-speaker detection results, NIST 2002 evaluation 

 

Fig. 3. LIA 1-speaker results on NIST 2002 cellular data and NIST 2001 landline data 
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4.3   1-Speaker Training, 2-Speaker Detection (1T- 2D) Results 

Here, 1T-2D means using 1-Speaker speech segment for training and using 2-Speaker 
speech segment for detection. The training set here was same as that used in 1D 
evaluation. The test set contains 1,470 speech segments (one minute each) by 2 
speakers (two males, two females or one male - one female). The detection results are 
given in Fig. 4. 

  1     2     5     10    20    40  
  1   

  2   

  5   

  10  

  20  

  40  

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

1-Speaker Training, 2-Speaker Detection

EER = 20.5%
min DCF = 0.074  

 
Fig. 4. 1T-2D results, NIST 2002 evaluation 

4.4   2-Speaker Detection (2D) Results 

This evaluation illustrates the effect of training a target speaker model from three 2-
speaker audio files. No a priori information was provided except that the target 
speaker was the only speaker in each of the three files. The training set contains 309 
target speakers (131 males and 178 females) and the test set contains 1,460 segments, 
each with an average duration of one minute spoken by two speakers. The training 
process is illustrated in Fig.5. 

For each 2-speaker audio file, two final speech segments will be obtained by using 
the proposed segmentation and clustering methods. For each final speech segment, a 
speaker model can be trained form UBM with mean vectors changed only. That is to 
say, given three 2-speaker audio files, six speaker models can be obtained finally. Let 
S1 and S2 be any two speaker models form two audio files respectively, where the i-th 

components in S1 and S2 are defined as ( )1, ,i i iw μ Σ  and ( )2, ,i i iw μ Σ , respectively. 

The KL distance between S1 and S2 was calculated as 

( ) ( ) ( )( )2 1 2 1 1
1 2

1

,
M T

i i i i i i
m

KL S S w μ μ μ μ −

=

= ⋅ − ⋅ − ⋅Σ  (5) 

where M is the number of components in each model. 
As showed in Fig. 5, if the KL distance between X1 and Y1 is smaller than that 

between X1 and Y2, X2 and Y1, or X2 and Y2, speech segments T1 and T3 will be merged  
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 File X File Y File Z 

T1 T 2 T 3 T 4 T 5 T 6 

Model 

Using KL distance to find the only existing target speaker. 

Target speaker model S 

X1 X2 Y1 Y2 Z1 Z2 

Speech 

Segment 

 

Fig. 5. Multi-speaker training process 

together. Finally, a target speaker model S can be obtained from these three 2-spekaer 
audio files. 

The detection results are given in Fig. 6. Comparison result of LIA is showed in 
Fig. 7 [16]. 

4.5   Discussion 

It can be seen that there exist two large losses: one lies in the performance between 
1D and 1T-2D, the other lies in the performance between 2D and 1T-2D. The loss 
comes from several aspects: (1) there existed many short speech segments and noisy 
speech segments that might cause errors in segmentation and clustering; (2) there  
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Fig. 6. 2-speaker detection, NIST 2002 evaluation 
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Fig. 7. LIA 2-speaekr result, NIST 2002 evaluation 

existed many speech segments spoken by two speakers simultaneously; (3) there 
existed some mistakes in the multi-speaker training process which might lead to a bad 
target model; (4) the average duration of speech segments used in 1D was longer than 
that used in the other two detections; and (5) the errors caused by speaker 
segmentation can not be corrected by the clustering process. 

5   Conclusions 

In this paper, a speaker segmentation method based on LLRS over UBM and a 
speaker clustering method based on difference of log-likelihood scores between two 
speaker models are proposed. And a complete system with related experiments and 
results for NIST 2002 two-speaker task is presented. The target models are trained 
from several multi-speaker speech segments and the tests are also done with 2-
speaker files. 

The proposed speaker segmentation and clustering methods can achieve a frame 
error rate of 6.8% on NIST 2002 Switchboard Cellular speaker segmentation corpus. 
And for 1T-2D, the system achieves an EER of 20.5%, and for 2-speaker detection, 
the system achieves an EER of 25.5%. The performances of the proposed method on 
NIST 2002 Switchboard Cellular speaker segmentation corpus, the 1D and 2D tasks 
are close to that of LIA [16]. 

Though the segment result seems accurate enough for the task, the performances of 
1T-2D and 2D are less satisfactory. Something must be done in order to decrease the 
detection errors: (1) perform re-segmentation with the speaker models trained in 
clustering phase; (2) discard the speech segments with bad Signal-to-Noise Ratio 
(SNR) or overlapped by several speakers; (3) improve the matching strategy during 
multi-speaker training in order to obtain a more accurate target speaker model. 
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Abstract. In this paper, a new method of feature extraction based on design of 
cubic spline wavelet has been described. Dialectal zone based speaker classifi-
cation in Marathi language has been attempted in the open set mode using poly-
nomial classifier. The method consists of dividing the speech signal into  
nonuniform subbands in approximate Mel-scale using an admissible wavelet 
packet filterbank and modeling each dialectal zone with the 2nd and 3rd order 
polynomial expansions of feature vector. Confusion matrices are also shown for 
different dialectal zones.   

1   Introduction 

The problem of speaker classification can be defined in different ways [7]. In this 
paper, the problem of speaker classification is viewed from standpoint of automatic 
speaker recognition (ASR) [8], [13]. We define SC as grouping of the speakers resid-
ing in a particular dialectal zone based on their similar acoustical characteristics of 
speech. Such biometrics problem may be useful in forensic science applications such 
as in identifying a criminal’s place of origin or in anthropological study of social 
ethnic group. Speakers residing in a particular dialectal zone will have similar dy-
namic use-patterns for their articulators which will be reflected in their spectrograms. 
Thus, if we bring an infant from zone Z1 and bring him up in zone Z2, then at an adult 
stage he will have articulators use pattern similar to that of zone Z2 but not the zone 
Z1. Fig. 1 shows speech corresponding to the word, ‘Ganpati’, (chosen because it has 
nasal-to-vowel coarticulation and hence it is highly speaker and possibly zone spe-
cific) spoken by two rural males from each of Konkan, Marathwada and Vidharbha 
zones. It is clear that the speech spectrograms of males belonging to same dialectal 
zones are similar if not identical whereas there are distinct dialectal differences in 
speech spectrograms of males from different zones.  

ASR task can be performed in closed set or open set mode. In closed set, the un-
known speaker to be identified/ classified is known to the machine whereas in open 
set scenario, the unknown speaker is not known to the machine which creates a  
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                            (a)                                                            (b) 

      
                             (c)                                                               (d) 

 

      
                               (e)                                                                         (f) 

Fig. 1. Speech signal and its spectrogram corresponding to the Marathi word, “Ganpati”, spo-
ken by rural males of (a) and (b) for Konkan, (c) and (d) for Marathwada , (e) and (f) for Vid-
harbha zones having age 36,51,35,35 27, and 34 respectively  
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challenge in assigning an unknown speaker’s speech to its correct model. Hence, open 
set ASR is relatively much more difficult than that of closed set ASR. In this paper, 
the problem of open set speaker classification is addressed in text-independent mode 
by using a new feature set based on sub-band cepstrum on the database prepared in 
realistic noisy environments from three distinct dialectal zones of Maharashtra, viz., 
Konkan, Vidharbha and Marathwada in an Indian language, viz., Marathi. 

2   Data Collection and Corpus Design  

Database of 126 speakers is created from the three distinct dialectal zones of Ma-
harashtra with the help of a voice activated tape recorder (Sanyo Model M-1110C & 
Aiwa JS299) with microphone input, a close talking microphone (viz., Frontech and 
Intex). Out-of these 126 speakers, 42 were from each of the dialectal zone. From 42 
speakers in each zone, 21 speakers were used for machine learning and remaining 21 
speakers as unknown to machine, i.e., success rate of the system is found with these 
speakers only. The recordings of the unknown and known speakers are done with 
different microphone which is more realistic condition in the forensic voice identifica-
tion where the suspect’s voice may be recorded with any other microphone. The data 
is recorded on the Sony high fidelity voice and music recording cassettes (C-90HFB). 
A list consisting of five questions, isolated words, digits, combination-lock phrases, 
read sentences and a contextual speech of considerable duration was prepared. The 
contextual speech consisted of description of nature or memorable events etc. of 
community or family life of the speaker. The data was recorded with 10 repetitions 
except for the contextual speech. During recording of the contextual speech, the inter-
viewer asked some questions to speaker in order to motivate him to speak on his cho-
sen topic. This also helps the speaker to overcome the initial nervousness and come to 
his natural mode so that the acoustic characteristics of his speech are tracked pre-
cisely. The speaker’s voice and interviewer’s voice were recorded on the same track. 
Once the magnetic tape was played into the computer, the speaker’s voice was played 
again to check the wrong editing. The interviewer’s voice was deleted from the 
speech file so that the models of the actual dialectal zone only can be made. The 
automatic silence detector was employed to remove the silence periods in the speech 
recordings to get only the models of a particular speaker and not the background noise 
and silence interval. Also, each speaker’s voice is normalized by the peak value so 
that the speech amplitude level is constant for all the speakers in a zone. Finally, cor-
pus is designed into training segments of 60s, 90s and 120s durations and testing 
segments of 1s, 3s, 5s, 7s, 10s, 12s and 15s durations in order to find the performance 
of the system for various training and testing durations [13].  

3   Sub-band Based Cepstral Coefficients (SBCC) 

Even though MFCC is extensively used for speaker recognition, it has got some draw-
backs [4], [12], [13]: 

− In MFCC, the filterbank is implemented with triangular filters whose frequency 
response is not smooth and hence may not be suitable for noisy speech data. 
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− The implementation of triangular filterbank requires critical band windowing (in 
frequency domain) or critical band filter banks (in time domain) which are compu-
tationally expensive as it does not involve any multirate processing. 

− For computing the spectrum, DFT whose resolution is constant in time and fre-
quency is used in MFCC. The local changes in time frequency plane will therefore 
not be highlighted very much in MFCC; this in turn will give less inter-zonal vari-
ability. Thus, speaker classification may not be satisfactory. 

This motivated the authors, to investigate a new feature set which uses a theoretical 
framework similar to MFCC, i.e., extracting spectrum information in an approximate 
Mel scale and having the filters whose frequency response is smooth. In the next 
subsection, an elementary introduction to wavelet transform and wavelet packet trans-
form followed by computational details of SBCC is presented. 

3.1   Wavelet and Wavelet Packet Transform  

In continuous time, the wavelet transform is defined as the inner product of a signal 
( )x t  with a wavelet basis , ( )u s tψ  in which the basis functions are scaled (by s ) and 

translated (by u ). The prototype wavelet is called as mother wavelet 2( ) ( )t Lψ ∈ [9], 
[12] (Lebesgue or Hilbert space of square integrable, i.e., finite energy functions) 
having zero average and unit norm so that       

( )*
,( , ) ( ) u sWx u s x t t dtψ

+∞

−∞
=  (1) 

where ,
1

( )u s
t u

t
ss

ψ ψ −=  

The discrete-time implementation of continuous-time wavelet transforms (CWT) 
given by (1), is achieved by using Mallat’s algorithm. The continuous-time wavelet 
bases with the QMF (Quadrature Mirror Filter) banks used in discrete multirate proc-
essing decomposes the signal into different frequency bands essentially in the lower 
frequency side. But for speech processing applications, we need to decompose the 
higher frequency side also (in order to closely approximate the Mel scale) which mo-
tivates us to go for wavelet packets.  

Wavelet packets were introduced by Coifmann, Meyer and Wickerhauser [2] by 
generalizing the link between multiresolution approximations and wavelet bases. A 
signal space jV  of a multiresolution approximation is decomposed in a lower resolu-

tion space 1jV +  plus a detail space 1jW + .This is achieved by dividing the orthogonal 

basis { }( 2 )j
j

n
t nφ

∈
− of jV  into two new orthogonal bases { }1

1( 2 )j
j

n
t nφ +

+
∈

− of 1jV +  and 

{ }1
1( 2 )j

j
n

t nψ +
+

∈
− of 1jW + where ( )tψ  and ( )tφ  are wavelet and scaling function respec-

tively. Fig. 2 shows the time-frequency atoms of the basis functions for the Fourier, 
wavelet and wavelet packet transform. For MFCC, DFT is computed [3], whereas for 
SBCC, wavelet packet (WP) transform is computed. As DFT samples the Fourier 
transform at equally spaced points in the frequency domain and also the window 
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length is constant throughout the analysis, the Heisenberg box for Fourier basis has 
constant time and frequency resolution, whereas WT and WPT, are computed via a 
time domain filtering with a down sampling by 2 (which approximates the scaling 
operation in continuous time and hence the variation in window length with frequency 
content of speech) which results in the variable time-frequency resolution in the time-
frequency plane. If we consider a sub-band ,l  depending on the local changes in the 
DFT of the frame in the band, DFT coefficients will be different for different dialectal 
zones (or different speakers). But the subband signals are relatively robust to local 
changes within a band, as they reflect the overall spectral shape for a band. Hence, the 
WT and WPT, reflect the global changes in Fourier transform, while being relatively 
immune to local changes within a particular subband which may give less intra-zonal 
variability and hence improved performance for speaker classification. The decompo-
sition for WP can be implemented by using a pair of QMF filter bank which divides 
the frequency band into equal halves.     

 
 

 

Due to the decomposition of the approximation space (low frequency band) as well 
as the detail space (high frequency band), the frequency division of speech on both 
lower and higher side takes place. This recursive splitting of vector spaces is repre-
sented by an admissible WP binary tree. Let each subspace in the tree be represented 
by its depth j and number of subspaces p below it. The two wavelet packet orthogonal 
bases at a parent node (j, p) are defined by [9], 
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As proposed by Farooq and Datta, the problem of selection of the best basis is 

solved by selecting a fixed set of basis which results into a fixed partitioning of the 
frequency axis such that it represents speech spectrum into the perceptually meaning-
ful scale, i.e., the Mel scale [5] and [6]. The tree which has been selected in this paper 
is shown in Fig. 3. The implementation of SBCC is similar to that of MFCC, i.e., we 
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 t  t  t 

Fig. 2. Time-frequency tilling (a) Fourier basis, (b) wavelet basis and (c) wavelet packet 
basis 
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Fig. 4. Block diagram for SBCC and WPCC implementation 
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pass the speech signal through the process of frame blocking, Hamming windowing, 
pre-emphasis and finally decomposing the speech into admissible wavelet packet 
structure, then finding the normalized filterbank energy (to have equal emphasis in 
each sub-band) and finally decorrelate the log-filterbank energy using DCT.     
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3.2   Spline Wavelet Design 

In this paper, cubic spline wavelet has been designed for SBCC implementation. If  
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 is a sequence of closed subspaces of 2( )L  then multiresolution causality 
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Fig. 3. 24 sub-band wavelet packet tree 
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property imposes that 1 .j jV V+ ⊂  In particular, ( )1 2
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an orthonormal basis of 0V , we can decompose 
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(2) is called as scaling equation and it relates a dilation of φ  by 2 to its integer transla-
tions. The sequence ( )h n  will be interpreted as a discrete lowpass filter. In Fourier 

domain (2) can be expressed as 

The corresponding wavelet ( )tψ  has a Fourier transform defined by [9], 
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A box spline of degree m  is a translation of 1m +  convolutions of 0,11  with itself. 

It is centered at 1 2t =  if m  is even and at 0t =  if m  is odd. Its Fourier transform is 
given is, 
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Using (5) in (3), we get 

( ) ( )
( )

( )
( )

1
2 2 sin

exp
sin 2 2

2

m
j

H
ω ω εωω

ω ω

+
Φ −= =

Φ
 

 

After trigonometry, 
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Now we construct a wavelet that has one vanishing moment by choosing ( ) ( )G ω ω= Ο  

(so that ( )G ω  has one zero at 0ω = ) in the neighborhood of 0.ω =   For example let us 
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Then the Fourier transform of resulting wavelet is given by (4), 
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It is the first derivative of a box spline wavelet from the box spline of degree 1m +  
centered at ( )1 4.t ε= +  For 3,m =  we get  
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The above lowpass and highpass filter coefficients are used in SBCC computations 
and this completes the design of analysis filters for cubic spline wavelet. From (6) it is 
clear that ( )h n  and ( )g n  are symmetric odd length and anti-symmetric even length   

FIR filters having linear phase.   

4   Experimental Results 

In this paper, polynomial classifiers of 2nd and 3rd order approximations are used as 
the basis for all the experiments. Due to Weierstrass-Stone approximation theorem, 
polynomial classifiers are universal approximators to the optimal Bayes classifier [1]. 
The present work proposes a new feature set based on subband cepstrum by utilizing 
smooth cubic spline wavelet basis functions in wavelet packet transform for the open 
set speaker classification.  

Feature analysis was performed using a 23.2 ms duration frame with an overlap of 
50%. Hamming windows was applied to each frame and subsequently, each frame 
was pre-emphasized with the filter (1-0.97z-1). Pre-emphasis is smooth high pass 
filtering process applied to each speech frame which emphasizes high frequency 
components and de-emphasizes low frequency components, i.e., sharp/sudden 
changes in articulation are boosted up. This is also used to remove the effect of trans-
fer function of glottis and thereby track changes solely related to vocal tract. Thus, 
pre-emphasis helps us to concentrate on articulator dynamics in speech frame and it is 
hence useful for tracking the manner in which the speaker pronounces a word. During 
training phase, 12 MFCC and 12 SBCC feature vectors were extracted per frame from 
the training speech as per the details discussed in the paper. SBCC were extracted  
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with cubic spline wavelets discussed in section 3. These 12 dimensional feature vec-
tors are fed to the classifier for model training. The classifier builds up model for each 
dialectal zone for different training durations such 60s, 90s, and 120s by averaging 
polynomial coefficients of the feature vectors of 21 speakers for each zone. During 
testing phase, 12 MFCC and 12 SBCC feature vectors were extracted per frame from 
the testing speech and score for each unknown speaker is computed against stored 
models of each dialectal zone. Finally, an unknown speaker is assigned to a zone 
whose score gives maximum value. Success rates for two dialectal zones, viz., Kon-
kan and Marathwada are shown in Tables 1-4 for different training (TR) and testing 
(TE) durations along with average success rates (over testing speech durations) in 8th 
row for each table whereas in Tables 5-8 only average success rates over testing 
speech durations are shown for MFCC and SBCC and for 2 and 3 dialectal zones with 
2nd and 3rd order polynomial approximation. Tables 9-16 show confusion matrix (di-
agonal elements show % correct classification in a dialectal zone and off-diagonal 
elements show the miss-classification) for Konkan (KN), Marathwada (MW) or Vid-
harbha (V). In tables 9-16, ACT represents actual dialectal zone of an unknown 
speaker and CLASS classified zone of an unknown speaker.  

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 1. Success Rates (%) for MFCC 
with 2nd Order Approximation for 2 zones 

TEST 
(SEC) 

60S 90S 120S 

1 50 69.04 78.57 
      3 50 69.04 73.81 

5 50 66.66 73.81 
7 50 64.28 76.19 

    10 50 71.42 78.57 
    12 50 71.42 76.19 
   15 50 71.42 78.57 
Av.  50.00 69.04 76.53 

 

Table 2. Success Rates (%) for MFCC with 
3rd Order Approximation for 2 zones 

TEST 
(SEC) 

60S 90S 120S 

1 100 100 100 
      3 100 100 100 

5 100 100 100 
7 100 100 100 

    10 100 100 100 
    12 100 100 100 
   15 100 100 100 
Av. 100 100 100 

 

 
Table 3. Success Rates (%) for SBCC with 
2nd Order Approximation for 2 zones 

TEST 
(SEC) 

60S 90S 120S 

1 95.23 95.23 95.23 
3  100  100  100 
5  100  100 97.61 
7  100  100  100 

10 97.61  100 97.61 
12 97.61 97.61 97.61 
15  100  100  100 

Av. 98.63 98.97 98.29 

 

Table 4. Success Rates (%) for SBCC with 
3rd Order Approximation for 2 zones 

TEST 
(SEC) 

60S 90S 120S 

1 95.23 97.61 95.23 
      3  100  100  100 

5  100  100  100 
7  100  100  100 

    10  100  100  100 
    12  100  100  100 
   15  100  100  100 
Av. 99.31 99.65 99.31 
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 Table 9. Confusion Matrix for MFCC with 
2nd Order Approximation for 2 zones 

        ACT. 
CLASS. 

KN MW 

KN 57.14 42.85 
KN 0 100 

Table 10. Confusion Matrix for MFCC with 
3rd Order Approximation for 2 zones 

        ACT. 
CLASS. 

KN MW 

KN 100 0 
KN 0 100 

Table 11.  Confusion Matrix for SBCC with 
2nd Order Approximation for 2 zones 

        ACT. 
CLASS. 

KN MW 

KN   100   0 
KN 0 100 

Table 12.  Confusion Matrix for SBCC with 
3rdOrder Approximation for 2 zones 

        ACT. 
CLASS. 

KN MW 

KN    100 0 
KN 0 100 

Table 16. Confusion Matrix for SBCC with 
3rd Order Approximation for 3 zones 

        ACT. 
CLASS. 

KN MW V 

KN 100 0 0 
MW 9.523 90.47 0 

V 4.761 80.95 14.28 

Table 15. Confusion Matrix for SBCC with 
2nd Order Approximation for 3 zones 

        ACT. 
CLASS. 

KN MW V 

KN 100 0 0 
MW 19.04 80.95 0 

V 19.04 57.14 23.81 

Table 14.  Confusion Matrix for MFCC with 
3rd Order Approximation for 3 zones 

        ACT. 
CLASS. 

KN MW V 

KN    100   0 0 
MW 0 100 0 

V 0 42.85   57.14 

Table 13.  Confusion Matrix for MFCC with 
2nd Order Approximation for 3 zones 

        ACT. 
CLASS. 

KN MW V 

KN   42.85     0 57.14 
MW 0     0   100 

V 0     0   100 

 Table 5. Success Rates with 2nd Order 
Approximation for 2 zones 

            TR 
FS 

60S 90S 120S 

MFCC 50.00 69.04 76.53 

SBCC 98.63 98.97 98.29 

Table 6.  Success Rates with 3rd Order 
Approximation for 2 zones 

            TR 
FS 

60S 90S 120S 

MFCC 100 100 100 

SBCC 99.31 99.65 99.31 

Table 7. Success Rates with 2nd Order 
Approximation for 3 zones 

            TR 
FS 

60S 90S 120S 

MFCC 39.67 40.58 47.38 

SBCC 69.15 71.87 71.19 

Table 8.  Success Rates with 3rd Order 
Approximation for 3 zones 

            TR 
FS 

60S 90S 120S 

MFCC 79.36 81.40 82.99 

SBCC 71.65 71.65 73.23 
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Some of the observations from the results are as follows: 

− For 2nd order approximation, proposed feature set SBCC (extracted with cubic 
spline wavelet) outperforms MFCC in almost all the cases of training and testing 
speech durations whereas for 3rd order approximation MFCC performs slightly 
better than SBCC. 

− For 2nd order approximation and SC task for 3 zones, confusion matrix for SBCC 
performed relatively better than MFCC whereas for 3rd order approximation, 
MFCC performed well than MFCC. 

− Training and testing speech durations influence the success rates in majority of the 
cases.  

− Average success rates increase with the increase in training speech durations and 
hence for good performance, one should train the system with speech of more than 
1 min. durations. 

− On the whole, proposed feature set performs better than MFCC in majority of the 
cases. This may be due to the fact that the spline wavelets are linear-phase and 
smooth wavelets and hence may be able to represent zone specific features more 
efficiently.   

5   Conclusion 

In this paper, a new feature set based on subband cepstrum is proposed for the prob-
lem of speaker classification. The spline wavelet is designed and employed in SBCC 
computation. The performance of newly proposed feature set was compared with 
MFCC and found to be effective in majority of the cases. The investigations carried 
out in this paper can be of significant importance in forensic acoustics.  
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Abstract. This paper investigates the rhythmic organization of Mandarin 
utterances through both corpus analyses and experimental studies. We propose 
to add a new prosodic unit, the principle prosodic unit (PPU), into the prosodic 
hierarchy of Mandarin utterances. The key characteristic of PPU is that inner-
unit words normally have to be spoken closely, while inter-unit grouping is 
rather flexible. Because of this, we further suggest that the rhythmic 
organization of Mandarin utterances is a two-stage process. In the first stage, 
syllables are grouped into prosodic words, and then to PPUs. The forming of 
PPUs is restricted by the local syntactic constraint and the length constraint. In 
the second stage, though the rhythmic constraint still has influences, the 
grouping of PPUs into phrases is rather flexible. Normally, multiple equally 
good solutions exist for a sentence in this stage. 

Keywords: prosodic hierarchy, prosodic phrasing, principle prosodic unit, 
syntactic constraint, length constraint.  

1   Introduction 

Breaking utterances into prosodic units is an important part of speech production. 
Therefore, for a text-to-speech (TTS) system, properly prosodic phrasing is crucial for 
achieving high naturalness. Various stochastic models have been used in predicting 
prosodic constituents from text [1][2][3][4][5]. Two types of features, the syntax 
related features (such as the syntactic trees or part-of-speech of succeeding words etc) 
and length related features (include sentence length, the distance from the beginning 
and the end of the sentence, the distance from previous breaks etc), are normally used 
in such predictions. Since there is no commonly accepted specification on how to 
label prosodic phrases, more phrase boundaries are labeled in some training corpus 
than in the others. Therefore, the prediction accuracy of different models trained with 
different corpus cannot be compared directly. However, when putting various results 
together, we still see two common problems. On the one hand, it seems to have a 
ceiling for the prediction accuracy. The accuracy of single level break prediction is 
between 85%-95%, and the accuracy of multi-level prediction is between 80%-85% 1. 
                                                           
1 The accuracy of the prediction single break boundary various greatly in different works. One 

important reason is that the definition of boundary changes. In some data, only a few breaks 
are labeled and most of them go with punctuations. Then the accuracy is higher. In other 
works, minor breaks are considered. And the accuracy is lower. 
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On the other hand, although some phrase boundaries generated by the prediction 
model do not aligned with the labeled boundaries in the testing samples, they are 
judged as acceptable breaks by the human listeners. Though many works are being 
carried on to increase the accuracy by incorporating new features or better prediction 
models, we believe the space for such improvements is limited because natural 
variations in prosodic phrasing has not been considered.  

In this paper, the variations in prosodic phrasing within Mandarin utterances are 
investigated in a parallel speech corpus where three repetitions are recorded for 1000 
sentences. Both variable and invariable prosodic constituents are observed. Two low 
level prosodic units, the prosodic word and the principle prosodic unit, are found to 
have rather stable segmentations in the three repetitions. While the high level units, 
the prosodic phrase and the intonational phrase, are found to have large variations. 
These observations lead us to propose a two-stage decision process in the rhythmic 
organization of Mandarin utterances. In the first stage, syllables are first grouped into 
the prosodic words and then into the principle prosodic units under both syntactic 
constraints and length constraints restrictedly. In the second stage, the prosodic 
principle units are grouped into phrases rather freely. Although the length constraint 
still reacts on the forming of prosodic phrases, we proof with a perceptual experiment 
that the syntactic structure of the sentence does not play an important role in this 
stage.     

2   Variable and Invariable Prosodic Constituents in Mandarin 

There are many studies on specifying prosodic hierarchies. Syllable is often viewed as 
the lowest unit of prosodic constituent structure. According to Selkirk [6][7], the 
suprasyllabic hierarchy for English includes at least four categories: the foot, the 
prosodic word, the phonological phrase and the intonational phrase. The foot is 
usually smaller in size than the word and has been used in representing the distinction 
between stressed and unstressed syllables. The prosodic word is a roughly word-sized 
unit and it is required particularly when the words defined in syntactic terms fail to 
correspond exactly to the “words” playing a role in prosody. The intonational phrase 
is the highest prosodic unit within an utterance and tends to correspond to a simple 
sentence without extrapositions or interruptions. The phonological phrase is a 
constituent falling between the intonational phrase and the prosodic word. In some 
works, the intonational phrase is also referred as the major phrase and the 
phonological phrase is named as the prosodic phrase, the intermediate phrase or the 
minor phrase [4, 8].  

In the prosody studies of Mandarin [5][9][10], a three-tier hierarchy, which 
includes the prosodic word, the prosodic phrase and the intonational phrase, has been 
widely adopted. Here, the definitions of prosodic and intonational phrases are rather 
similar to those used in English. Yet, the term prosodic word is often used 
interchangeable with the term prosodic foot. Both are used to describe the 
predominance of the disyllabic pattern of bottom rhythmic unit in Mandarin. 
According to [11], disyllabic prosodic feet (or prosodic words) are widely used in 
Mandarin speech, trisyllabic ones are acceptable, but, the using of monosyllabic or 
quadrisyllabic feet are constrained to limited situations.  
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2.1   The Parallel Speech Corpus  

A Mandarin speech database that contains three repetitions of 1,000 sentences, 
denoted as HF1, HF2 and ZT, respectively, is used in this study. HF1 and HF2 were 
recorded by the same voice talent, separated by a time span of 6 months. ZT was 
recorded by another voice talent. The speakers were instructed to read these sentences 
with unmarked style. Therefore, we assume that no intentional change in the linguistic 
and affective expression among the three repetitions. Based on this assumption, 
differences in prosodic phrasing among HF1, HF2 and ZT are viewed as natural 
variations in unmarked reading speech.  

Four levels of break indices (B1-B4) were labeled manually by listening to the 
speech, among which B2, B3 and B4 correspond to weak, moderate and strong break, 
respectively [12]. Although the break indices were annotated perceptually, they have 
a rough correspondence to the prosodic hierarchy of Mandarin. B2 corresponds to a 
prosodic phrase (or a minor phrase) boundary. Both B3 and B4 mark intonation 
phrase (or major phrase) boundaries, but B4 is followed by a longer pause.  B1 is the 
prosodic word boundary. Since the prosodic word is a bottom rhythmic unit and does 
not have noticeable marks in speech, its boundary is annotated with rules shown in 
Table 1.  

Table 1. Rules for annotating prosodic word boundaries 

Rule 1 When a disyllabic or trisyllabic word doesn’t have a clitic and a monosyllabic 
word attached, it forms a prosodic word by itself; otherwise, it forms a 
prosodic word together with the clitic or the proceeding or succeeding mono-
syllabic word. 

Rule 2 A monosyllabic word is grouped into a prosodic word together with the word 
either before or after it unless the monosyllabic word is significantly 
lengthened or separated from both the proceeding and succeeding words. 

Rule 3 All words with more than three syllables should be decomposed into a series 
of disyllabic or trisyllabic prosodic words. The clitic or mono-syllabic word 
before or after it should be merged into the first or last prosodic word. 

The corpus was annotated by three well-trained annotators. For prosodic word 
boundaries, the ratio of all three annotators agreeing with each other is 96.6% and the 
ratio of at least two agreeing is 99.9%. For the 4 level break indices, the ratio of all 
agreeing is 82.9% and the ratio of at least two agreeing is 99.1%. The final break 
indices are generated by voting. For a few cases that all three annotators disagree with 
each other, the middle level indices were chosen. Table 2 gives some examples of the 
break indices.  

The acoustic analysis of the three level boundaries [13] shows that the both 
prosodic phrase and the intonational phrase are signaled by final lengthening and 
pause. Pitch resets are observed across intonational phrase boundaries, yet, not across 
prosodic phrase boundaries.  
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Table 2. Examples of the annotated break indices 

1. B2 B1 B3 B2 B2 B1 B4  

2. B2 B1 B3 B2 B1 B4 B2 B3 B2
B1 B4  

3. B2 B2 B1 B2 B1 B4 B2 B1 B1 B4  

4. B2 B3 B2 B4  

2.2   Variations in Prosodic Constituents 

The prosodic phrasing realized in an utterance is governed by phonological rules and 
paralinguistic factors such as speaking rate, speaking style, special intention or 
speaker’s personal habit. It will be very difficult to analyze if all factors are activated 
together. Therefore, in this paper, we focus on the rhythmic organization in speech 
recorded with unmarked speaking style. The first question we want to answer is, 
given the same content, the same speaking style and the same speaking rate, is the 
prosodic phrasing the same?  

First, we compared the observed prosodic structure of the same sentence recorded 
in HF1 and HF2. We found that about 14% syllables were grouped into different 
prosodic units. This shows that the difference in prosodic organization between the 
two repetitions of the same speaker is rather large. Then, we looked into differences 
in the three prosodic constituents. 

Prosodic Word. We found that only 2.7% syllables were organized into different 
prosodic words, i.e. the organization of prosodic words is rather stable. The few 
differences are mainly related to the grouping of monosyllabic syntactic words. For 
example, the phrase “ (viewing from the angle of economy 
and environment protection)”, was read into four prosodic words as “  | 

 |  | ” in HF1. Yet, it was read into 6 prosodic words in HF2 as “ |  | 
 |  |  | ” by lengthening the monosyllabic words “  (from) ” and “  

(and) ”. The meanings in both readings are the same.  
Prosodic Phrase. After excluding the unmatched prosodic words in HF1 and HF2, 
we compared again the organization of prosodic phrases. 12.8% of prosodic words 
were found been grouped into different prosodic phrases, i.e. more variations were 
observed in the organization of this unit. For example, the sentence “

 (be clearly minded when dealing with important issues but not nitpicking on 
trivial matter) ” was grouped into four prosodic words as “ | | | ” 
in both HF1 and HF2. The four prosodic words were grouped into two prosodic 
phrases in HF1 as  “  || ”, and  each of them was treated as one 
prosodic phrase in HF2 as “  ||  ||  || ”. Again, the meaning has 
not been changed. 
Intonational Phrase. In order to compare the organization of intonation phrase, all 
unmatched prosodic phrases were excluded. In the remaining corpus, 22.5% prosodic 
phrases were found to be organized into different intonation phrases, i.e. larger 
variations were observed. For example, the phrase “  
(Stay with the grass roots for more than 200 days per year)” were grouped into three 
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prosodic phrases as “  || || ” in both HF1 and HF2. They 
were organized into one intonational phrase in HF1 and two intonational phrases in 
HF2 as “  ||| ”.  

Then, recordings in HF1 and HF2 were compared with ZT, respectively. The 
differences in prosodic words are 2.4% and 0.9% respectively. The differences in 
prosodic phrases are 12.5% and 11.5% and the differences in intonational phrases are 
17.5% and 33.5%. It is clear that the inter-speaker differences are not larger than the 
inner-speaker differences. Therefore, we conclude that the differences in the rhythmic 
organization among the three repetitions are not caused by personal habit but by the 
freedom in speech organization. The variability is larger in high level units than in 
low level ones.  

At last, we looked into the matched and unmatched phrases in the three repetitions 
and found that some words that have certain types of syntactic relationship (such as 
the modifiers and the heads in some of the base adjunct-head phrases) are stably 
grouped into the same phrase. Yet, words with other relationships can be grouped into 
either the same phrase or different phrases. For example, in the sample sentence 1 in 
Table 2, “ ” and “ ”, “ ” and “ ” are in the same phrase in all the 
three repetitions, but “ ” and “ ” are within the same prosodic phrase in 
HF1 and ZT, but are two prosodic phrases in HF2.   

These observations imply the existence of another stable prosodic unit. We name it 
the principle prosodic unit (PPU). The key feature of the PPU is that, any break 
within it will make the speech sound unnatural or influent, while whether a PPU is 
grouped with its neighboring one(s) into a prosodic phrase is rather flexible. We 
believe that adding such a prosodic unit is helpful to explain the variations in prosodic 
phrasing.  

2.3   Characteristics of the Principle Prosodic Unit 

In order to describe the principle prosodic unit more specifically, we need a labeled 
corpus for analysis. Since the PPU is a unit that has no noticeable cues in its phonetic 
implementation, annotation of PPU directly in a text or speech corpus is not easy. 
Fortunately, we have the parallel corpus. We assume that prosodic word boundaries 
that haven’t been phonetically implemented as a phrase boundary in any of the three 
repetitions are no-break positions. Other word boundaries are positions that are 
allowed to have breaks. Then, any chunk that contains only no-break word boundaries 
forms a PPU. Table 3 lists examples of the PPU labels.  

Table 3. Examples of the principle prosodic unit 

(1)   ||  || ||  ||  

(2)   ||  ||  ||  ||  ||  || ||  

(3)   ||  ||  ||  ||  ||  ||  ||  

(4)   ||  ||  ||  

In the annotated corpus, we found that about 56% prosodic words are PPUs 
themselves and about 40% PPUs contains two prosodic words. Only 4% PPUs 
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contain more than two prosodic words. Therefore, we believe that the most important 
operation in the rhythmic organization of Mandarin utterances is to decide whether 
two neighbored prosodic words have to be spoken without any pause. Furthermore, 
we found that the forming of PPUs was constrained mainly by two factors. One is the 
local syntactic relationship between two succeeding prosodic words. Only words that 
have the syntactic relation with high adhesive strength should be forced into the same 
PPU. The other is the length constraint, i.e. normally a PPU contains no more than 
two prosodic words.  

By adding the PPU into the prosody hierarchy of Mandarin utterance, we have four 
prosodic units altogether. The organization of the two low-level units (the prosodic 
word and the principle prosodic unit) is rather stable in speech and is not affected 
much by who speaks, when and how it is spoken. Yet, the organization of the two 
high-level units (the prosodic phrase and the intonational phrase) is rather flexible, 
being governed by different paralinguistic or nonlinguistic factors.  

3   The Two-Stage Process in Mandarin Rhythmic Organization 

Based on above analysis, we would like to propose that the rhythmic organization of 
Mandarin utterances contains two stages.  

In the first stage, syllables are first grouped into prosodic words and then PPUs 
under the local syntactic constraint and the length constraint. The process of building 
up PPUs in a sentence is illustrated in Fig. 1. First, a sentence is segmented into a 
sequence of prosodic words w1w2w3w4 …..wN 2. Any two succeeding words wi and wi+1 
have either a local syntactic relationship (such as modifier and noun head, modifier 
and verb head, etc) or have no syntactic relationship. Their syntactic relationship is 
demoted as ri,i+1. For Mandarin, about 30 types of local syntactic relationships are 
found, each attached with an adhesive strength [15]. The adhesive strength shows 
how likely the two prosodic words should be in the same PPU. If the adhesive 
strength between two words is smaller than a threshold R, the two words will not be in 
the same PPU. For a word wi in the sentence, if ri,i+1> ri-1,i  and ri,i+1> R, wi will form a 
PPU with wi+1; if ri-1,i > ri,i+1 and ri,i+1 > R, it will form a PPU with wi-1. Once two 
words wi and wi+1 form a PPU, the PPU reaches it up-bound in length, therefore, their 
adhesive strength with neighbored words wi-1 and wi+2  decreases so that wi-1 and wi+2 

normally will not be in the same PPU as wi and wi+1. PPUs don’t have directly 
prosodic marks in speech. They only lay out candidates for prosodic phrasing. 

In the second stage, PPUs are grouped into prosodic phrases and intonational 
phrases which are signaled with perceptible boundary signals, such as pauses, pitch 
contours or final lengthening at the phrase boundaries. We believe that the grouping is  
PPUs is rather flexible and even think that such a grouping is performed without 
considering the sentence syntax structure although many other factors may affect the 
final realization. Among other factors, the length-balance constraint is an important 
one, i.e. prosodic phrases in an utterance tend to be similar in lengths. To verify these 
ideas, we performed a perceptual experiment.  

                                                           
2 There already have many studies on prosodic word segmentation [14]. In this study, we skip it 

and assume that we already have prosodic word sequence. 
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Fig. 1. The formation of the principle prosodic unit 

4   Perceptual Experiment 

Two hypotheses are tested in the experiment: the first is that many ways to break an 
utterance are acceptable and breaks can be allocated to principle prosodic unit 
boundaries without consider the syntactic structure; the second is that the break 
allocation among PPU boundaries is constrained by the length-balance effect to some 
extent.  

4.1   Design and Procedure of the Experiment 

Twenty sentences with 13~19 syllables were selected from the parallel speech corpus. 
These sentences contain annotations of both the PPU and three real solutions of 
prosodic phrasing. Five different hypothetical phrasing solutions are generated 
automatically for each sentence. They all comply with the two hypothesis and are 
referred as positive samples P1~P5. Besides, two negative samples (N1 and N2) are 
generated for each sentence by putting a phrase boundary within a PPU and one 
golden solution (G1) is prepared by selecting one from the three real solutions. 
Examples for the eight phrasing solutions are given in Table 4. The 20 sentences were 
synthesized with Mulan TTS system [16] by using the eight different phrasing 
solutions. The differences among the synthetic utterances are assumed mainly caused 
by the differences in prosodic phrasing. The golden solutions (G1) draw the up-bound 
of the naturalness and negative solutions (N1 & N2) plot the bottom-bound. The aim 
of this experiment is to see if positive solutions (P1~P5) distributed in between.  

There are at least two ways to compare the naturalness among the eight samples of 
each sentence. One is to ask subjects to directly score each utterance. The other is to 
rank them by one-to-one comparison. Since the main difference among the eight 
samples is the break positions, obtaining MOS scores precise enough to distinguish 
their naturalness is not easy. Therefore, we chose the second method, i.e. we 
compared the eight utterances to one another and asked the subjects to choose which 
utterance sounds better. 28 pairs of utterances were generated for each sentence and 
altogether 560 pairs were obtained for the 20 sentences. 

20 university students participated in the experiment, each worked with a scoring 
tool in a standard PC. They listened to the utterance pairs through headphones and 
chose either “A sounds better” or “B sounds better”.  

Prosodic word                          w1  w2  w3  w4 ….. wN

 Local syntactic relationship         r12   r23   r34      rN-1N 

Adhesive strength                        s12   s23   s34      sN-1N 

Principle prosodic unit              w1 w2 || w3 ||  w4 ….. wN 
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Table 4. Rules for generating eight phrasing solutions and examples 

Rules to generate the phrasing solution Examples 
P1: No break in the whole sentence 

 
P2: Only one break at the PPU boundary closest 
to the middle point of the sentence on the left 

 | 
 

P3: Only one break at the PPU boundary closest 
to the middle point of the sentence on the right 

 | 
 

P4: Two breaks at PPU boundaries closest to the 
1/3 and 2/3 points of a sentence on the left3  

 |  | 
 

P5: Two breaks at PPU boundaries closest to the 
1/3 and 2/3 points of a sentence on the right 

 |  | 
 

N1: One inner-PPU break at the left part of the 
sentence4  

 | 
 

N2: One inner-PPU break at the right part of the 
sentence 

 | 
 

G1: One from the parallel corpus  |  |  | 
 

4.2   Results and Analysis 

Measurement. If an utterance was judged as the better one in one comparison by one 
subject, it received one point. Otherwise, it got no points. The ratio between the points 
an utterance obtained and the number of times it was compared is defined as the 
preference rate (PR) of the utterance.  
Preference rate of golden, positive and negative solutions. After the adjustment in 
utterances and subjects, PRs for golden, positive and negative phrasing solutions are 
calculated. As shown in Fig. 2, both golden and positive utterances sound 
significantly better than the negative utterances. The naturalness of positive utterances 
is in the same range of the golden ones. This result supports our first hypothesis. 
Breaks can only be allocated to PPU boundaries. It is not necessary to consider any 
syntactic information during the allocation. Many ways to break an utterance are 
equally good.  
Length constraint in prosodic phrasing. Although most positive samples and 
golden samples sound similar in terms of their naturalness, some are worse than 
others. Nine samples with PRs lower than 0.3 are found. One of them is in the no-
break category (P1), four in the single-break category (P2&P3) and four in the 
natural-break category (G1). None is in the two-break category (P4&P5). It seems 
that single-break and natural-break categories have more problems than others. 
Therefore, detail analyses are performed in the two categories.  

                                                           
3 In P4 and P5, if no boundary on the left or right is found, the one on the right or left can be 

used. We have made sure that P4 and P5 differ at least in one break position. 
4 In N1 and N2, breaks are still put at prosodic word boundaries, but they are within a prosodic 

chunk. 
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Fig. 2. PRs in golden, positive and negative utterances 

In the single-break type, we found that a possible reason for the low PR is the 
large difference between the lengths of the two prosodic phrases. Therefore, a length 
balance ratio (LBR) is defined as the ratio between the length difference of the two 
prosodic phrases in an utterance and the average length of the two phrases. The 
relationship between LBR and PR of utterances is shown in Fig. 3. The solid line is 
the trend line. The correlation coefficient between the two parameters is -0.44. That is 
to say the PR of an utterance is negatively correlated to its LBR. 

Among the four worst natural-break samples, three have breaks at all PPU 
boundaries. This implies that too many breaks may hurt the naturalness of synthesized 
speech although human speaker can do well with the same breaks. Therefore, the 
golden samples are further decomposed in accordance with the number of breaks. The 
utterance that has two breaks is merged into the two-break category. Eleven 
utterances have three breaks and six have four. They formed the two new categories. 
Fig. 4 shows the statistics of PRs in groups of utterances with 0-4 breaks. We find that 
utterances with two breaks have the highest PR and those with four breaks have the 
lowest PR. However, in an ANOVA analysis, these differences are not statistically 
significant. The possible reason is because we have too few samples in the three-
break and four-break categories. 

Both Fig. 3 and 4 support our second hypothesis, i.e. the break allocation among 
PPU boundaries are constrained by the length of prosodic phrases. Prosody phrases in 
an utterance tend to be similar in length.   
 

 

Fig. 3. LBR and PR of utterances 
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Fig. 4. PRs in groups of utterances with various numbers of breaks 

5   Conclusion and Discussion 

This paper investigates the variability in prosodic phrasing through both corpus 
analysis and a perceptual experiment. The results support our suggestion on the 
existence of a stable prosodic constituent, the principle prosodic unit, in Mandarin. On 
the one hand, breaks appear within a PPU will significantly hurt the naturalness of 
synthesized speech; on the other hand, many ways to group PPUs into prosodic 
phrases are equally good. Therefore, we propose that the rhythmic organization of 
Mandarin utterances is a two-stage process. In the first stage, syllables are organized 
into PPUs. In the second stage, PPUs are grouped into prosodic phrases. Syntactic 
constraints mainly affect the forming of PPUs but not that of the upper-level prosodic 
phrases. Length constraints play an important role in both stages.  

Based on above conclusions, we can see that predicting no-break locations in a 
sentence is much more important than predicting the break locations in the prosodic 
phrasing in Mandarin. Therefore, the research focus on prosodic phrasing should 
adjust from predicting the best phrasing solution to predicting the no-breaking 
locations (or the PPU boundaries). Once having the PPU boundaries, many flexible 
ways can be used to group PPUs into phrases. For example, we can generate more 
phrases (or short phrases) in slow speech and fewer phrases (or longer phrases) in fast 
speech. 
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Abstract. Prosodic boundary prediction is the key to improving the 
intelligibility and naturalness of synthetic speech for a TTS system. This paper 
investigated the problem of automatic segmentation of prosodic word and 
prosodic phrase, which are two fundamental layers in the hierarchical prosodic 
structure of Mandarin Chinese. Maximum Entropy (ME) Model was used at the 
front end for both prosodic word and prosodic phrase prediction, but with 
different feature selection schemes. A multi-pass prediction approach was 
adopted. Besides, an error-driven rule-based modification module was 
introduced into the back end to amend the initial prediction. Experiments 
showed that this combined approach outperformed many other methods like 
C4.5 and TBL. 

Keywords: Prosodic Boundary Prediction, Maximum Entropy Model, Error-
Driven Rule-Based Modification. 

1   Introduction 

When people talk, they rarely speak out a whole sentence without a break. Instead, an 
utterance is divided into smaller units with perceivable boundaries between them. 
These phonetic spurts or chunks of speech, which are commonly known as prosodic 
units, signal the internal structure of the message and serve important function in 
helping people to clearly express their ideas as well as their feelings.  

These units are different in their categories, levels, and boundary strength. Smaller 
and lower-level units are contained in larger and higher-level units to form a prosodic 
hierarchy. In Mandarin Chinese, this hierarchical structure is often simplified to 3 
layers [1] (from down to top): prosodic word, prosodic phrase and intonation phrase. 

In current TTS, input text is firstly processed by a Text Analysis Model, whose 
output is a string of syntactic words, each with a POS tagging. Then its prosodic 
structure is expected to be constructed out of linguistic information to enhance the 
naturalness and understandability of the synthetic speech. However, as grammatical 
structure does not necessarily correspond to its prosodic counterpart, misjudgments 
                                                           
* This work is supported by China National Natural Science Foundation(60433030, 60418012). 



150 X. Zhang, J. Xu, and L. Cai 

always occur in assigning the proper prosodic boundary, which has become the major 
impediment for TTS systems to achieve human-like performance.   

That’s why more and more attention has been paid to addressing the problem of 
automatic prosodic boundary prediction. For Mandarin, as intonation phrases are 
usually distinguished by punctuation marks, most efforts focus on locating prosodic 
word and prosodic phrase boundaries based on syntactic information. 

In the earlier time, rule-based methods were usually adopted. It mainly starts from 
Gee and Grosjean's work on performance structures [2], and has had various 
extensions over the years. For Chinese, similar investigation has also been carried out 
into the formation of prosodic constitutes, such as that reported by Jianfen Cao [1][3] 
and Hongjun Wang [4]. The central idea of all these work is to find some explicit 
rules that could recreate the prosodic structure of a sentence from syntax, by way of a 
large number of experiments and empirical observation. This method is easily 
explicable and understandable, but also poses strict demand for the system developer 
to summarize these rules. Moreover, it is hard to update and improve, and the set of 
rules is usually constrained to one branch of language, which hinders its general 
application.  

With the availability of increasing prosodically annotated corpora and the rapid 
development of statistical learning, stochastic-based approach has been more and 
more widely used in prosodic boundary prediction. As in most cases, it is assumed 
that syntactic word is the smallest unit (i.e. leaf node) in a prosodic hierarchy tree, the 
task of building prosodic structure could be reduced to deciding the type for each 
syntactic word boundary, which is actually a classification problem. Thus many 
different statistical methods used for classification have been tried, such as 
Classification and Regression Tree (CART) used by Wang and Hirschberg [5], and 
Hidden Markov Model proposed by Paul and Alan [6]. Researchers in Chinese have 
also begun to adopt this approach during recent years. Besides those mentioned 
above, Zhao has described methods for automatically predicting prosodic phrase by 
combining decision tree and TBL [7]. And in Li’s experiment, he attempted to predict 
prosody phrase break based on Maximum Entropy Model [8]. Generally, these 
methods relate each boundary site with some features (e.g. length and POS of 
adjacent words). By extracting and absorbing these features from a large collection of 
annotated sentences, a statistical model is trained and then applied to unlabeled texts. 
For each potential boundary site in the text, a probability is estimated for each 
possible outcome, and the one with largest likelihood is determined as the correct 
type.   

In this paper, we proposed to predict the prosodic boundary using Maximum 
Entropy Model, which nowadays has gained more and more popularity with NLP. 
Unlike previous efforts, we applied it to both prosodic word and prosodic phrase 
boundary labeling, and a multi-pass approach was employed for the latter task.  
Moreover, an error-driven rule-based modification module was added at the back end 
to improve the performance furthermore.  

The rest of this paper is organized as following. Section 2 first introduced the 
Maximum Entropy Model briefly. Then the feature selection method and the multi-
pass procedure for prosodic boundary prediction are presented. Section 3 described 
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the back-end modification module. Experiments and results are given in Section 4. 
Section 5 gives conclusions. 

2   Prosodic Boudary Prediction Based on Maximum Entropy 
Model  

In our experiment, a basic assumption is that a prosodic boundary only occurs at 
syntactic word boundaries. For Mandarin Chinese, it is reasonable as statistics show 
that only 6% of prosodic words are part of a long syntactic word, and all the rest agree 
with this assumption. 

Given a string of consecutive syntactic words, for each boundary between two of 
them (say wi and wi+1), there are 3 types: LW (wi and wi+1are within the same prosodic 
word), PW(within the same prosodic phase but different prosodic words) and 
PPh(within different prosodic phrases). Then our task comes down to deciding the 
right type for each syntactic word boundary, which could be accomplished with a 
Maximum Entropy Model. 

2.1   Maximum Entropy Modeling 

Consider a random process that produces an output value y based on some contextual 
information x, with x and y being a member of a finite set X and Y respectively. In 
our case, y is the type of a syntactic word boundary (i.e. LW, PW or PPh), and x could 
include any available information about that boundary.   

Our task is to construct a stochastic model that accurately represents the behavior 
of the random process. In other words, it should give a reliable estimation of p(ylx), 
which denotes the conditional probability that, given a context x, the process will 
output y.  

For this purpose, we observe the behavior of the random process for some time, 
collecting N samples (x1, y1), (x2, y2) . . . . . (xN, yN). To express these facts, a feature 
function or feature for short is defined as: 

   1
( , )

0

if y y and x x
i ifi x y

Otherwise

= =
=

  
 

The expected value of each feature fi with respect to the statistics of training 
samples could then be calculated as: 

( )
( ) ( , ) ( , )

,
p f p x y f x yi ix y

=  , (1) 

where ( , )p x y is the empirical probability distribution of the samples, defined by: 

1
( , )    ( , )    p x y number of times that x y occurs in the sample

N
≡ ×  . (2) 

On the other hand, the expected value of fi with respect to the unknown model 
p(ylx) is: 
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( ) ( ) ( )
( )

( ) | ,
,ip f p x p y x f x yi

x y
=  , 

(3) 

where ( )p x  is the empirical distribution of x in the training sample. We require the 

model to accord with the observed statistics by constraining this value to be the same 
as the expected value of f in the training set. That is, for each fi 

( ) ( )i ip f p f=  . (4) 

Requirement (4) is called a constraint equation or simply a constraint. 
Combining (1), (3) and (4) we have: 

( ) ( ) ( )
( )

( ) ( )
( )

| , , ,
, ,

p x p y x f x y p x y f x yi ix y x y
=  . (5) 

Suppose we have n features, then all the probability distribution that satisfy the 
constraints exerted by these features constitute a set C: 

( ){ }| | ( ) ( ) {1, 2, ..., }C p y x p f p f for i ni i≡ = ∈  . (6) 

Among all the models p in C, the maximum entropy philosophy dictates that we 
select the one with maximum conditional entropy [9]  

( ) ( ) ( ) ( )| log |
,

H p p x p y x p y x
x y

≡ −  , (7) 

and  

* arg max ( )
p C

p H p
∈

=  . (8) 

It is a constrained optimization problem to find p*. The target maximum entropy 
model has the following form[9]: 

1
* ( | ) exp( ( , ))

( )
p y x f x yi iiZ x

λ
λ

=  . (9) 

where Z (x)  is a normalizing constant and i is a Lagrange multiplier which is 
commonly computed from the training set using GIS algorithm. Detailed steps are 
omitted here. 

2.2   Feature Selection Strategy 

The principle of Maximum Entropy Model is to agree with all that is known and 
assume nothing about what is unknown. Yet it poses another important question: how 
to find appropriate facts that are most relevant to the task in hand? Put another way, 
how to select a limited number of features that represents the ‘known’ fully and 
accurately?  
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In the first place, as prosodic phrase lies above prosodic word in the prosodic 
hierarchy, it should exhibit some ‘higher-level’ features than the latter. Taking this 
into account, we built two distinct models by incorporating into them different 
features for prosodic word and prosodic phrase prediction respectively. 

Like Li [8], we used a semi-automatic approach for feature selection. First, feature 
‘templates’ are manually designed, which in effect defined the space of candidate 
features; then the most “useful” features are selected automatically using a simple 
count cut-off  method with a threshold of 3. 

The feature ‘templates’ are so devised as to capture as much information about the 
random process as possible. For our specific application, most commonly used 
features include POS (Part of Speech Tagging), WLen (length in syllables) and Word 
(the word itself) of the words surrounding the boundary, which have also proved to be 
the most important determinants of prosodic boundary types [10]. On account of this, 
we added them into too both templates, with a window length of 2 for POS, i.e. we 
considered the POS of 2 words immediately before and after the boundary in 
question, and a window length of 1 for WLen and Word. A point to note, though, is 
that ‘word’ has different meaning under the two scenarios. For prosodic word, it 
indicates syntactic word and is readily available from the input text. For prosodic 
phrase, which is built upon prosodic words rather than syntactic words, the meaning 
accordingly changes to prosodic word. Here ‘POS’ property of a prosodic word is 
acquired by simply concatenating POS’s of the syntactic words it contains (e.g. POS 
of ‘ /rr /ud’ is ‘rr ud’) 

Besides these widely used features, another category of features—‘dynamic 
feature’ were also introduced into the templates. The first is ‘lastType’, which denotes 
the last prosodic boundary type. The motive for adding this information came from 
the observation that current boundary type is influenced by that of last one, which 
applies to prosodic word as well as prosodic phrase boundary. For example, a 
‘lastType’ of PPh could well reduce the possibility that current boundary is still PPh.    

The second was specially proposed for prosodic phrase segmentation. We noted 
that, to a large extent, insertion of prosodic phrase boundaries in natural spoken 
language is to balance the length of the constituents in the output. Hence it is not 
surprising that most PPh breaks occur in the middle part of a long sentence, and a 
prosodic phrase is usually 5~7 syllables long, but rarely shorter than 3 or longer than 
9 syllables. For this reason, we took into consideration length measures by including 
‘dBack’ and ‘dFront’ in our templates for prosodic phrase prediction, which means 
the distance (in syllables) from current boundary to the last and next nearest PPh 
location.  

This category of features is by definition ‘dynamic’ in that they rely on the result 
of previous prediction, and remains unknown until judgment on preceding boundaries 
has been made. By contrast, the usual ‘static’ features are fixed and known all the way 
once the input is given. 

The feature templates contained both atomic and composed ones. Atomic tem- 
plates considered only one element mentioned above, while composed templates are 
combination of atomic ones. Table 1 lists all the atomic templates. 
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Table 1. Atomic Templates Used in Two Maximum Entropy Model 

 PW&PPh Prediction 1st Pass 
(Model 1) PPh Prediction 2nd&3rd Pass(Model 2) 

Symbol Meaning Symbol Meaning 
POS-2 
POS-1 
POS+1 
POS+2 

POS of the 1st/2nd 
syntactic word 
before/after the 

boundary 

POS-2 
POS-1 
POS+1 
POS+2 

POS of the 1st/2nd prosodic word 
before/after the boundary 

Word-1 
Word+1 

1st syntactic word 
itself before/after 

the boundary 

Word-1 
Word+1 

1st prosodic word itself 
before/after the boundary 

WLen-1 
WLen+1 

length of 1st  
syntactic word 
before/after the 

boundary 

WLen-1 
WLen+1 

length of 1st prosodic word 
before/after the boundary 

lastType 
boundary type after  last prosodic 

word (PW/PPh) 

Atomic 
Templates 

lastType 
boundary type after  
last syntactic word 

(LW/PW/PPh) dFront/ 

dBack 

distance from current position to 
last/next PPh boundary 

2.3   Multi-pass Prediction 

In both our experience and experiments, we found that it’s much easier to locate 
prosodic word boundaries accurately. It could be explained by the observation that 
distribution of this kind of boundaries largely depends on local syntactic constraints 
and exhibits more regular patterns that could be derived from low-level syntax 
analysis. On the other hand, prosodic phrasing is a compromise between the need to 
respect the syntax structure of the sentence and the prosodic constraints, which could 
hardly be decided in the normal one-pass classification solution. 

That’s why we came up with the idea of multi-pass prediction to determine 
prosodic phrase boundaries. The whole process is described in Figure 1. As 
mentioned earlier, 2 separate models were trained with different feature sets during 
the training stage. In testing, the 1st-pass prediction used Model 1 at every syntactic 
word boundary to decide its type: LW, PW, or PPh. At this time, our major concern 
was to differentiate between PW and LW boundaries, and merely those most 
‘credible’ PPh’s were labeled as PPh’s. That is, only when Model 1 decided that the 
probability of a boundary to be PPh is higher than a certain threshold (say threshold1), 
were we assured that it actually was PPh. Otherwise we still classified it as PW and 
left it to the next pass. It is worth to mention that though Model 1 was mainly targeted 
at PW prediction, it’s sensible and necessary to label out some PPh’s at the same time. 
For one thing, those PPh’s with a high degree of confidence are mostly where we 
‘have to break’ governed by syntax or grammatical constraints. For another, 
identifying these PPh positions also enabled us to acquire the ‘dBack’ feature in 
following predictions. 
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Fig. 1. Procedure of Multi-Pass Prediction 

The 2nd and 3rd pass only worked on PW boundaries labeled in the 1st pass. They 
both used Model 2 to decide whether a PW indeed was PW, or should be classified as 
PPh. The only difference with these two pass is that during the 2nd pass, we still didn’t 
take the result literally: only when the estimated probability of a boundary to be PPh 
was higher than threshold2, did we trust it to be an ‘authentic’ PPh. However, in the 
last pass, we accepted the model’s judgment unconditionally.  

We did this mainly because those PPh’s decided in the latter stage of our prediction 
chiefly correspond to those breaks that we ‘don’t have to make but could make’ out of  

 

A n n o t a t e d
C o r p u s 

M o d e l   1
  Ex t r a c t 

  F e a t ures
: 
  s y n t a c t i c   word

P O S , 
  W L e n,

W o r d , 
  l a s t T ype

M o d e l   2

Unannotated Text

E x t r a c t 
  F e a t u res

 
:

p r o s o d i c 
  w ord

P O S ,   W L en,
W o r d , , 

la s t Ty p e ,
d F r o n t , d B a ck

1st
 Pass

Tr ai n 

 Tr ai n 

Prediction=?

 

Label
 
LW

p>threshold1? 

Label
 
PPh Label

 
PW

Result of 1
st Pass

Prediction=?

Label PPh Label PW

p>threshold 2?

Result of 2
nd Pass

Prediction=?

 

Label PW

Final Annotati o n 

L a b e l   P P h 

LW

    PW

PPh

Non-PPh

PPh

P Ph 

N

Y 

N
Y 

               T r aining   S ta g e Testing Stage

Non-PPh

2nd
 Pass

3rd
 Pass



156 X. Zhang, J. Xu, and L. Cai 

prosodic constraints, and thus had better to be refined step by step to achieve the best 
balance in length. 

Another question unaddressed is the set of threshold1 and threshold2, which turned 
out to have a considerable influence on the final outcome. After repeated experiments, 
it was found that a value of 0.65 and 0.7 for threshold1 and threshold2 respectively 
achieved the best performance.  

3   Error-Driven Rule-Based Modification 

In our preliminary experiment using only Maximum Model for prediction, we found 
that there were always some obvious mistakes that humans would never commit as 
they obviously contradicted to some ‘fixed patterns’ we were accustomed to. It then 
occurred to us that these mistakes might be corrected with manually-made rules. 

3.1   Rules 

Every rule is a pair with the form of ‘predicate => action’. When and only when the 
pre-condition described by ‘predicate’ is satisfied, will a rule be activated, and then 
corresponding ‘action’ will be taken.  

For example, the fact that ‘A boundary succeeded by syntactic word “ ”or “
”must be a LW boundary’ could be written as the  following rule: 

-1    -1      WORD WORD Boudary LWor= = ←  

3.2   Basic Process 

The rule-based modification module was added at the back-end of the system to 
amend the prediction from Maximum Entropy Model. To evaluate whether adding a 
rule does improve the performance, the metric ‘F-Score’ (detailed later in 4.1) was 
used. A brief working process is shown in Figure 2.  

We compared the result of automatic annotation with manual annotation to detect 
errors made by the machine. By observing the statistics, a rule was derived to correct 
them. In most cases, errors first got rectified were those most amendable ones, i.e., 
errors which exhibited some evident patterns.  Every time a rule was worked out, it 
was tried out on the whole testing corpus to see whether the resulting new F-Score 
was notably higher than that of last time. If it didn’t, the rule was just ignored; 
otherwise it was adopted and applied. New errors might occur and this process 
repeated, until no rules could be manually found. 

The underlying idea of this module is a bit like that of TBL (Transformation-Based 
Error-Driven Learning) [11]: It starts from an initial state, and by use of a series of 
transformation rules, it modifies the result bit by bit to achieve the best score 
according to the objective function used. It’s only that in TBL, the transformations are 
learnt automatically (typically by greedy search algorithms); but in our solution, these 
rules are manually formulated to avoid the heavy computational cost. 

For now a total of 15 rules were added. 
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Fig. 2. Basic Process of Post-modification 

4   Experiment and Result 

4.1   Preparation 

Our raw corpus comprises 10000 sentences randomly selected from People’s Daily 
2000. Each sentence had been segmented into a sequence of syntactic words with 
POS tags according to “Specification for Corpus Processing at Peking University: 
Word Segmentation, POS Tagging and Phonetic Notation” (shortened as “Specifi- 
ation 2003”). On average, one sentence contains 45.24 syllables and 25.15 syntactic 
words.  

Then this corpus was prosodically annotated by two trained people, who were 
consistent on more than 90% of their annotation. Both prosodic words and prosodic 
phrase boundaries were marked out. The whole process was guided and supervised by 
an expert (Jianfen Cao of Chinese Academy of Social Sciences).  

Among the 10000 sentences, 4500 were used for training and 2000 were used for 
testing in all of the following experiments. The two sets did not overlap each other.  

4.2   Evaluation Criteria  

Since subjective tests are time-consuming and costly to perform, we adopted an 
objective point of reference.  

As mentioned earlier, there are altogether 3 prosodic boundary types between two 
syntactic words wi and wi+1: LW, PW and PPh. For simplicity in notation, we here refer to 
them as B0, B1 and B2 respectively. To evaluate the performance of our system, the 
prosodic boundaries automatically assigned to the testing set were compared to human-
annotation. In this way a confusion matrix was acquired, as shown in Table 2.  In the table, 
Cij denotes the number of boundaries manually labeled as Bi and predicted to be Bj. 
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Table 2. Confustion Maxtrix 

Predicted Type Manually  
Labeled Type B0 B1 B2 

B0 C00 C01 C02 
B1 C10 C11 C12 
B2 C20 C21 C22 

Our evaluation metric Precision and Recall were computed as:  
For prosodic word boundary prediction: 

2 2 2 2

ij ij
j=1 i=1 j=1 i=1

1 12 2 2 2

ij ij
j=0 i=1 i=0 j=1

C C
Precision = , Recall =

C C
 . (10) 

For prosodic phrase boudnary prediction: 

22 22
2 22 2

2 j i2
j=0 i=0

C C
Precision = , Recall =

C C
 . 

(11) 

Another measurement F-Score takes both into consideration: 

( 1, 2)
2 Precision Recall

- Score =
Precision + Recall

i i ii
i i

F =
× ×

 . (12) 

4.3   Effect of Adding Rules 

Figure 3 shows the test results for prosodic words segmentation when the number of 
rules gradually increased from 0 to 15. Since Maximum Entropy Model alone was 
able to achieve a relatively high accuracy with a large training corpus (4500 sentences 
in our case), the post-processing module doesn’t seem to be playing a significant part. 
Yet there is still notable rise in all three measures. When training material is of a 
small size and linguistic feature values are sparse, more remarkable improvement 
could be expected. 

0.91
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0.93
0.94
0.95
0.96
0.97

0 2 7 15

Precision

Recall
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Fig. 3. Prosodic Word Boundary Prediction Result When Adding Rules 
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4.4   General Performance 

Table 4 gives the testing result of our system, with threshold1=0.65 and threshold2= 
0.7 for multi-pass prediction. Best results of some other approaches adopted in 
previous experiments are also listed for comparison. 

Table 4. Best Test Result in Comparison with Other Methods 

Prosodic  Word Prosodic   Phrase  
 Precision Recall F-Score Precision Recall F-Score 

C4.5 [7] 0.814 0.822 0.818 0.712 0.829 0.766
TBL [7] 0.782 0.848 0.814 0.853 0.613 0.713

ME Model[8] N/A N/A N/A N/A N/A 0.652
Our Approach 0.936 0.963 0.949 0.798 0.784 0.791 

Due to difference in the corpora and evaluation metric, these results may not be 
comparable in all respects. Yet from the statistics above, we could safely say that our 
approach is a successful attempt towards prosodic boudary prediction. 

5   Conclusions  

In this paper, we addressed the problem of prosodic boudary prediction based on 
syntactic information. The Maximum Entropy Model was utilized with two separate 
instantiation for prosodic word and prosodic phrase segmentation. Our feature 
selection strategy was distinctive in that it not only drew on generally 'static' syntactic 
context, but also considered the interplay among successive boundary positions by 
incorporating 'dynamic' features into the model. It gave a satisfying performance 
especially for prosodic word prediction. For prosodic phrase prediction, even though 
lack of high-level syntactic and semantic information impeded its accurate prediction, 
a multi-pass procedure served to strike a better prosodic balance. Besides, the 
combination of machine learning power and human wisdom through error-driven 
ruled-based modification further enhanced its performance. 

Future work should focus on extraction of ‘deeper’ contextual information such as 
sense group and semantic chunk to aid the perception of prosodic phrase boundaries. 
Moreover, the inherent uncertainty in prosody structure in natural language may 
require a more flexible approach to its prediction, possibly by using a minimum error-
rate criterion (MERC) [12] in place of the traditional maximum correct-rate criterion 
currently adopted by us.  
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Abstract. Predicting prosodic words boundaries will directly influence the 
naturalness of synthetic speech, because prosodic word is at the lowest level of 
prosody hierarchy. In this paper, a Chinese prosodic phrasing method based on 
CRF and TBL model is proposed. First a CRF model is trained to predict the 
prosodic words boundaries from lexicon words. After that we apply a TBL 
based error driven learning approach to refine the results. The experiments 
shows that this joint method performs much better than HMM. 

Keywords: prosodic words, lexicon words, CRF, TBL. 

1   Introduction 

In Chinese spoken language, the prosodic structure of an utterance can be viewed as 
three levels: prosodic word, prosodic phrase and intonation phrase[1]. The prosodic 
word (P-word) is defined as a group of syllables that are uttered closely and 
continuously in speech[2]. No boundary should be perceived within a prosodic word. 
That is to say, prosodic word is the basic prosodic structure in spoken Chinese. And in 
speech synthesis, experiments show the TTS system using the prosodic words as the 
basic prosodic units can get high naturalness than using lexicon words (L-word)[3]. 
Because the prosodic words influence the rhythm of synthetic utterances very much, it 
is of much importance to predict prosodic words from the input text. 

Although lexicon words segmentation technology has become mature in Chinese 
language processing, it is still a difficult work on prediction prosodic words from 
unrestricted text. In all of previous work, Hidden Markov Model (HMM) based 
methods are adopted in many TTS systems because of the elegant methodology. Al- 
though most of them have taken full use of the feature information, the segmentation 
results are not good enough. The reason lies in the structure of HMM[4]. HMM is a 
probabilistic model of the way in which the data and labels are generated. This model 
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has some drawbacks. Firstly the structure of HMM is often a poor model of the true 
process to produce data. Because of its first-order Markov property, any relationship 
between two labels must communicates via the intervening status, which cannot in 
general capture the relationships. Secondly is HMM generates each datum only from 
the corresponding status, which makes it difficult to utilize an input sliding window. 

In this paper we proposed a prosodic words prediction method based on 
Conditional Random Field(CRF)[5] and Transformation Based Learning(TBL)[6,7] 
joint model. Firstly a CRF model is trained to predict the prosodic words boundaries 
from lexicon words. After that we apply a TBL based error driven learning approach 
to refine the results. The experiments shows that this joint method performs much 
better than HMM. In our project we apply this model on both prosodic words 
grouping and splitting. 

This paper is organized as follows. Section 2 gives an introduction to the prosodic 
words. Section 3 describes our CRF model based method to predict prosodic words. 
Section 4 gives the description of the TBL method to refine the CRF predicting 
results. Experiments results will be presented in section 5. Finally we conclude our 
paper. 

2   Prosodic Words 

2.1   Prosodic Words and Lexicon Words 

In Chinese, the hierarchy of prosody is not identical to that of syntax. The prosodic 
word is defined as a group of syllables that are uttered closely and continuously. 
While lexicon words is according to a lexicon. For example,  in a Chinese sentence “

(His hat is too large)” can be segmented to lexicon words “ / /
/ / / ”. But in spoken speech the utterance should be segmented to prosodic 

words “ / / ”.  It can be seen that there is not a direct mapping between 
lexicon words and prosodic words. Statistical results show that only about half of 
lexicon words are prosodic words as well.  

The prosodic words cannot be directly stored in a lexicon, because they will 
change greatly in different context. Therefore we cannot simply lookup in a lexicon to 
segment a sentence into prosodic words. 

Studies show that most P-words consist of two characters, and very few P-words 
consist of 3 characters or above. This is due to the bi-character rhythm demand to 
build the prosodic foots in the phonology. Because of this reason, some one-character 
lexicon words should be grouped into one P-word, and long L-word is tended to be 
split into several P-words. 

Our research is based on a corpus with 13000 sentences. For each sentence the 
prosodic words boundaries are manually labeled. The statistical results show that 
there are about 110,000 lexicon words total, and 81,000 prosodic words. Figure 1 
illustrates the length distribution of P-words and L-words in this corpus. From this 
figure we can find that most P-words have 2 Chinese characters. 
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Fig. 1. Length distribution of P-words and L-words in the corpus 

2.2   Prosodic Words Labeling 

In order to predict prosodic words from lexicon words automatically, the training 
corpus should be labeled manually by a set of guidelines[2]. The labels include 
lexicon words boundaries, the POS(part of speech) of each lexicon words, and the 
prosodic words boundaries. To get high consistent labeling, only one annotator is 
asked to do this labeling work in our experiments.  

We take the Chinese sentence “ ” for example: 

(1)  
(2) /p  /r  /a  /u  /n  /f  /r  /v  /n  /w 
(3) | | | | |  
(4) /p  /r | /a  /u | /n  /f | /r | /v | /n  /w 

where (1) is the original text. After POS tagging (2) is gotten, in which ‘/’ means the 
boundaries and the symbols followed by ‘/’ is the POS tag. (3) is labeled with the 
prosodic words, in which ‘|’ means the prosodic words boundaries. For better usage of 
the boundaries and POS tag, (2) and (3) are combined to (4). 

All the 13000 sentences in our corpus are labeled like this. 

3   CRF Based Method to Predict Prosodic Words 

HMM is an elegant and easy methodology that is adopted in many TTS system. It is a 
probabilistic model in which data and status are generated. However it suffer from 
some drawbacks. Firstly the structure of HMM is often a poor model of the true 
process to produce data. Because of its first-order Markov property, any relationship 
between two labels must communicates via the intervening status, which cannot in 
general capture the relationships. Secondly is HMM generates each datum only from 
the corresponding status, which makes it difficult to utilize an input sliding window. 
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Maximum Entropy Markov Models (MEMM)[8] attempt to maximize the 
conditional likelihood of data via a maximum entropy method. Although this model 
supports long-distance interactions, unfortunately it suffer from a label bias problem. 

3.1   Introduction to CRF model 

Conditional Random Fields are introduced to overcome these problems. CRFs are 
undirected graphical models that encode a conditional probability distribution with a 
given set of features. In the special case in which the designated output nodes of the 
graphical model are linked by edges in a linear chain, CRFs make a first-order 
Markov independence assumption among output nodes.  Fig.2 shows the graphical 
structure of a chain-structured CRFs. 

For sequential data TxxX ...1=  and their corresponding labels (status) 

TyyY ...1= , a linear chain structure CRF defines the conditional probability as 
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where Zx is the per-input normalization that makes the probability of all state 
sequences sum to one; ),,,( 1 txyyf ttk −  is a feature function which is often binary-

valued, but can be real-valued, and kλ  is a learnt weight associated with feature kf . 

The feature functions can measure any aspect of a state transition y and the entire 
observation sequence x centered at the current time step t. Large positive values for 

kλ  indicate a preference for such an event; large negative values make the event 

unlikely. 
The model parameters kf  can be estimated by maximum likelihood—maximizing 

the conditional probability of a set of label sequences, each given their corresponding 
input sequences. The log-likelihood of the training set is 
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Traditional maximum entropy learning algorithms, such as GIS and IIS[9] can be 
used to train CRFs. 

 

Fig. 2. Graphical structure of a chain-structured CRFs for sequences 
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For the given observation sequential data, the most probable label sequence can be 
determined by 

)|(maxarg* XYPy
y

Λ=  (3) 

which can be efficiently determined using the Viterbi algorithm[10]. An N-best list of 
labeling sequences can also be obtained using modified Viterbi algorithm and A* 
search[11]. 

3.2   CRF for Prosodic Words Prediction 

For automatically processing the labels by computers, the manually labeled data 
should be formatted as follows: 

The sentence “ /p  /r | /a  /u | /n  /f | /r | /v | /n  /w “ 
is formatted to “ /p/B /r/E /a/B /u/E /n/B /f/E /r/S /v/S 
/n/S /w/W”, in which ‘/B’ represents this lexicon is at the beginning of a prosodic 
word, ‘/E’ means this lexicon word is at the end of a prosodic word,  and ‘/I’ means it 
is at the intermediate part. 

After the labeling we can find that prosodic words prediction is a typical tagging 

problem which can be described as: given the observation sequence TxxX ...1= , 

determine the corresponding labels NyyyY ...21= . This can be solved directly by 

CRF. 
To utilize the flexibility of CRF and considering the prosodic words prediction 

problem, we use the features in table 1. 
In addition, the word length of the current prosodic words is used as the feature. 

For the lexicon word “ /a” in the last example, the feature for length of the 
prosodic words is f(PW-3B) = 1, which means this lexicon is at the beginning of a 3-
characters-long  prosodic words.  Because most  prosodic words have 2 or 3 Chinese 
characters, this type of feature is very import. 

Table 1. Features used in CRF modeling 

Features Explanations 

LW-2 second previous lexicon word 

LW-1 previous lexicon word 

LW0 current lexicon word 

LW1 next lexicon word 

LW2 second next lexicon word 

LW0LW1 Current lexicon word and next lexicon word 

LW-1LW0 previous lexicon word and current lexicon word 

LW-2LW-1 second previous lexicon word and previous lexicon word 

LW-1LW0LW1 previous lexicon word, current lexicon word and next 
lexicon word 
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4   Refining the Result with TBL 

Although we use a very large corpus to train the CRF model, the sparseness problem 
still occurs because of the statistical method. For this reason we try to make use of 
TBL[6,7] to refine the prediction results. 

TBL is an algorithm that can automatically get rules from a set of templates. 
Comparison with statistical methods like CRF, TBL is not so sensitive to the data 
sparseness. 

Fig. 3 illustrates how to select rules with TBL. Before learning stage, the program 
compares the initial labels and the mannul labels results sentence by sentence. If they 
are totally the same the sentence will be skipped, otherwise, a candidate rule is 
generated from a template. 

In the learning stage, the evaluation process will apply each rule in the candidate 
rules set. A score is given according to the number of errors that the rule can amend. 
The rule with the highest score is recorded, and the amended results by it will be 
saved as the initial status of next loop. This evaluation-application loop runs until no 
more errors can be corrected. 

For our application, the configuration is as follows: 

(1) initial labels: results from CRF prediction 
(2) rule templates: templates should be designed to consider the prosodic words 
problem. In our application, the templates are very like the features used in CRF 
model: 
If ( LW-1:POS=P1 & LW-1: POS=P2 & LW-1:LENGTH=L) then PTAG1 
=>PTAG2 
which means, if the POS of previous lexicon word is P1 and POS of current 
lexicon word is P2 and length of previous lexicon word is L, then the tag PTAG1 is 
corrected to PTAG2. PTAG is in the set {B, I, E, S, W}. 
(3) evaluation: a score is given according to the number of errors that the rule can 
amend. A rule with the highest score is selected. A threshold should be set that 
only when the score is more than the threshold the rule could be recorded. 
In our experiment,  

 

Fig. 3. TBL learning process 
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5   Experiments 

For the Chinese prosody research, we collected and designed a large phonetically and 
prosodic enriched text corpus from different domains. In this large corpus there are 
about 13000 text sentences, which are labeled carefully by a well-trained researcher. 
We select 10000 sentences to train our model and the rest of them are for test. We 
also adopt HMM model based method for comparison. 

In the training set, there are 120121 lexicon words and 90312 prosodic words.  The 
longest lexicon word has 11 Chinese characters, and the longest prosodic word has 4 
Chinese characters. 

In our experiments, after training, we test on both training set and the test set. 
There are 2 evaluation criteria: precision and recall rate, which are defined as follows. 

%100
2

1 ×=
N

N
F pre  (4) 

%100
3

1 ×=
N

N
Frec  (5) 

Where 1N  is the number of prosodic word boundaries predicted correctly, 2N  is the 

total number of prosodic word boundaries predicted, and 3N  is the total number of 

real prosodic word boundaries in the test set. 

Table 2. Statistical results of the experiments 

10000 sentences 
close set 

3000 sentences 
open set                     results 

models 
precision recall rate precision recall rate 

No Model 59.07% 96.71% 59.65% 96.54% 

CRF 90.52% 95.72% 90.12% 92.29% 
CRF 

CRF + TBL 95.87% 95.90% 93.22% 94.44% 

HMM HMM 83.90% 94.77% 84.33% 94.52% 

Table 2 illustrates our experimental results, in which “no model” method means 
the lexicon words boundaries is labeled as prosodic words boundaries directly. 
Apparently this method will get highest recall-rate and lowest precision.  

From this table we can draw a conclusion that CRF model based method get high 
precision than HMM model based method, both in close set (training set) and open set 
(test set). And after applying TBL refinement, the precision and recall-rate increase 
more. 

And we can also find that the precision and recall-rate don’t decrease much in the 
open set test. This indicates that the our method is robust and generalized. 
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6   Conclusion 

In this paper, a Chinese prosodic phrasing method based on CRF and TBL model is 
proposed. First a CRF model is trained to predict the prosodic words boundaries from 
lexicon words. After that we apply a TBL based approach to refine the results. The 
experimental results show that this joint method performs much better than HMM.  
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Abstract. As the basic prosodic unit, the prosodic word influences the
naturalness and the intelligibility greatly. Although the research shows
that the lexicon word are greatly different from the prosodic word, the
lexicon word still provides the important cues for the prosodic word form-
ing. The rhythm constraint is another important factor for the prosodic
word prediction. Some lexicon word length patterns trend to be com-
bined together. Based on the mapping relationship and the difference
between the lexicon words and the prosodic words, the process of the
prosodic word prediction is divided into two parts, grouping the lexicon
word to the prosodic word and splitting the lexicon word into prosodic
words. This paper proposes a maximum entropy method to model these
two parts, respectively. The experiment results show that this maximum
entropy model is competent for the prosodic word prediction task. In
the word grouping model, a feature selection algorithm is used to in-
duce more efficient features for the model, which not only decrease the
feature number greatly, but also improve the model performance at the
same time. And, the splitting model can correctly detect the prosodic
word boundary in the lexicon word. The f-score of the prosodic word
boundary prediction reaches 95.55%.

1 Introduction

The prosodic word is the basic unit of the prosodic structure, which greatly
influence the naturalness of the TTS system. Not every lexicon word can be di-
rectly read as a prosodic word in the utterance. They are very different between
each other. The perception experiment[1] shows that the TTS system using the
prosodic word as the basic unit has much higher intelligibility and naturalness
than using the lexicon word directly. At the same time, the prosodic words can
not be stored in the lexicon as a lexicon word, since the prosodic words have not
a certain linguistic property and the prosodic words will change greatly in the
different contexts. Therefore, prosodic word detection from the text became a
necessary step in the prosodic analysis module of the TTS system. In previous
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research works, many methods were introduced to predict the prosodic word. [1]
use a statistical rule based method and a CART based method, which mainly
use the part-of-speech(POS) and word length feature. Although the syntax fea-
ture is useful to improve the precision and recall, the parsing will cost much
more time[1]. [2] use the word POS and length information as the features, and
introduce a dynamic programming method to predict the prosodic words. [3] use
extended features to predict the prosodic word with a CART method. The ex-
tended features include totally three kinds of features: the POS feature, the base
phrase, and the syntactic feature. All these methods use the lexical information
as an important feature to predict the prosodic word. In these works it is shown
that the lexicon word is deeply relative to the prosodic word.

In this paper, we study the relationship between the lexicon word and the
prosodic word, and try to find the cues to detect the prosodic word from the
lexical information. Based on the analysis, the process of prosodic word predic-
tion is divided into two parts: grouping the lexicon words to the prosodic word
and splitting the lexicon word into the prosodic words. And, a maximum en-
tropy approach is introduced to model these two processes. A feature selection
method based on the likelihood gain is used to induce more efficient features.
The layout of this paper is as the follows: the problem analysis for the prosodic
word is presented in section 2. The maximum entropy model for the prosodic
word prediction is presented in section 3. Section 4 details the experiments and
result analysis. At the end, section 5 gives our conclusions.

2 Problem Statement

For the mandarin prosody research, we designed and collected a large phoneti-
cally and prosodically enriched Mandarin speech corpus, of which the prosody
structure is labelled by a well-trained person. 6000 utterances between 7 and
25 syllables are included in this study. Among this corpus, 4000 sentences are
used for analysis or training, 1000 sentences for developing and the rest 1000
sentences for testing.

In the analysis corpus, it is discovered there are only about 50% lexicon words
to be the prosodic word directly. There is not a one-to-one mapping relationship
between the lexicon word(L-word) and the prosodic word(P-word). Figure 1 gives
the length distribution of the P-words and the L-words in the analysis corpus.
It is shown that the P-word is more likely to be two syllable long and very few
P-words will have more than 3 syllables. There are much more mono-syllable L-
words than the mono-syllable P-words. This accounts for why the mono-syllable
L-words trend to bundle together into a P-word in the corpus. It is due to
the bi-character rhythm demand of building the prosodic word. It is consistent
with the phonetics theory [4][5]. On the other hand, the L-word longer than 3 is
always split into several shorter P-words, which are two syllables long. Therefore,
there are much difference between the L-word and the P-word. On the other
hand, the difference can also provide some useful cues for predicting the P-word
from the L-word. Actually, based on the process forming the P-words from the



Prosodic Word Prediction Using a Maximum Entropy Approach 171

Fig. 1. The length distribution of P-word and L-word

L-words, the P-words can be divided into two classes: the P-words by grouping
the L-words and the P-words by splitting the L-word.

2.1 Grouping the L-Words into the P-Word

In the analysis corpus, about 98% P-words are formed by one or more L-words.
Figure 2 gives the distribution of the number of L-words to combine together into
one P-word. It is shown that most of P-words are from one or two L-words. Figure
3 gives the percentage of each word-length group to form a P-word from two
adjacent L-words, where we call the word-length group as the rhythm pattern.

For example, in the sentence, “� �� �� �� � ��� ��”, the P-
word “��” is formed by two mono-syllable L-words of “�” and “�”, which is
a “1+1” rhythm pattern. And the P-word “���” is composed of a bi-syllable
L-word and a mono-syllable L-word, which is a “2+1” rhythm pattern. Figure 3
shows that the “1+1” type P-word occupies 43% in the all two L-words grouping.
And, when the bi-syllable L-words are adjacent to mono-character L-words, it
is also more likely to be assembled. It can be seen that the mono-syllable L-
words are the most important candidate to be assembled with others to build
the P-words. Almost all P-words formed by grouping include a mono-syllable
L-word. We name the constraint of the rhythm pattern demands as the rhythm
constraint.

Besides the rhythm constraint, the lexical information is another important
cue for grouping the L-words to the L-word, the auxiliary word “�” are more
likely attached to the previous word to form a prosodic word. Some other aux-
iliary words, such as “�”, “�”, “�”, also have this characteristic. Here, the
lexical information is mainly represent by the word and part-of-speech.

2.2 Splitting the L-Word into the P-Words

On the other hand, the L-word with more than 3 syllables, are usually divided
into several shorter P-words.
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Fig. 2. Distribution of the number of
L-words to form a P-word by grouping

Fig. 3. The percentage of each group-
ing type of P-words by grouping two
L-words

For example, in the sentence “� �� �� �� �� � ��� �� ��
��� �� ��”, the lexicon words of “����”, “����”, are all split
into two bi-syllable P-words in the utterance.

The rhythm constraint still plays an important role. From the corpus, the even
position in the L-word is the most likely to be split as a P-word boundary. Table
1 gives the occurrence frequency of the splitting position, where w-4 means the
L-word with 4 syllables, and w-5 is 5 syllable long, and so on. We can see that
in table 1 the separation is more likely to appear at the even position, especially
at the second syllable of the word. The position of the character is the main cue
for the P-word forming.

Table 1. The splitting position in the long words

1 2 3 4 5 6

w-4 8 794 5 – – –

w-5 2 27 12 2 – –

w-6 1 3 13 3 0 –

w-7 0 8 7 4 2 0

2.3 Prosodic Word Prediction from the Lexicon Word

From the analysis in this section, we can divide the process of the P-word predic-
tion into two parts, part 1: combining the L-words into a P-word, which is called
as the word grouping model; part 2: separating some L-word into the P-words,
which is named the word splitting model. In the word grouping model, the model
will check every L-word boundary and decide whether it is a P-word boundary.
In the word splitting model, the model will only check the L-word longer than
3 syllables, and decide whether the character boundary in this L-word is the
prosodic word boundary. These two tasks can be all considered as the binary
classification problem. In this paper, we use the maximum entropy model as the
solution to model the word grouping and the word splitting process, respectively.
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3 Maximum Entropy Based Prosodic Word Prediction

3.1 Maximum Entropy Model and Feature Selection

The maximum entropy(ME) approach had been introduced to many tasks of
Natural Language Processing[6], and had achieved a good performance for some
problems, like Chinese word segmentation[7], and statistic machine translation[8].
The ME model is good at the classification problem.

p(y|x) =
1

Zλ(x)
exp(

∑
i

λifi(x, y)) (1)

Zλ(x) =
∑

y

exp(
∑

i

λifi(x, y)) (2)

Formula 1 and formula 2 gives the computation formula for the probability
model described by the ME approach. In these formulas, x is the context that can
be observed, and y is the class to be predicted. p(y|x) represents the conditional
probability of the class y given the context of x. As the formula 3 shown, the
class with the maximum conditional probability given the context or observation
will be the prediction result.

y∗ = arg max
y

p(y|x) (3)

Where, fi(x, y) is the feature function, and λi is the weight parameter for this
feature. There are several parameter estimating methods for the λi, such as Gen-
eralized Iterative Scaling(GIS) [9], Improved Iterative Scaling(IIS) [6], L-BFGS.
In this paper, we use the GIS method for the parameter estimation. One of the
ME method’s advantages is that the model can directly use many different fea-
tures and doesn’t need to assume the independence between them. Any feature
related to this problem can be added to the model. This will lead to so many
features to the ME model. Sometimes, the feature number can reaches several
million. However, of all the features, many features are not useful for the model
at all. On the other hand, some features are more important in the model. So,
selecting a suitable feature set from millions of features become an important
work for the ME model. There are two methods of feature selection for the ME
model: cutoff based feature selection and the likelihood gain based feature selec-
tion. Cutoff method is to remove the features occurring less times[10]. And the
likelihood gain based method is to select the feature with maximum contribu-
tion to the likelihood of the ME model every time[11]. These two methods are
all used in this paper.

3.2 ME Based Word Grouping Model

The word grouping model is used to decide whether the lexicon word boundary
should be the prosodic word boundary. It’s a binary classification problem, where
‘1’ means that this L-word boundary is a P-word boundary, and ‘0’ means that
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it is not a P-word boundary, or, the two L-words beside this point should be
combine together in a P-word. Table 2 gives the feature template for the word
grouping model. According to the analysis in section 2, three classes of features
are used in the feature template. Class 1 is about the word feature1; class 2
concerns the POS feature; class 3 is about the word length, which represents the
rhythm information. And the other combined features are also included, like the
combination of the POS and word length.

In the word grouping model, the cutoff based feature selection is firstly used.
We set the cutoff at 10, which will remove the features occurring less than 10
times in the training set. After cutoff, the feature inducing method in [11] is
used to select the efficient features for the word grouping model, which select
the feature with maximum log-likelihood gain of the training set every time.
The developing set is used to avoid the overtraining in the training set. By this
feature inducing method, a final feature set is selected. The next section will
give the process of feature selection.

Table 2. The feature template for the word grouping model

word(w) POS tag(t) word length(l)

w−2,w−1,w0,w1,w2, t−2,t−1,t0,t1,t2, l−2,l−1,l0,l1,l2,
(w−1,w0), (w0,w1), (t−1,t0), (t0,t1), (l−1,l0), (l0,l1),

(w0,t1), (t0,w1) (t0,t1) (l1,l2) (t−1,l−1),
(t0,l0),(t1,l1),
(t0,l0,t1,l1)

3.3 ME Based Word Splitting Model

The prosodic foot structure in the lexicon word can be added to the lexicon, like
in [1], which can provide the prosodic word information in the L-word. But it
needs much work of labelling the lexicon. And, the out-of-vocabulary(OOV) will
lead to a new problem. The lexicon will not include the OOV’s prosodic word
information. So, building a word splitting model becomes necessary.

The splitting model is used to check every character in the long word, and de-
cide whether it is split as a P-word boundary at this character boundary, where
‘0’ means that this character boundary is not a P-word boundary and ‘1’ means
that it is a P-word boundary or this L-word will be split at this point. This is also
a binary classification problem. The splitting model is used, only when the lexicon
word is longer than 3. According to the analysis in section 2, we select the feature
template shown as table 3. The template includes two kinds of features. One is

1 In the feature templates, the subscript denotes the position of the word. For example,
w0 denotes the current word, and w−n or wn denotes the word n position to the left
or right of the current word. This subscript is also used to denote the POS tag, the
word length and the character’s position in the word splitting model. In the splitting
model, the subscript denotes the position of the character in the word.
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about the character information. It is important, because the characters in a lex-
icon word can form some little sub-words, which may be a P-word, too. Where,
T(c0c1) denotes whether the character group of c0 and c1 is a lexicon word. When
c0c1 is a lexicon, T(c0c1) equals to ‘1’. Otherwise, T(c0c1) equals to ‘0’. We judge it
by looking up a lexicon. Another kind of feature is about the position information,
where the p0 means the position of the current character, dist e is the distance
from the current character to the end of the word. And, the features combining
the character and the position information are also used, like (c0,p0).

In the corpus, only when the lexicon word is longer than 3, called as ‘the
long word’, will it be split. There are only 742 long words in the training set,
114 long words in the developing set. and 150 long words in the testing set. 114
words seems not enough data for the developing set. So, we only use the cutoff
method to select the features, and did not use the feature inducing. Here, we
set the cutoff value as 5. In order to avoid the training data sparse, the training
set(4000 sentences) and developing set(1000 sentences) are used together for
training in this splitting model. And the parameter estimation is made using the
GIS method[9].

Table 3. The feature template for word splitting model

character(c) position(p)

c−1, c0, c1, p0, dist e, (p0,dist e),
(c−1,c0), (c0,c1), (c1,c2) (c0,p0), (c−1,c0,p0),

T(c0c1), T(c1c2) (c0,c1,p0), (c1,c2,p0)

4 Experiments and Analysis

Firstly, the feature inducing is made for the word grouping model. The figure 4
gives the change in the log-likelihood of the training set and the developing set
during the feature inducing. When inducing the features, the feature with the
maximum log-likelihood gain on the training set is selected each time[6]. The
blue line with ‘*’ is the result on the training set. And the red line with ‘o’ is
the result on the developing set. With the features being added, the likelihood
for the training set keeps increasing all the time. However, the likelihood gain
of the developing set begins to stop at about 1250th feature. It’s to say the
overtraining begins at this time. Therefore, we choose the top 1250 features
as the feature set and estimate the parameter for each feature using the GIS
algorithm. There are totally 5637 feature candidates. The size of the induced
feature set is not up to the 1/4 of all the feature candidates. With this feature
set, the testing result on the testing set is given in table 5, where we abbreviate
the word grouping model to WG. The precision and recall2 reaches 93.67% and
97.51%, respectively. And, it is worth mentioning that the precision and recall
2 The precision and the recall in the prediction of the word grouping and the word

splitting model is computed based on the prosodic word boundary.
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is 93.36% and 97.02% when using all the candidate features as the feature set.
While the feature set is reduced, the model’s performance is even improved. It’s
to say, this feature inducing method is efficient in both reducing the size and
improving the performance of the model.
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Fig. 4. The change in log-likelihood with the feature selection

Table 4 gives the top 10 features of the induced feature set for the word
grouping model. Where, the weight λ with the positive value means that this
feature support this class y and the negative feature disprove the this class result.
And, the value of λ represents the degree. For example, the weight of the first
feature is 1.0077. It means that when the following L-word is a two-syllable L-
word, the current L-word boundary is 2.7394 (= e1.0077) times more likely to
be a P-word boundary than when the following L-word is not a two-syllable
L-word. In this feature set, the first two features mean that the bi-syllable word
is hard to be combined with its previous word. The third feature is to say the
auxiliary word with the one-syllable length is hard to be separated from the
previous word. According to our experience, it is right, because the auxiliary
words, like ‘�’, ‘�’, ‘�’, are always attached to the previous word to form one
prosodic word. The 4th feature is that when the current L-word is two syllable
long, it is also hard to be combined with the next L-word. However, the value
of the feature is not high, which account for a part of the bi-syllable L-word can
be attached with other L-words, such as the word ‘�’. The 5th feature is to say
that the last name and the first name of the Chinese name with three syllables
are always combined together as a P-word. All the features are reasonable.

Table 5 also gives the results for the word splitting(WS) part respectively,
which only use a cutoff of 5 to select the features. And the f-score of the splitting
model reaches 96.67%. We combined the word grouping and word splitting(WG
& WS) together to get the final result of the P-word prediction. The f-score of
the whole model reaches 95.55%. The baseline is to use the lexicon word directly
as the prosodic word. The results by the ME model has reached or outperformed
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Table 4. The top 10 features in the word grouping model

No. Feature f λ

1 l1=2 → 1 1.0077

2 l1=2 → 0 -1.2633

3 t1=u and l1=1 → 1 -2.8447

4 l0=2 → 0 -0.5781

5 t0=nr and l0=1 and t1=nr and l1=2 → 0 2.6563

6 w0=�→ 0 -3.4568

7 l1=3 → 0 -2.6890

8 t1=b and l1=1 → 1 -2.4421

9 t1=q and l1=1 → 1 -2.0262

10 l1=4 → 0 -3.1836

Table 5. The test results

precision(%) recall(%) f-score(%)

Word grouping(WG) 93.63 97.51 �95.53

Word splitting(WS) 96.67 96.67 �96.67

WG & WS 93.69 97.49 �95.55

Basline 72.88 98.04 �83.61

the state of the art reported in [1] and [3]. The ME approach is competent for
the P-word predicting task.

5 Conclusions

In this paper, we study the difference between the P-word and the L-word, and
propose a P-word prediction approach through grouping and splitting the L-
word. Besides the lexical information, the research discovers that the rhythm
pattern plays an important role to constrain the prosodic word, which trends
to be two syllables long. And the mono-syllable word is easy to be attached to
the previous word. The ME approach is introduced to model the word grouping
and the word splitting in the P-word prediction. In the ME framework, many
different features can be used regardless of the features’ dependence. By using
the likelihood based feature inducing, the useful features are selected, which
decrease the model size while keeping the performance. It is shown that much
more efficient features are selected firstly by this feature inducing algorithm. The
experiments show that the ME model is competent for the P-word prediction.
The f-score of the prosodic word prediction reaches 95.55%.

It must be mentioned that the ME model assumes that the P-words are in-
dependent between each other in the sentence, and each P-word is decided by
itself. Actually, the interaction between the P-words exists. In the future work,
we will focus on how to model the dependence between the P-word boundaries.
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Abstract. In order to improve unlimited TTS, a framework to organize the 
multiple perceived units into discourse is proposed in [1]. To make an unlimited 
TTS system, we must transform the original text to the text with corresponding 
boundary breaks. So we describe how we predicate prosody from Text in this 
paper. We use the corpora with boundary breaks which follow the prosody 
framework. Then we use the lexical and syntactic information to predict 
prosody from text. The result shows that the weighted precision in our model is 
better than some speakers. We have shown our model can predict a reasonable 
prosody form text. 

1   Introduction 

In order to improve the prosody of unlimited TTS, a framework to organize the 
multiple perceived units into discourse is proposed in [1]. Some preceding study 
regards fluent speech as a succession of independent sentences. If we only apply 
succession of discreet and often declination intonations to unlimited Mandarin 
Chinese TTS (text-to-speech synthesis), the unlimited TTS can not produce 
satisfactory fluent speech prosody. However in our framework, these units are not 
equal for perception. Some perceived units are grouped by a higher-level unit. The 
higher-level unit governs and constrains the lower-level units. Lower-level units in 
different position presented different acoustic patterns rather than being regarded as 
the same prosodic unit. In other word, this is a hierarchical framework. As Figure 1 
illustrated, these units located inside different levels of boundary breaks across speech 
flow. The boundaries are annotated using a labeling system that annotated small to 
large boundaries with a set of five break indices. i.e., B1-B5. The framework can also 
be viewed as a tree-branching organization of multi-phrase prosody.  

From bottom up, the layered nodes are syllables (SYL), prosodic words (PW), 
prosodic phrases (PPh) or utterances, breath group (BG) and prosodic phrase groups 
(PG). These constituents are, respectively, associated with break indices B1-B5.  

B1 denotes syllable boundary at the SYL layer where usually no perceived pauses 
exist. B2 is a perceived minor break at the PW layer. B3 is a perceived major break at 
the PPhs layer. B4 denotes a boundary break when the speaker is out of breath and 
takes a full breath and breaks at the BG layer. B5 is when a perceived trailing-to-a-
final-end occurs and the longest break follows. Table 1 shows the definition of all  
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Fig. 1. A schematic representation of the prosody framework 

Table 1. Index of Break Hierarchy and Transcription Consistency 

 

breaks and the characteristics of those. When acoustic parameters of unlimited TTS 
are strung into speech flow, they must adjust and modify to derive satisfactory fluent 
speech prosody. How acoustic parameters adjust and modify is according to which 
level of boundary breaks they located inside. To make an unlimited TTS system, we 
must transform the original text to the text with corresponding boundary breaks. So 
we describe how we predicate prosody from Text in this paper. 

To predict prosody from text we need the corpora with boundary breaks. We 
describe the corpora we used in more detail in Section 2. The prosody production 
models are described in the section 3. The section 4 shows experimental results. 

2   Materials Used--Text vs. Speech Corpora 

COSPRO 01 and 05 speech data from Sinica COSPRO Database [2] were used. 
COSPRO 01 contains 599 paragraphs (24803 syllables in total) ranging from 2-
character simple sentences up to 181-character complex sentences. COSPRO 05 
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consisted of readings of 26 paragraphs (11592 syllables in total) of text ranging from 
85 to 981 characters per paragraph rearranged from the COSPRO 01 for frequency 
and phonetic controls. The two sets of text overlapped 88%. Four native untrained 
speakers (2 males M01, M02 and 2 females F01, F02) read the COSPRO 01 at the 
average speech rate of 304 ms/syllable in COSPRO 01. Another two radio announcers 
(1 male and 1 female) read the 26 longer paragraphs at the average speaking rate of 
200 ms/syllable in COSPRO 05. Segmental identities were first automatically labeled 
using the HTK toolkit and SAMPA-T notation, then hand tagged by trained 
transcribers for perceived boundary breaks using the Sinica COSPRO Toolkit [3]. All 
labeling was also spot-checked by trained transcribers.  

The majority of PWs were disyllabic (67%) and tri-syllabic (25%) [4]. Although 
the length of PPhs are mostly under 10, the variations of PPhs were more complicated 
than PWs. Figure 2 shows the distribution of the length of PPhs in COSPRO 01.  

 

Fig. 2. The distribution of the length of PPhs 

The length of PPhs seems not a suitable feature to predict the PPhs. Instead 
syntactic structures are somewhat related to the structures of PPhs. They do have 
some common patterns shown in the prosodic structure annotated speech data and 
syntactic annotated text. For instance, the prosody structure of the sentence “

” is shown in Figure 3 and its syntactic structure is shown in 
Figure 4. The first PPh is coincident with the NP structure and the second PPh is a 
partial VP structure. Our predicting models are trained from the prosodic and 
syntactic structure aligned parallel corpora. We will present our prediction models in 
more details in Section 3. 

 

Fig. 3. Part of prosody structure for " " 
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Fig. 4. Syntactic structure of " " 

3   The Model for Predicting Prosody from Text 

We propose a series of bottom up models to predict prosody from text. We use word 
segmentation program (http://rocling.iis.sinica.edu.tw/CKIP/wordsegment.htm), POS 
tagger and Chinese parser [5] to retrieve the syntactic and lexical information of 
sentences for training and applying our models. The major features used in our 
models include lexical words, part-of-speeches (POS), syntactic structures, and 
lengths. Prediction of B1 is obvious, since character boundaries are natural boundaries 
of SYL in Chinese. For predicting PWs, length of the word and POS are two essential 
features. Since there is no gold standard for PW, a consistency checking with human 
speeches is performed. An average performance of 90% F-score is achieved for PW 
prediction. Comparing with the average consistency F-score of 92% among human 
speakers, the model performs quite well. The detail PW model is in [4]. 

For PPh prediction, A conditional probability ),,,,|3( XBMPhYNPLPhBP of a 

location X to be a PPh boundary B3 was proposed to model the production of PPhs. 
Where the conditional feature Ph is the name of the phrase contained the prosodic 
word at left of X. PL is the length of Ph. MPhYN is a value of yes/no which indicates 
whether the Ph is an embedded phrase or not. B is the boundary type of X. There are 
four different types. They are “| |”, “| (”, “) |”, and “) (”. “| |” means that the PWs in 
the both sides of X are in the same phrase. “| (” means that X is the left boundary of an 
embedded phrase. Similarly, the “) |” means that X is the right boundary of an 
embedded phrase. The “) (” means that X is located between two embedded phrases.  

Table 2. The occurrence probabilities of B3 at different types of boundaries 

Boundary representation The probability of PPh 

| | 0.214669 

| ( 0.316559 

) | 0.380176 

) ( 0.589354 
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The probabilities of being a PPh boundary for different boundary types observed 
from COSPRO corpus are demonstrated in Table 2. The probability of PPh in “) (” is 
much higher than others which means that having a PPh break between two complete 
syntactic units is preferred. 

),,,,|3( XBMPhYNPLPhBP  can be derived from annotated training corpora by 

Maximum-likelihood or Maximum Entropy estimations. The complete PPh 
production model is shown below.  

PPh Production Model: 
Input: A sequence of sentences with word, POS, PW and syntactic structure 
annotated. 

Algorithm: For each input sentence, 

Step 1. Assign B3 to every place with punctuation markers of comma, period, 
question mark, exclamation mark, and semicolon. 
Step 2. For each PW boundary X, derive the value of 

),,,,|3( XBMPhYNPLPhBP . 
Step 3. Determine the number of PPhs m in the input sentence by a control 
parameter n which is an integer value proportional to the intended speech rate. 
m=[Length of sentence/n] ,where n are usually set to 5 or 7 for normal speed. 
Step 4. Assign m number of B3 at X1,X2,…,Xm which have the highest 
accumulated probabilities of 

),,,,|3(
1

XiBMPhYNPLPhBP
m , such that no 

resulting PPh contains only single PW. 
Figure 5 shows the algorithm of producing complete prosody. In Step (1) of the 

algorithm, we read in a text of multiple paragraphs with punctuations. In Step (3) we 
use a PW model [4] to predict PW boundaries B2. For long sentences, which are 
longer than 10 characters, the PPh production algorithm will be applied to mark B3. 
After we decide PPhs, at step (5) we mark B5 before identify breath group BG, since 
the location of a B4 depends on the length of PG and speech rate. Since PG is a 
discourse unit and usually is a complete paragraph, naturally we use periods and 
question marks to predict PG. On the other hand, BG is caused by physical 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The algorithm for predicting prosody from text 

The Procedure of prosody prediction 
(1) Input Data= text of multiple paragraphs 
(2) Text with word boundaries, POS and syntactic structure annotation 

is produced by a syntactic parser. 
(3) Identify PWs for each Sentence in Input Data 
(4)     If (SentenceLength(Sentence)>10) then 

    apply PPh model to identify PPhs. 
(5) Identify PG. 
(6)  Identify BG. 
(7)  Output Data: text of multiple paragraphs with boundary breaks 
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constrain of human exhale cycles. It is obvious that predicting of breath groups 
depends on speech rate and length of PGs. Normally, 20~30 syllables are produced in 
each exhale cycle. Table 3 shows the statistics of the 4 speakers on COSPRO 01 data. 
Within a long PG, we need to find natural stopping points for inhale and next exhale 
cycle. For every PG, we use following heuristic rules to mark B4 in the step (6). 

(1) Every end of a sentence is a possible candidate of B4 and obviously B5 is 
mandatory a B4. 

(2) For each B4 candidate, if the number of characters to the next B5 is greater 
than 40 or the followed sentences has more than 30 characters, then we mark it 
as B4. 

After those steps, we had text of multiple paragraphs marked with different levels 
of boundary breaks as output file. Then the prosody of the text is established by the 
boundary breaks. 

Table 3. Statistics of the lengthes of BGs of the corpora COSPRO 01 and 05 

Corpus Speaker Maximum Minimum Average Most 

F01 92 3 25.5 23 

F02 104 8 32.3 23 

M01 148 1 27.5 23 
COSPRO01 

M02 109 3 22.3 17 

COSPRO05 F051 133 6 29.8 25 

4   Experimental Results and Evaluations 

Cross-validation was applied on the data COSPRO 01. The COSPRO 01 was split 
into six subparts 100 paragraphs each. Each subpart was tested in turn with other 5 
subparts as training data. We also used COSPRO 05 as testing data for open test. 

4.1   Evaluation Metrics  

To evaluate the performances of prediction models, we propose three different sets of 
evaluation metrics. Each set of evaluation metrics consists of recall, precision, and 
balanced F-score, the harmonic mean of precision and recall, but with slightly 
different senses. 

breaksboundary  predicted ofnumber 

breaksboundary   predictedcorrectly  ofnumber 
Precision =   

breaksboundary  real ofnumber 

breaksboundary  predictedcorrectly  ofnumber  
Recall =   

RecallPrecision

Recall*Precision*2

+
=− scoreFBalanced                    
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The first set of evaluation metrics takes each human performance as standard. As a 
result it shows the degree of consistency between machine and human performances. 
We proposed a second evaluation metric called weighted precision to evaluate the 
quality of our prediction. The idea is that more speakers agree upon the boundary 
break which gets more weight. If one speaker agrees with the position, we give the 
weight 0.25. If two speakers agree with the position, we give the weight 0.5. If all 
four speakers agree with the position, we give the full weight 1. The third set of 
metrics of evaluation is called “general precision” which a prediction of break type 
matching any one of speaker is considered correct. 

4.2   Evaluation Results and Analysis 

We evaluate the performances of each individual model and compare them with 
human produced prosody. The first section is the evaluation results of PPh model, and 
the next section contains evaluations for B4 (breath groups) and B5 (prosodic phrase 
groups). 

4.2.1   The Evaluation Results of PPh Model 
PPh model was applied by controlling parameter of speech rates at two different 
values n=5 and 7. The results of cross validation on COSPRO 01 with respect to four 
different speakers F01, F02, M01, and M02, are showed in Table 4 and Table 5. The 
F-Score of our model is around 73%. We also calculate the consistency among 
speakers. The consistency among four speakers of prosodic phrases on COSPRO 01 is 
shown in Table 6. The F-Score of speaker’s consistency on COSPRO 01 are around 
75%. The Results show that our model performs almost comparable with the human 
speaker’s consistency.  

Table 4. The result of n=5 for PPhs on COSPRO 01 

  F01 F02 M01 M02 
Recall 0.6990 0.6966 0.7913 0.6628 
Precision 0.7782 0.7815 0.6632 0.7918 
F-score 0.7365 0.7366 0.7216 0.7216 
Weighted Precision 
General Precision 

0.80 
0.88 

Table 5. The result of n=7 for PPhs on COSPRO 01 

  F01 F02 M01 M02 

Recall 0.6679 0.6587 0.7715 0.6258 

Precision 0.8423 0.8413 0.7342 0.8486 

F-score 0.7450 0.7389 0.7524 0.7204 

Weighted Precision 
General Precision 

0.85 
0.92 



186 K.-J. Chen, C.-y. Tseng, and C.-h. Tai 

Table 4 and 5 also show the weighted precision in different n, and the weighted 
precisions are over 80%. In Table 7, the lowest weighted precision of four speakers in 
CORPOS 01 is 80%, and the weighted precision in our model is comparable with 
human speakers. Regarding the general precision of our model, over 88% of our 
predictions are marked as PPh by at least one of those four speakers. These evaluation 
results show that our model performs well and can consistently identify prosodic 
phrases. 

Table 6. The consistency of PPhs among human speakers on COSPRO 01 

 F01 F02 M01 M02 
Recall 0.789 0.793 0.643 0.815 
Precision 0.747 0.726 0.857 0.711 
F-Score 0.763 0.754 0.735 0.756 

Table 7. The weighted precisions of B3 among human speakers on COSPRO 01 

F01 F02 M01 M02 

0.83811 0.82513 0.91738 0.80268 

We use the COSPRO 05 for our open test. Table 8 shows the evaluation results of PPh 
model in comparing with two speakers M051 and F051 at different speech rates n. The F-
Score of our model is around 78%. It is close to the F-Score of human speaker’s 
consistency of 80% shown in the Table 9. Because there are only two speakers in 
COSPRO 05, we do not evaluate the weighted precision and general precision. 

Table 8. The evaluation results of PPhs model at different speech rates on COSPRO 05 

M051 Recall Precision F-score 

n=5 0.7791 0.6398 0.7026 

n=10 0.7431 0.7558 0.7494 

n=15 0.6972 0.8444 0.7638 

F051 Recall Precision F-score 

n=5 0.7945 0.6444 0.7116 

n=10 0.7644 0.7678 0.7661 

n=15 0.7280 0.8707 0.7930 

Table 9. The human speaker’s consistency on PPhs production at COSPRO 05 

 Recall Precision F-Score 
M051-Based 0.801 0.811 0.806 
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4.2.2   The Evaluation Results of Predicting BGs and PGs 
Because COSPRO 01 is not composed by complete text units, we use only COSPRO 
05 to evaluate. Table 10 shows the results of BGs on COSPRO 05, and the F-scores 
are around 55%-60%. The human speaker’s consistency of BGs in COSPRO 05 
shown in Table 12 is about 0.59. The inconsistency of BGs may be due to the 
physical difference between the human speakers and the broader scope of BGs. The 
variation of BGs makes the difficulty of prediction. Our predictions of BGs are close 
to the human speaker’s consistency of BGs. 

Table 10. The results of BGs prediction on COSPRO 05 

 
Recall Precision F-score 

B4-M051 0.5723 0.5360 0.5535 

B4-F051 0.6064 0.5994 0.6028 

Table 11 shows the result of PGs on COSPRO 05. The human speaker’s 
consistency of PGs on COSPRO 05 is 63%. Compare to Table 12, the F-score of our 
prediction is much lower than the F-Score of consistency. The main reason is we do 
not have paragraph mark in the text. So we mark every period punctuation as prosodic 
phrase group. It results in the low precision in PG prediction. Another reason may be 
that the trained transcribers used not only text information but also acoustic 
information. We only use text information, so the precisions of our prediction are 
much lower. 

Table 11. The result of PG predictions on COSPRO 05 

 Recall Precision F-score 
B5-

M051 
0.7822 0.3222 0.4564 

B5-F051 0.75 0.3388 0.4668 

Table 12. The human speaker’s consistencies of BGs and PGs at COSPRO 05 

 Recall Precision F-Score 

B4 0.609 0.577 0.592 

B5 0.669 0.610 0.638 

5   Conclusions and Future Works 

This is the first attempt to build a model to predict prosody from text. We used the 
syntactic structure of text to predict prosodic phrase and used heuristic rules and 
punctuations to predict breath group and prosodic phrase group. Because the low 
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consistency means the variety of possibility, it makes the difficulty to predict the 
boundary breaks. Our weighted precision for PPhs on COSPRO 01 is better than 
some speakers. We have shown our model can predict a reasonable prosody form text. 
Although we have predicted the prosody model from text, how to use semantic 
information to group prosodic phrase group is another way to improve our 
predictions. Using semantic information to predict end of paragraph may help to 
predict prosodic phrase group. Because we only use punctuation information to 
determine the end of paragraph, how to use semantic information to detect the change 
of topic will be our future research. 
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Abstract. Emotion is an important element in expressive speech synthesis. The 
paper makes the brief analysis on prosody parameters, stresses, rhythms and 
paralinguistic information in different emotional speech, and labels the speech 
with rich annotation information in multi-layers. Then, a CART model is used 
to do the emotional prosody generation. Unlike the traditional linear 
modification method, which makes direct modification of F0 contours and 
syllabic durations from acoustic distributions of emotional speech, such as, F0 
topline, F0 baseline, durations and intensities, the CART models try to map the 
subtle prosody distributions between neutral and emotional speech within 
various context information. Experiments show that, with the CART model, the 
traditional context information is able to generate a good emotional prosody 
outputs, however the results could be improved if more rich information, such 
as stresses, breaks and jitter information, are integrated into the context 
information. 

1   Introduction 

Recently, more and more efforts have been made in the research of expressive speech 
synthesis, among which emotion is a very important element [1, 2]. Some prosody 
features, such as pitch variables (F0 level, range, contour, and jitter), and speaking 
rate have already been analyzed [3,4]. There are also some implementations in 
emotional speech synthesis. For instance, Mozziconacci [5] added emotion control 
parameters on the basis of tune methods, resulting in higher performance. Cahn [6], 
by means of a visual acoustic parameters editor, achieved the output of emotional 
speech with manual inferences. Recently, some efforts have been made using a large 
corpus. A typical system was produced by Campbell [7], who created an expressive 
speech synthesis from a five years’ large corpus that gave  impressive synthesis 
results. Schroeder[8], Eide[9] generated an expressive TTS engine which can be 
directed, via an extended SSML, to use a variety of expressive styles from about ten 
hours of “neutral” sentences. Furthermore, rules translating certain expressive 
elements to ToBI markup have been manually derived. Chuang[10] and Tao[11] used 
                                                           
* The paper was supported by the National Natural Science Foundation of China under Grant 

(60575032). 



190 J. Tao, J. Yu, and Y. Kang 

emotional keywords and emotion trigger words to generate an emotional TTS system. 
The final emotion state is determined based on the emotion outputs from text-content 
module. The results were used in the dialogue systems to improve the naturalness/ expressive- 
eness of the answering speech. 

As we see, most of current emotional speech synthesis systems are still based on 
the linear modification method (LMM) on prosody parameters (some of them are also 
able to make the voice quality control), except unit selection methods. The LMM 
makes direct modification of F0 contours (F0 top, F0 bottom and F0 mean), syllabic 
durations and intensities from the acoustic distribution analysis results. The previous 
analysis shows that the expression of emotion does not just influence these general 
prosody features, but also affects more subtle prosodic features, such as stresses, 
breaks, jitter, etc. With this idea, we annotate the emotional speech in more detailed 
way, and a CART model which can link linguistic features to the prosody conversion 
is used. To decrease the dimensionality of output prosody parameters, we also use the 
pitch target model [12] for output prosody parameters. The model is based on the 
assumption that “observed F0 contours are not linguistic units per se. Rather, they are 
the surface realizations of linguistically functional units such as tones or pitch 
accents.”[12] To be able to handle the input context information, we also separate 
them into two parts, one part is traditionally used for normal speech synthesis, the 
other part is a kind of emotional prosody related information, which normally can 
only be marked manually. Experiments show that, with the CART model, the 
traditional context information is able to generate good prosody outputs for some 
emotion states, while results could be improved if more rich information, such as 
stresses, breaks and jitter information, are integrated into the context information.  
Listening tests also show that there are still some distance between output emotional 
speech and original one, due to the lack of voice quality control which will be solved 
in our further research. 

The paper is composed of five major parts. Section 2 introduces the corpus with  
emotion labeling. The acoustic features characteristic of emotions were also analyzed. 
In this section the paper also describes the traditional linear modification model which 
uses prosody patterns from the acoustic mapping results directly. Further analysis on 
emotion and prosody reveals that emotions are closely related to subtle prosody 
distributions, such as stress, rhythm and paralinguistic information.  Section 3 
describes the CART model which is used to convert the prosody features from 
“neutral” to emotional speech. The pitch target model is used as the output parameter 
in this section. In section 4, the paper provides more discussion on the method 
introduced in the paper via experiments. Section 5 provides a conclusion of the work. 

2   Corpus, Analysis and Annotation 

We use 2000 sentences of spontaneous dialog speech of one speaker, which were 
collected via a call center system in daily life, for our work. Each emotion state 
(“fear”, “sadness”, “anger” or “happiness”) contains 500 sentences. The both 
linguistic information and paralinguistic information are well reserved in the speech. 
Each sentence in our database contains at least 2 phrases. There were 1,201 phrases, 
and 7,656 syllables in total, so on average each utterance contained 2 phrases. 
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After the collection, all of collected sentences were also read by a professional 
speaker with a “neutral” way. The recorded speech is used as the reference of the 
research between emotional states and “neutral” state. 

Utterances were then segmentally and prosodically annotated with pitch marks and 
phoneme (initial and final) boundaries. The emotional speech differs from the 
“neutral” speech in various aspects, including intonation, speaking rate and 
intensities, etc. The distribution of prosodic parameters in different emotions of the 
corpus are shown in table 1. 

Table 1. The distribution of prosodic parameters in different emotions 

 Neutral Fear Sadness Anger Happiness 

meanF0 (Hz) 135 119 108 152 168 

bottomF0  (Hz) 86 81 83 95 109 

topF0 (Hz) 181 165 141 256 238 

syllableD (ms) 169 173 198 162 178 

E  (DB) 65 61 61 76 72 

Here, the values indicate the means of F0 mean (
meanF0 ), F0 topline (

topF0 ), F0 

baseline (
bottomF0 ), syllabic duration (

syllableD ) and intensity ( E ). The table partly 

confirms the previous research[1] that “happiness” and “anger” yield a high F0, while 
“sadness” generate lower F0 than “neutral”, and “fear” is quite close to “sadness”. 
The overlap of F0 mean and F0 topline in different emotions is less than that of F0 
baseline. It seems that the F0 mean and topline provide better “resolving power” for 
perception than the F0 baseline. 

In general, the choice of contour would then be more related to the type of 
sentence, while the pitch level and excursion size of the pitch movements would be 
more related to the speaker’s emotional state. Among all traditional emotional 
prosody generation methods, linear modification  method(LMM) seems to be the 
most intuitive. The model can be described as follows, 

xy inin ⋅= ,, α  (1) 

x indicates the input prosodic parameters, F0 topline, F0 baseline, F0 mean, 
syllabic duration and intensity. y denotes their outputs among different emotions. α  
is the transform scale of the parallel prosodic parameters between “neutral” and 
emotions as calculated from the training set of the corpus. ‘n’ denotes the emotional 
state, i.e. “fear”, “sadness”, “anger” and “happiness”, i indexes the emotion level, i.e. 
“strong”, “normal” and “weak”. 

2.1   Emotion and Jitter 

Someone also point out that F0 jitter was an important parameters for emotional 
speech [1]. For F0 jitter, normally, a quadratic curve was fitted to a running window 
of 5 successive F0 values on the F0 contour and then subtracted from that section of 
the F0 contour. It was calculated as the mean period to period variation in the residual 
F0 values. Table 1 shows the results from emotions in our corpus. 



192 J. Tao, J. Yu, and Y. Kang 

Table 2. The average results of F0 jitter of  emotions 

Emotions Fear Sad Angry Happy 
F0 jitter (HZ) 6.2 5.9 8.5 12.6 

With the results, we can see that “happiness” has the highest F0 jitter while 
“neutral” contains the minimum value. During speech synthesis, F0 jitter is realized 
by a random variation in the length of the pitch periods with an amplitude in 
accordance to the parameters value. This random variation is controlled by a white 
noise signal filtered by a one pole low pass filter. 

2.2   Emotion and Stresses 

There also exists a strong relationship between emotions and stresses [13]. Stress 
refers to the most prominent element perceived in an utterance rather than literal 
“semantic focus” which is used to express speaker’s attitudes. 

In principle, the changing of stresses from “neutral” speech to “emotional” speech 
could be summarized into five types, decreasing, weakening/disappearing, boosting, 
increasing and shifting. Decreasing means the amount of stresses is decreased from 
“neutral” speech to “emotional” speech. Weakening/Disappearing means all of 
stresses are weakened, some of them are even lost. Boosting denotes the intensity of 
stresses is amplified. Increasing means the amount of stresses is decreased. Shifting 
represents the stress locations are changed among emotions. 

Some emotions might have more than one stress changing feature. For instance, in 
“sad” speech, stresses might disappear  while “happy” voice may both increase the 
number of stresses and magnify them. “anger” may both does the stress shifting and 
also amplifies the stress located on emotional functional words. 

2.3   Emotion and Breaks 

Compared with the expression of stresses in different emotions, changing features of 
prosodic rhythms are not very clear to some extent, but there are still some points need to 
be noted. In neural speech, the most obvious phenomenon about prosodic tempo is that the 
pitch value becomes higher in the beginning of prosodic phrase and become lower in the 
ending of phrase. But in emotional speech, being influenced by emotional functional 
words, which are defined as the focus of emotion, the rule is sometimes broke up. The 
pitch values of key words always become very high or very low according to different 
emotions. Due to the impact of speaking rate in different emotions, the amount of prosodic 
breaks may decrease with fast speaking rate, such as “angry” and “happy”, while they may 
increase with slower speaking rate, such as “sadness”. 

2.4   Emotion and Paralinguistic Information 

Although the prosodic function of conveying the expression of emotion seems to 
involve both a linguistic and a paralinguistic component [14], paralinguistic 
information normally does more influence on emotion expression. Distinguishing the 
contour type from its detailed implementation in terms of pitch level and pitch range 
may well lead to a distinction between linguistic and paralinguistic value of the 
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intonation variations. This expectation is related to the general assumption of the 
linguistic value of contour type, and the paralinguistic function of its concrete 
phonetic realization, such as “grunts”, “breathing, etc. Though the prosody is 
influenced by paralinguistic information, actually, relations between them are very 
complicated and far from being discovered. Thus, in our current work, we didn’t use 
them for the prosody model, however we labeled them in the corpus for the further 
research. 

2.5   Multilayer Annotation 

We try to label the phenomena which is related to linguistic features, utterance 
expression and emotions, non-linguistic features, etc. as much as possible, however 
not all of them could be directly integrated into the system in the meantime. The 
labelled information is seperated into the different layers. 

Transcription Layer 
The collected speech was transcribed orthographically with normalized text 
expression. 

Pronunciation Layer 
It records the pinyin information of the speech. Initials and finals are also listed. 

Pitch Layer 
The layer annotates the detailed pitch marks of the voice. 

Segmentation Layer 
The layer marks syllable or silence/pause boundaries of each utterance. Initial and 
final boundaries are also labelled. 

Break Layer 
In our work, we have four types of prosodic boundaries. They are, 

 Break0: syllabic boundary. 
 Break1: prosodic word boundary, a group of syllables that are uttered closely. 
 Break2: prosodic phrase boundary, a group of prosodic words that has a 

perceptive rhythm break at the end. 
 Break3: sentence boundary, the utterance for a whole speech. 

Stress Layer 
Here, there are three types of stresses, intonation stress, phrasal stress and (prosodic) 
word stress. 

Paralinguistic Information Layer 
The paralingual and non-lingual phenomenon included in labels are as follows: beep, 
breathing, crying, coughing, deglutition, hawk, interjection, laughing, lengthening, 
murmur, noise, overlap, smack, sniffle, sneezes, yawn, etc. 

To be able to use the corpus for further research, we also used the layers in a 
number of previous schemes. (Core and Allen, 1997; Di Eugenio et al., 1998; Traum, 
1996; Walker et al., 1996; MacWhinney, 1996; Jekat et al., 1995; Anderson et al., 
1991; Condon and Cech, 1996; van Vark et al., 1996; Walker and Passonneau, 2001). 
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Layers from different schemes are grouped according to the similar phenomena that 
they label. They are, 

Speech acts 
All of the schemes that we examined annotated the utterances for their illocutionary 
force. Since this is the layer that contains most information regarding the semantic 
content of an utterance, this is likely to be where we shall find the most interesting 
correlations. 

Communications status 
Communications status indicates whether an utterance was successfully completed. It 
is used to tag utterances that are abandoned or unintelligible rather than whether the 
intention of a speech act was achieved. 

Topic 
Several annotation schemes contain this layer that labels the topic discussed in an 
utterance. This is usually in task domains where there is a finite number of subjects 
that will be discussed. 

Phases 
Some schemes distinguish between dialogue phases such as opening, negotiation and 
query. Emotion in dialogue also goes through phases and it is possible that there are 
boundaries between the phases of emotion that correspond to those tagged using the 
phase layer. 

Surface form 
Surface form tagging is used in David Traum’s adaptation of the TRAINS annotation 
scheme (Traum, 1996) and the Coconut scheme to tag utterances for certain special 
features such as cue words or negation. It has been shown that certain syntactic 
features of an utterance may be indicators of emotion. 

3   CART Model Based Prosody Generation 

To be able to handle the context information, we propose a Classification and Regression 
Trees (CART) which have been successfully used in prosody prediction. The model could 
do the prosody mapping from “neutral” speech to “emotional” speech with various context 
informations. The framework of the model is shown in Fig. 1. 

In the model, the input context information is classified into two parts, the context 
part I is normally used for traditional speech synthesis. It contains, 

 Tone Identity (including current, previous and following tones, with 5 categories). 
 Initial Identity (including current and following syllables' initial types, with 8 

categories).  
 Final Identity (including current and previous syllables' final types, with 4 

categories). 
 Position in sentence (including Syllable position in word, word position in phrase 

and phrase location in sentence) 
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Fig. 1. The framework of CART based emotional prosody conversion 

 Number (including syllable number of the prosodic word, word number of the 
phrase, and phrase number of the sentence) 

 Part of speech (including current, previous and following words, with 30 
categories) 

The context part II contains: 
 Break types (including intonation phrase boundaries, prosodic phrase boundaries 

and prosodic word boundaries). 
 Stress type (including intentional stress and phrasal stress). 
 F0 jitter degree (denote how serious of the F0 jitter in emotional speech). 

Since there are lots of changes between “neutral” speech and “emotional” speech 
in the part II, the information is normally not predicted by text analysis module, but 
labeled in the input text by markup languages. 

The output parameters of the model are the differences of “neutral” and 
“emotional” prosodic parameters. As we know, Mandarin is a typical tonal language, 
in which a syllable with different tone types can represent different morphemes. 
Several models have been proposed to describe F0 contours before, such as the 
Fujisaki model [15], The Soft Template Mark-Up Language (Stem-ML) model[16], 
the pitch target model[12] and Title model, etc. In the pitch target model, variations in 
surface F0 contours result not only from the underlying pitch units (syllables for 
Mandarin), but also from the articulatory constraints. Pitch targets are defined as the 
smallest operable units associated with linguistically functional pitch units, and these 
targets may be static (e.g. a register specification, [high] or [low]) or dynamic (e.g. a 
movement specification, [rise] or [fall]). With these features, we believe the pitch 
target model are quite suitable for prosody conversion. 

The output parameters are, then, the differences of pitch target parameters a, b,  
and λ between “neutral” and “emotional” parameters. 

Let the syllable boundary be ],0[ D . The pitch target model uses the following 

equations [17]. 

Context information 

CART 

“neutral” prosody 
parameters

“emotional” prosody 
parameters

Difference between “neutral” and 
“emotional” prosody parameters
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( )T t at b= +  (2) 

( ) exp( )y t t at bβ λ= − + +  

0 , 0t D λ≤ ≤ ≥  (3) 

Where )(tT  is the underlying pitch target, and )(ty  is the surface F0 contour. The 

parameters a and b are the slope and intercept of the underlying pitch target 
respectively. These two parameters describe an intended intonational goal of the 
speaker, which can be very different from the surface F0 contour. The coefficient  is 
a parameter measuring the distance between the F0 contour and the underlying pitch 
target at t=0.  describes how fast the underlying pitch target is approached. The 
greater the value of  is, the faster the speed. A pitch target model of one syllable can 
be represented by a set of parameters (a,b, , ). 

As described in [17], (a,b, , ) can be estimated by nonlinear regression process 
with expected-value parameters at initial and middle points of each syllable’s F0 
contour. The Levenberg-Marquardt algorithm [17] is used for estimation as a 
nonlinear regression process. 

Wagon toolkit [19], with full CART function, was used in our work. Source and 
target pitch contours from parallel corpus are aligned according to labelled syllable 
boundaries, and then pitch target parameters are extracted from each syllable’s pitch 
contour, finally mapping functions of parameters a, b,  and λ  are estimated using 
the CART regression. There were totally four CART models trained with different 
“neutral” and emotion mappings. For conversion, the pitch target parameters 
estimated from source pitch contours are transformed by the mapping functions 
obtained in the training procedure and then the converted pitch target parameters 
generate new pitch contours associated with the target characteristics. 

4   Experiments and Discussion 

We used the STRAIGHT[18] model as an acoustic model to generate the emotional 
speech output with the above CART based prosody model. Here, we didn’t do the 
specific voice quality control in the acoustic level. A prosody converting example is 
given in Fig. 2. 

Eight listeners were asked to give a subjective evaluation on these test sentences. 
Two methods are conducted to evaluate the proposed emotional conversion: 

• ABX test: ABX test in evaluating voice conversion is used in the evaluation. all 
listeners are required to judge whether a converted speech X sounded closer to a 
source neutral speech A or a target emotional speech B. This test confirms whether 
the conversion system is successful. 

• EVA test: Only converted speeches are listened to and then the associated 
emotional state is given by these listeners. This test confirms whether the 
emotional conversion is successful. 
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Fig. 2. An example of F0 conversion using the pitch target model in “neutral” to “happiness” 
conversion with both the context part I and the context part II 

Results of the evaluation are shown in Fig.3 and Fig.4, in which X axis is the 
emotional state and Y axis is the mean correct rate (it is the ratio of judging X as B in 
ABX test, and considering the converted speech as the corresponding emotional 
speech in EVA test) of all listeners. ABX test has proved that the converted emotional 
speech possesses the corresponding emotional state compared with the source speech. 
Because, in ABX tests, conners can compare the converted speech with the source 
“neutral” speech, results of ABX tests are better than those of EVA tests. There are 
differences among emotional conversions in these perception tests, in which the 
“neutral-sadness” and “neutral-fear” conversions are respectively best and worst. 
With only context part I, both “fear” and “happiness” are very hard to be simulated, 
while “sadness” are a little bit easier, since “sadness” is normally related to general 
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Fig. 3. Results of expressive converting evaluations with the context part I 
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Fig. 4. Results of expressive converting evaluations with both the context part I and context 
part II 

prosodic features, such as narrow pitch range, low pitch level, and slow speed. From 
Fig.4, it shows that the emotional prosody output will be better if we use all of the 
context information than that with only the context part I, while more detailed control 
of prosody information is integrated. 

From all of results, we can find none of them get full score in the listening test. 
Part of reasons might be the lack of voice quality control. The size of the corpus 
might be another problem for that. Further work will be based on our new collected 
large corpus (with 2000 sentences for each emotion). More detailed acoustic analysis 
and voice quality control will also be considered. 

5   Conclusion 

When generating expressive speech synthesis, we are easily tempted to fall into the 
practice of using the acoustic patterns driven by the speech with emotion state with a 
linear modification approach. However, without a more detailed distribution of these 
acoustic patterns, it is hard for us to synthesize more expressive or less expressive 
speech. To solve this problem, the paper proposed using a CART method. Unlike the 
linear modification method, the CART model efficiently maps the subtle prosody 
distributions between neutral and emotional speech, and allows us to integrate 
linguistic features into the mapping. A pitch target model which was designed to 
describe Mandarin F0 contours was also introduced. The experiment results prove 
that the CART method gives us the very good emotional speech output. The results 
also show that, with the CART model, the traditional context information which is 
used for normal speech sythesis, is able to generate good prosody outputs for some 
emotion states, such as “sadness”, while results could be much improved if more rich 
information, such as stresses, breaks and jitter information, are integrated into the 
context information. The methods discussed in the paper provide ways to generate 
emotional speech in speech synthesis, however there is still lots of work to be done in 
future. 
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Abstract. This paper presents a robust text analysis system for Chinese text-to-
speech synthesis. In this study, a lexicon word or a continuum of non-hanzi 
characters with the same category (e.g. a digit string) are defined as a mor-
pheme, which is the basic unit forming a Chinese word. Based on this defini-
tion, the three key issues concerning the interpretation of real Chinese text, 
namely lexical disambiguation, unknown word resolution and non-standard 
word (NSW) normalization can be unified in a single framework and reformu-
lated as a two-pass tagging task on a sequence of morphemes. Our system con-
sists of four main components: (1) a pre-segmenter for sentence segmentation 
and morpheme segmentation; and (2) a lexicalized HMM-based chunker for 
identifying unknown words and guessing their part-of-speech categories; and 
(3) a HMM-based tagger for converting orthographic morphemes to their Chi-
nese phonetic representation (viz. pinyin), given their word-formation patterns 
and part-of-speech information; (4) a post-processing for interpreting phonetic 
tags and fine-tuning pronunciation order for some special NSWs if necessary. 
The evaluation on a pinyin-notated corpus built from the Peking University 
corpus shows that our system can achieve correct interpretation for most words.  

Keywords: Chinese TTS, text analysis, lexical analysis, grapheme-to-phoneme 
conversion, text normalization. 

1   Introduction 

Text analysis for text-to-speech (TTS) synthesis aims to convert a text of orthographic 
characters into a linguistic representation for speech synthesis. In Chinese, text analy-
sis consists of five sub-tasks, namely word segmentation, part-of-speech tagging, text 
normalization, word pronunciation (viz. grapheme-to-phoneme conversion, G2P), and 
prosodic phrasing [1][2]. This study focuses on the first four tasks.  

Robust text analysis is essential to develop a high-quality TTS system for open  
applications. Over the past years there has been a great development in speech syn-
thesis technology. The intelligibility and comprehensibility of synthetic speech have 
reached an acceptable level [3]. However, text analysis capability, particularly the ca-
pability in processing real text is still rudimentary in a sense [4]. Due to this reason, 
the quality of synthetic speech degrades sharply in some open applications. Therefore, 
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to improve the robustness, a TTS engine for open applications should involve a text 
analysis module that is capable of interpreting unrestricted texts with accuracy.  

In this paper, we present a robust text analysis system for Chinese text-to-speech 
(TTS) synthesis. In converting a real orthographic Chinese text into a linguistic repre-
sentation for speech synthesis, three problems usually arise, namely lexical disam-
biguation, unknown word resolution and non-standard words normalization. These 
problems interact and cannot be resolved separately. This paper proposes a unified 
framework to solve the three issues. First, a lexicon word or a continuum of non-
Chinese characters of same type is defined as a morpheme, i.e. a basic unit forming a 
Chinese word. Based on this definition, the three problems can be unified in a single 
framework and reformulated as a two-pass tagging task on a sequence of morphemes. 
With a view to the higher requirement of efficiency of a TTS engine for some on-line 
or multi-thread applications, the two-pass task is performed under the framework of 
Hidden Markov Model (HMM). Our system consists of four main modules: (1) a pre-
segmenter for sentence segmentation and morpheme segmentation; and (2) a lexical-
ized HMM-based chunker for unknown word identification and guessing; and (3) a 
HMM-based tagger for converting orthographic morphemes to their Chinese phonetic 
representation (viz. pinyin), given their word-formation patterns and part-of-speech 
information; (4) a post-processing for interpreting phonetic tags and fine-tuning pro-
nunciation order for some special non-standard words (NSWs) if necessary. We test 
our system using a pinyin-notated corpus built from the Peking University corpus [5]. 
The results show that our system is very effective for text analysis in Chinese TTS. 

The remainder of this paper is organized as follows: Section 2 introduces the three 
issues in Chinese text analysis. Section 3 defines the important concepts ‘morpheme’ 
for Chinese TTS. Section 4 details our text analysis system. Section 5 reports the 
evaluation results of our system on different public corpora, and the final section is 
our conclusion remarks on this work. 

2   Three Open Issues in Chinese Text Analysis 

2.1   Lexical Disambiguation 

Correct lexical disambiguation is very important for a high-quality Chinese TTS sys-
tem. In general, Chinese lexical ambiguities involve (1) word segmentation ambigu-
ity, (2) part-of-speech ambiguity and (3) pronunciation ambiguity (viz. the problem of 
polyphonic words), which usually results in ambiguous interpretation of a given text. 

                                   (a) /ns /n /nr /nr 
                                              (Mayor of Nanjing City Jiang Daqiao) 

                                         nan2jing1 shi4zhang3 jiang1 da4qiao2 
                                        (b) /ns /ns /n 
                                              (Nanjing Changjiang River Bridge) 

                                         nan2jing1shi4 chang2jiang1 da4qiao2 

Fig. 1. Different interpretation of the ambiguous fragment “ ” 
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Fig. 1 illustrates different interpretations of the ambiguous fragment “  
”. This fragment has two meaningful segmentations: in segmentation (a), it 

means ‘Mayor of Nanjing City Jiang Daqiao’ and pronounces ‘nan2jing1 shi4zhang3 
jiang1 da4qiao2’, while in segmentation (b), it means ‘Nanjing Changjiang River 
Bridge’ and the relevant pronunciation is ‘nan2jing1shi4 chang2jiang1 da4qiao2’. 

2.2   Resolution of Unknown Words 

Resolving unknown words with accuracy is a key challenge to a robust text analysis 
system for open applications. In fact, most current TTS systems involve a dictionary 
to specify the necessary linguistic information of words such as part-of-speech cate-
gorization and pronunciation for synthesis. However, no dictionary could be complete 
in practice. Although a predefined dictionary may cover most words in use, there are 
many other words, such as proper nouns and domain-specific terms can not be ex-
haustively enumerated in a dictionary. Therefore, to generate synthetic speech cor-
rectly and naturally for an open-end text in Chinese, a TTS engine should be able to 
resolve different types of unknown words whose linguistic information are not de-
fined in the dictionary being used. Chinese unknown word resolution mainly involves 
unknown word identification (UWI), unknown word guessing (UWG) and unknown 
word pronunciation (UWP). 

 
(a)  (from Xinhua News Agency February 25, 2006) 
      (Master of Chinese culture Zhang Zhongxing passed away) 
      /n /n /nr /nr /v 
      guo2xue2 da4shi1 zhang1 zhong1xing2 shi4shi4 
(b)  (from the 1st SIGHAN Bakeoff PK-Open test set) 
      (The Changge Branch of The Bank of China put stress on gymnastic exercises) 
      /nz /ns /n /v /vn 
      zhong1hang2 chang2ge3 zhi1hang2 zhu4zhong4 jian4shen1 

Fig. 2. Different interpretation of the unknown word “ ” in different contexts 

Fig. 2 illustrates an example of unknown words in Chinese text. The unknown 
word “ ” has the same form but differ in part-of-speech, meaning, and pronuncia-
tion: in sentence (a), it is a Chinese first-name pronouncing zhong1xing2. But in sen-
tence (b), it is an abbreviation of an organization name, i.e. ‘The Bank of China’ and 
its pronunciation is zhong1hang2. 

2.3   Normalization of Non-standard Words 

Real Chinese texts are very mess and often contain a number of non-hanzi characters, 
which raise another key issue for Chinese TTS, namely the identification and nor-
malization of NSWs in Chinese text. However, Chinese text normalization is by no 
means an easy task. On the one hand, ambiguities usually arise while pronouncing 
non-hanzi characters in a NSW. For example, the symbol + has four possible pronun-
ciations in different NSWs, i.e. zheng4 ‘positive’ in a normal number like +0.05, 
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ling2zhang4 ‘above zero’ in a temperature expression like +20  ‘20 degrees above 
zero Celsius’, jia1 ‘plus’ in a expression of arithmetic computation like 1+1=2, and a 
functional symbol to be skipped in some telephone number expression such as +852-
12345678. On the other hand, the order of pronouncing a NSW is not always from left 
to right and may change in some cases. The percent 5%, for example, should be pro-
nounced from right to left.  Consequently, more information, even pragmatic informa-
tion is necessary to achieve correct interpretation of NSWs in Chinese text. For  
example, it is very difficult to determine only by using the local contextual informa-
tion whether the word 7:15 in the sentence  is a score pronouncing 
qi1bi3shi2wu3 ‘seven to fifteen’ or a time expression pronouncing qi1dian3shi2wu3 
‘fifteen past seven’. 

3   Representation of Words in Chinese Text 

3.1   A Typology of Chinese Words 

As shown in Table 1, words in Chinese text can be categorized into standard words 
and non-standard words (NSWs), based on the types of characters consisting of a 
word. A standard word is formed by a string of Chinese characters (viz. Hanzi) while 
a non-standard word contains at least one non-Chinese character like numerals, Eng-
lish letters, punctuation marks and other symbols. Standard words can be sub-divided 
into two groups: lexicon words (LWs) that are included in the lexicon being used and 
unknown words (UWs) that are unseen in the lexicon. NSWs can be further classified 
into four types: numeral expressions, English words, punctuations and other NSWs. 

Table 1.  Number of Chinese words in the PKU Corpus 

Word type Example 
Lexicon words (LWs)  

Ambiguous in part-of-speech (verb or noun), (adjective or verb) 
Ambiguous in pronunciation (zhong4 or chong2), (xing2 or hang2) 

Unknown words (UWs) , , … 
Non-standard words (NSWs)  

Numeral expressions 15.5%, 2006 , … 
English words IBM, WWW, … 
Punctuations , , , … 
Other NSWs abc-123@hotmail.com, … 

3.2   Definition of Morphemes 

In order to handle word-level information conveniently, we take lexicon words and 
continuums of non-Chinese characters as the basic units or morphemes forming a 
word in Chinese text. For convenience, we call them lexicon word morpheme and 
non-hanzi morpheme respectively. Here, a continuum of non-Chinese characters is a 
string of consecutive non-Chinese characters with the same category. For example,  
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Table 2. Types of morphemes consisting of Chinese words  

Morpheme type Definition Example 
LW lexicon words , , , … 
DIG digits or numerals 0, 123, , … 
ALP alphabets or letters A, abc, , … 
PUN punctuation marks , , , … 
SYM other symbols @, #, $, … 

 
the word 2006  ‘the year of two thousand and six’ is composed of two morphemes, 
a non-hanzi morpheme (viz. the continuum of consecutive digits ‘2006’) and a lexi-
con word morpheme (viz. , ‘year’).  

As shown in Table 2, morphemes can be categorized to five major types, namely 
LW (lexicon words), DIG (digits or numerals), ALP (alphabets or letters), PUN (punc-
tuation marks) and SYM (other symbols), based on the types of characters consisting 
of a morpheme.    

Table 3. Phonetic tags for non-hanzi morphemes 

Morpheme Phonetic tag Description Example 

NAD 
A numeral morpheme pronounc-
ing as a decimal integer 

12.34% 
DIG 

DBD 
A numeral morpheme pronounc-
ing digit by digit 

12.34% 

AAW 
A alphabet morpheme pronounc-
ing as a (English) word 

Tel: +852-12345678 
ALP 

LBL 
A alphabet morpheme pronounc-
ing letter by letter 

IBM 

STP 
A symbol morpheme to be pro-
nounced 

12.34% 
SYM 

SAF 
A function symbol with no pro-
nunciation  

Tel: +852-12345678 

 
A non-hanzi morpheme usually has different pronunciations in different contexts. 

For example, a numeral morpheme may pronounce either as a decimal integer or digit 
by digit, depending on what types of words it forms and where it is in the words. In 
order to unify the normalization of NSWs with the processing of standard words, non-
hanzi morphemes are further classified into different sub-types in terms of the way of 
pronunciation. As shown in Table 3, a number of phonetic tags are defined to repre-
sent the relevant sub-types of non-hanzi morphemes.  

3.3   Representation of POS-Tagged Chinese Words 

In practice, any segmented word in a real Chinese text consists of one or more mor-
phemes defined in Table 2 if the system dictionary covers all possible Hanzi (viz. 
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Chinese characters). In particular, a morpheme has four possible patterns to present it-
self after word segmentation: (1) It is an independent segmented word by itself. (2) It 
is an initial morpheme of a segmented word. (3) It is a mid morpheme of a segmented 
word. (4) It is a final morpheme of a segmented word. In this paper, we use four tags 
O, I, M and F to denote these patterns, respectively.  

(a) 4 19 21
(North Korean leader Kim Jong-Il paid an unofficial visit to China from April 19 to 21 

at the invitation of Chinese president Hu Jintao) 
(b) /p /nr /nr /n /u /vn /ns /n /nr /nr /p 4 /t 

19 /t /p 21 /t /p /ns /v /u /b /vn /w 

(c) /p-O /nr-O /nr-I /nr-F /n-O /u-O /vn-O /ns-O /n-O 
/nr-O /nr-I /nr-F /p-O 4/t-I /t-F 19/t-I /t-F /p-O 21/t-I /t-F /p-O /ns-O 

/v-O /u-O /b-I /b-F /vn-O /w-O 

Fig. 3. An example of representing a POS-tagged sentence as a sequence of tagged morphemes. 
(a) a plain Chinese sentence. (b) a POS-tagged sentence. (c) a sequence of tagged morphemes.  

With these word-formation tags, a POS-tagged sentence can be equivalently repre-
sented as a sequence of morphemes attached with their relevant hybrid tags (as illus-
trated in Fig. 3). A hybrid tag has the format: T1-T2, where T1 denotes a POS tag and 
T2 denotes a word-formation tag. 

4   The Unified Framework for Chinese Text Analysis 

4.1   Overview 

As shown in Fig. 4, our system interprets a text in four main steps: Firstly, a pre-
segmenter is used to segment a given plain text in Chinese into sentences and further 
segment each sentence to morphemes by using lexicon word bigrams [6]. Secondly, a 
lexicalized chunker is applied to assign each morpheme a proper hybrid tag defined in 
 

 

Fig. 4. Overview of the text analysis system for Chinese TTS  

Pre-segmenter 

Lexical chunker: Seg&Tag 

Word pronunciation 

Post-processing 

Chinese text 

Sentence and morpheme segmentation:  
/7/:/15/ 

Lexical chunks: 
/n-O 7/n-I :/n-M 15/n-F 

Pinyin + phonetic tags: 
/n-O/bi3fen1 7/m-I/NAD :/m-M/STP 15/m-F/NAD 

Output: /n/bi3fen1 7:15/m/qi1bi3shi2wu3 

Input: 7:15 
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Section 3.3. Thirdly, a word pronunciation module is to notate each LW morpheme 
with a proper pinyin string and each non-hanzi morpheme with a proper phonetic tag 
defined in Table. 3. Finally in the forth step, a set of pattern rules [8] are used to in-
terpret the phonetic tags and fine-tune pronunciation order for some special NSWs 
like percentages and fractions. At the same time, the tagged and notated morphemes 
are merged to words according to their respective word-formation tags. The following 
two sections will detail lexical chunking and word pronunciation, respectively. 

4.2   Lexical Chunking 

Based on the reformulation of a POS-tagged word as a sequence of tagged mor-
phemes, word segmentation and POS tagging can be unified as a lexical chunking 
task on a sequence of morphemes. In order to keep balance between accuracy and ef-
ficiency, a uniformly lexicalized HMM-based chunker [7] is applied in our system.  

Given a sequence of morphemes 
nmmmM 21= , the lexicalized HMM-based 

chunker aims to find an appropriate sequence of hybrid tags ntttT 21
ˆ =  that maxi-

mizes the following score 

∏
=

−−−−−−−==
n

i
iNiiNiiiNiiNii

T

tmtPtmmPWTPT
1

1,1,,1, ),|(),|(maxarg)|(ˆ  (1) 

Equation (1) presents an N-order lexicalized HMMs for lexical chunking. In com-
parison with standard HMMs, lexicalized HMMs can handle both contextual mor-
phemes and contextual tags for the assignment of hybrid tags to morphemes, which 
will result in an improvement of precision. In view of serious data sparseness in 
higher-order models, we employ the first order lexicalized HMMs in our system. 

4.3   Word Pronunciation 

Once lexical chunking is done, the next task is to find correct pronunciations for the 
respective tagged morphemes. Word pronunciation performance exerts a direct influ-
ence on the correctness of the resulting synthetic speech. However, high-accuracy 
word pronunciation for Chinese is a challenge because Chinese writing system is not 
phonetically transparent and many words in Chinese text are ambiguous in pronuncia-
tion. Most previous work applied rules to resolve pronunciation ambiguity [9] [10]. 
However, a large-coverage set of rules for disambiguation is usually difficult to ac-
quire. In this study, we take word pronunciation as a tagging problem on a sequence 
of tagged morphemes and propose a HMM-based tagger to notate a LW morpheme 
with a proper pinyin string or label a non-hanzi morpheme with a phonetic tag shown 
in Table 3, in which the word-formation patterns and part-of-speech tags yield in lexi-
cal chunking are combined for word pronunciation disambiguation (WPD) and UWP.  

In fact, lexical information, particularly POS information plays an important role in 
disambiguating Chinese polyphonic words. In practice, a corresponding relationship 
may exist between part-of-speech and pronunciation for most polyphonic words in 
Chinese. Our survey on the lexicon being used shows that among a total of 453 poly-
phonic words under discussion, 404 polyphonic words have different pronunciations 
corresponding to different part-of-speech categories. In other words, about 90% of 
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polyphonic words have a one-to-one mapping between their POS categories and pro-
nunciations. According to our further investigation on the PKU corpus [5], over 89% 
polyphonic words can be completely or partly resolved if their part-of-speech catego-
ries are correctly given. 

The HMM-tagger performs word pronunciation on a sequence of tagged mor-
phemes in two main steps: (1) The first step generates a set of pronunciation candi-
dates for each morpheme in the input by consulting the lexicon being used. In this 
step, some polyphonic morphemes are (partly) resolved by filtering the ineligible 
candidates with their part-of-speech categories and word-formation patterns; (2) In 
the second step, the first-order HMMs shown in Equation (2) are used to score the rest 
pronunciation candidates and find a proper one for each morpheme. 

∏
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−=
n
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iiii
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yyPymPY
1

1)|()|(maxargˆ  (2) 

Where, )1( nimi ≤≤ denotes a morpheme in the input and )1( niyi ≤≤ denotes a 

pinyin candidate of im . 

5   Experimental Results and Discussion 

5.1   Experimental Data  

In evaluating our system, we conduct a number of experiments on the Peking Univer-
sity (PKU) corpus. The original PKU corpus contains six month of news texts from 
the People’s Daily (January to June in 1998), and is manually segmented and tagged 
with part-of-speech by the Peking University [5]. In order to train the models for word 
pronunciation, we notated this corpus with pinyin. In this study, the first month is 
used for testing while the other five months of data are for training. It should be noted 
that word segmentation, POS tagging and word pronunciation are evaluated sepa-
rately in our experiment, although the three tasks are performed in a unified frame-
work in our system.  

Table 4. Number of words in the PKU corpus 

LW 
Corpus 

AmbPos AmbPy Total 
UW NSW Total 

Test (Jan) 491K 161K 866K 56K 197K 1,120K 
Training (Feb-Jun) 2,721K 892K 4,785K 314K 1,065K 6,166K 
Total 3,212K 1,053K 5,651K 370K 1,262K 7,286K 

As illustrated in Table 4, there are a total of 7,286K words in the PKU corpus, 
among which 5,651K (viz. 77.56%), 370K (viz. 5.08%) and 1,262K (viz. 17.32%) are 
lexicon words, unknown words and non-standard words, respectively. Furthermore, 
about 56.84% and 18.63% lexicon words are observed to be ambiguous in part-of-
speech and pronunciation. 
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In addition to the PKU corpus, a lexicon of about 65K entries is used, which are 
mainly from the Modern Chinese Grammar Information Lexicon of the Peking Uni-
versity [5]. In order to make this lexicon complete, a number of GBK Hanzi are also 
added to the lexicon. 

5.2   Experimental Results 

Table 5 presents the evaluation results for word segmentation using the PKU corpus. 
In this evaluation, the standard HMMs and the view of taking character as the basic 
unit forming Chinese words (viz. the character-based morpheme) are also introduced 
as the baseline. Table 5 reveals a number of observations. Firstly, the lexicalized 
HMMs consistently perform better over the corresponding standard HMMs for all ex-
perimental conditions, in particular for character-based morphemes. As shown in Ta-
ble 5, the lexicalization technique can improve the overall segmentation F-measure by 
1.3 percent for the morphemes defined in Table 2, while the number is 8.3 percent for 
character-based morphemes. Secondly, systems using the morphemes defined in Ta-
ble 2 outperform those taking characters as morphemes, particularly in case of stan-
dard HMMs. 

Table 5. Evaluation results for word segmentation using the PKU corpus 

Standard HMMs Lexicalized HMMs 
Morpheme Measure 

Overall LW UW NSW Overall LW UW NSW 
F 88.2 89.0 53.3 98.1 96.5 96.9 81.8 99.4 
R 88.1 87.0 70.3 98.0 96.4 96.4 86.1 99.3 

Character-based 
morphemes 

P 88.3 91.1 42.9 98.3 96.7 97.4 77.9 99.5 
F 95.7 96.2 76.6 99.0 97.0 97.2 86.0 99.4 
R 95.4 95.7 78.1 98.8 97.2 97.5 85.6 99.3 

The morphemes 
defined in Table 2 

P 96.0 96.8 75.2 99.1 96.8 96.9 86.4 99.5 

Table 6. Evaluation results for word segmentation using the SIGHAN Bakeoff PK-open data 

Test track ROOV Riv R P  F  Fbakeoff-best 
1st Bakeoff PK-Open 83.8 97.0 96.6 96.1 96.3 95.9 
2nd Bakeoff PK-Open 83.9 96.1 96.2 96.4 96.3 96.9 

 
We also test our system using the first and second SIGHAN Bakeoff PK-Open data 

[11][12]. The respective best F-measures for the two tracks are 95.9% and 96.9%. As 
can be seen from Table 6, our system yields an F-measure of 96.3% for the two 
tracks. This demonstrates in a sense that our system can achieve state-of-the-art per-
formance in word segmentation. 

Table 7 presents the evaluation results of our system for POS tagging using the 
PKU corpus. In this evaluation, the input is a segmented text and the standard tagging 
accuracy is computed to evaluate the tagging performance of the system. The results 
show that the introduction of lexicalization technique helps improve tagging accuracy. 
In comparison with the standard HMMs, the lexicalized HMMs can improve the  
 



 A Unified Framework for Text Analysis in Chinese TTS 209 

Table 7. Evaluation results for POS tagging 

Method Overall AmbLW UW NSW 
Standard HMMs 94.3 89.8 86.4 99.9 
Lexicalized HMMs 96.1 93.2 90.2 99.9 

 
tagging accuracy respectively by 1.8 percent for all words, 3.4 percent for ambiguous 
lexicon words and 3.8 percent for unknown words. 

Table 8 presents the evaluation results for word pronunciation. The input of this 
evaluation is a segmented and POS-tagged text, which will be converted to a text of 
tagged morphemes shown in Fig. 3 before word pronunciation. Furthermore, the base-
line method, namely the dictionary-based disambiguation is also involved for, which 
disambiguates polyphonic LWs by consulting the dictionary with their POS tags or 
performs unknown word pronunciation using POS and word-formation patterns. As 
can be seen from Table 8, our system improves the pronunciation accuracy of poly-
phonic LWs from 94.7% to 97.2 and the pronunciation accuracy of UWs from 96.2% 
to 98.1%, in comparison with the baseline method. Furthermore, our system yields an 
accuracy of 98.5% for NSW pronunciation. 

Table 8. Evaluation results for word pronunciation 

 Polyphonic LW Unknown word NSW 
Dictionary-based method 94.7 96.2 - 
Our system 97.2 98.1 98.5 

6   Conclusion 

This paper presents a robust text analysis system for Chinese TTS, which consists of 
four main components: (1) a pre-segmenter for sentence segmentation and morpheme 
segmentation; and (2) a lexicalized HMM-based chunker for unknown word identifi-
cation and guessing; and (3) a HMM-based tagger for word pronunciation; (4) a post-
processing for interpreting phonetic tags and fine-tuning pronunciation order for some 
special NSWs if necessary. In this system, the three key issues in Chinese text analy-
sis, namely lexical disambiguation, unknown word resolution and non-standard word 
normalization are solved in a unified framework of Hidden Markov Models (HMMs). 
As a result, the accuracy of the system can be improved without losing its efficiency. 
We test our system on a pinyin-notated corpus built from the PKU corpus and the 
SIGHAN Bakeoff data. The experimental results demonstrate the effectiveness of the 
proposed unified framework. In this study, we focus our work on processing texts in 
simplified Chinese. For future work, we would like to apply our current method to 
Taiwan Mandarin and Cantonese TTS. 

Acknowledgments. We would like to thank the Institute of Computational Linguistics 
at Peking University for their corpus and lexicon. 
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Abstract. In this paper, a framework for speech synthesis is proposed to realize 
the process of speech production of human, which is based on a physiological 
articulatory model. Within this framework, it begins with given articulatory 
targets, then muscle activation patterns are estimated according to the targets by 
accounting for both the equilibrium characteristics and muscle dynamics, 
consequently, the articulatory model is driven to generate a time-varying vocal 
tract shape corresponding to the targets by contracting the corresponding 
muscles. Thereafter, a transmission line model is implemented for the 
time-varying vocal tract to produce speech sound. At last, a primary experiment 
is carried out to synthesize the single vowels and diphthongs of Chinese with the 
physiological articulatory model based synthesizer. The result shows that the 
spectra of the synthetic sound for single vowels are consistent with those of the 
real speech, and proper acoustic characteristics are obtained in most cases for 
diphthongs. 

Keywords: physiological articulatory model, speech production, acoustic model, 
speech synthesis, Chinese vowel. 

1   Introduction 

The first synthesizer was constructed by Kratzenstein in 1779, which was a mechanical 
model composed of the vocal tract, glottal and lung. Since then, speech synthesis has 
gone through the stages: mechanical machine, circuit based method, electronic based 
facilities, and ultimately computer based algorithms.  

Before 1990’s, the mainstream of speech synthesis was formant based synthesis, 
which requires small memory and less computation resource, because of the limitation 
of computer power. With the development of computer science and speech technology, 
concatenative synthesis based on large-scale corpus becomes popular due to its priority 
in synthesizing fairly intelligible and natural speech sounds. However, this kind of 
synthesizer heavily depends on the prerecorded speech corpus and lacks flexibility to 
generate various styles of speech, especially emotional and personalized speech, with 
high quality. 

One alternative to solve these kinds of problems is articulatory based synthesis, 
which generates speech sounds by imitating the mechanisms of speech production of 
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human. In this paper, a framework of articulatory synthesis is presented based on a 
physiological model. 

2   Physiological Model 

A partial 3D model with a thick sagittal layer of the tongue has been constructed based 
on volumetric MR images using an extended finite element method (X-FEM), where 
the MR images are obtained form a male Japanese speaker. The outlines of the tongue 
are extracted from two sagittal slices: one is the midsagittal plane and the other is a 
plane 1.0cm apart from the midsagittal on the left side. The outline of left side is 
duplicated to the right side with an assumption that the left and right sides of the tongue 
are symmetrical.  

Mesh segmentation of the tongue tissue roughly copy the fiber orientation of the 
genioglossus. The outline in each sagittal plane is divided into 10 radial sections which 
fan out from the attachment of the genioglossus on the jaw to the tongue surface. While 
in perpendicular direction, the tongue is divided into 6 sections. Eventually, a 3D mesh 
model is built by connecting the intersection nodes in the midsagittal plane to 
corresponding nodes on the left and right side, accordingly, each mesh is a brick with 8 
corners. Fig. 1 illustrates the tongue model based on this segmentation. Ultimately, the 
tongue tissue is represented as 120 hexahedrons, each hexahedron is modeled by 28 
viscoelastic solid cylinders (12 edges, 2 cross-wise connection in each surface of the 
hexahedron, and 4 connections between 8 diagonal vertices inside the hexahedron), 
which have not only masses but also volumes.  

Fig. 1. The oblique view of the physiological articulatory model  



 Speech Synthesis Based on a Physiological Articulatory Model 213

To generate the shape of the vocal tract, an articulatory model should include the 
lips, teeth, tongue, hard palate, soft palate, pharyngeal wall and larynx. At present, the 
lips and soft palate are taken into account when constructing area function for the vocal 
tract, though they are not modeled physiologically.  

Outlines of the vocal tract wall and mandibular symphysis are extracted from MRI 
images in the midsagittal and parasagittal planes (0.7 and 1.4cm form the midsagittal 
plane one the left side), then copy the configuration of the left side to the right side. The 
model for the articulators is shown in Fig. 1 [2].  

3   Control Mechanism 

The extrinsic muscles (genioglossus, geniohyoid, hyoglossus, styloglossus) and 
intrinsic muscles (superior longitudinalis, inferior longitudinalis, transversus, and 
verticalis) of the tongue, as well as the rigid organs (jaw and hyoid bone), are taken into 
account for manipulating the motion of the articulatory model.  

To drive the physiological articulatory model, a target-based strategy has been 
developed. It consists of two parts: one is muscle workspace [3], and the other is an 
equilibrium position mapping (EP-map) [2]. Several representative points are chosen to 
represent the motion of the model, namely control points, which are used to control the 
shape and/or position of the tongue and the jaw. They are the apex of the tongue in the 
midsagittal plane for the tongue tip, a weighted average position of the highest three 
points of the midsagittal plane in the vocalic configuration for the tongue dorsum, a 
point 0.5cm inferior to the tip of the mandible incisor for the jaw. 

The EP-map associates muscle forces with the equilibrium position of control points, in 
spite of where the start position is. That’s to say, if a certain force is given to a specific 
muscles, the control points are bound to converge to their equilibrium positions no matter 
where they start from (see [2] for the details). It reflects a static force for control of the 
model. Fig.2 shows the EP-map for the tongue tip and tongue dorsum.  

Fig. 2. EP-maps of the muscle activation and articulator location: (a) EP-map for tongue tip (b) 
EP-map for tongue dorsum. The curves spreading out from the central point are the    trajectory of 
the equilibrium position for the control points as the activation force increases from 0 to 6 N. 
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The muscle workspace is a description of the relationship between the muscle 
activation and the displacement of control points of the articulators. It accounts for the 
dynamic characteristics of articulation by reducing the distance between the current 
position and target for each control point with the stepwise method. At first, four typical 
muscle workspaces are set up for both the tongue tip and tongue dorsum respectively, 
and two muscle workspaces for the jaw, as shown in the left panel of Fig.3. Then, a 
dynamical muscle workspace for the current position is derived by a nonlinear 
interpolation based on the typical muscle workspaces. When projecting the articulatory 
vector of current point (Pc) to the target (Tg) onto the dynamic muscle workspace, a 
force projection is generated for each muscle. Only the projection that positively 
correlates to the articulatory vector is taken into account for the control (see [3], [4] for 
the details). 

(a) (b)

Fig. 3. Muscle workspace. (a)Typical muscle workspaces for the tongue tip, tongue dorsum and 
jaw (b) an example for estimation of force vector based on the muscle workspace. 

4   Underlying Acoustic Model 

By far, the physiological model and its control strategy have been briefly introduced. 
For given targets, the articulators are driven to the desired position by appropriate 
muscle contraction under the control of the strategy, and the shape of the vocal tract is 
formed by the surfaces of the articulators.  

In order to facilitate estimating the acoustic features of the vocal tract, a gridline 
system is adopted to describe the width of the vocal tract in the midsagittal and 
parasagittal plane (as shown in the left panel of Fig. 4, gridline system consists of the 
thin lines), which are used to estimate the area function with the improved α β−
model (see [5] for the details). Ultimately, the vocal tract is divided into 30 sections 
according to the representation based on the gridline system. As for the nasal cavity, it 
is divided into 12 sections. Most of these sections have constant cross-sectional areas,  
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except the sections around the nasal-pharyngeal port. And for each section, both in the 
nasal cavity and in the vocal tract, a transmission line model is adopted to simulate its 
characteristics, which is described by the following equations: 
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Where jP , rP  are the pressures at the middle and right end of the jth sub-tube 

respectively, jA is the cross-sectional area of the jth sub-tube, 0 jA is the 

cross-sectional area of the jth sub-tube when the vocal tract wall is at its equilibrium 

position, v is the velocity of air particles within the jth sub-tube, jS  is the perimeter of 

the jth sub-tube, 0ρ  is the air density at the equilibrium state, 1 andj jU U+ are 

volume velocities, and have the relationship with jv and 1jv + : j j jU v A= ,

1 1 1j j jU v A+ + += , where jv and 1jv +  are the particle velocity at the inlet and outlet of 

the jth sub-tube respectively; jm , jb and jk are mass, viscosity, and mechanic 

capacity of the wall per unit length of the jth sub-tube respectively, and y is the 

displacement of the vocal tract wall. Here, equation 1 reveals the relationship based on 
Newton second law, equation 2 reflects the law of mass conservations, equation 3 is the 
gas law, and equation 4 discloses the phenomenon of wall vibration. To simplify 

equation 1 and 2, the volume velocity U  within the jth section is represented by jU

for the left part and 1jU +  for the right part, while the pressure P within the sub-tube is 

represented by the pressure, jP , at the middle of the sub-tube. Eventually, the 

following equations are derived for the transmission line model of a single uniform 
sub-tube: 
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, then the equivalent circuit unit is built in the right 

panel of Fig. 4. Therefore, a transmission line model for the supra-glottal system is 
obtained by cascading all the sub-tubes (as shown in the bottom panel of Fig. 4). The 
branch for the nasal cavity only exists in producing nasal sounds. The details for 
calculating the volume velocity and pressure in each sub-tube and the performance of 
the acoustic system are described in [9]. 

(a) (b)

(c)

Fig. 4. The supra-glottal system and its transmission line model. (a) The profile of the vocal tract 
for producing sound . The thin lines set up the gridline system, which partition the vocal tract 
into 3 major parts: polar system part, horizontal part and vertical parts. (b) Transmission line 
model for a sub-tube (c) Transmission line model for supraglottal system (adopted from [9]).

/È/
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As for the piriform fossa, a side branch behind the larynx, and the nasal sinuses, 
whose details were reported in [6], [7], and [8], they are modeled as Helmholtz 
resonators. For a Helmholtz resonator, set the cross-sectional area of the neck is A , the 
length of the neck is l , and the volume of container is V , the following equations are 
derived: 

2
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According to the Newton second law, the following equation is formulated: 
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Where r is the heat capacity ratio, ρ  is the air density, R is the viscous resistance 

caused by the wall of the neck, inP  is the pressure at the inlet of Helmholtz resonator, 

0P  is the undisturbed pressure inside the Helmholtz resonator, and x is the 

displacement of the air column within the neck. Let
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Fig. 5. Helmholtz resonator. l is the length of the neck, A is the cross-sectional area of neck, 
V is volume of Helmholtz resonator. 

At the glottis, a glottal waveform model is used to generate the sound source   for 
voiced sound. Nevertheless, a noise source is generated at the constriction along the 
vocal tract for the voiceless noise (turbulence) [9]. 
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5   Speech Synthesis 

In above sections, each part of the physiological articulatory model based speech 
synthesizer has been described individually. In this section, the flowchart of speech 
synthesis is given systematically, and synthesis experiments are carried out on Chinese 
single vowels and diphthongs.   

5.1   Flowchart for Synthesis 

To produce a specific speech sound, speakers should have a set of targets, e.g. 
articulatory targets, and move the articulators by activating certain muscles according 
to the targets to generate a specific vocal tract shape, and stimulate the vocal tract with 
proper sources simultaneously. That’s the process of speech production of human. 
Since the purpose of this study is to generate speech sound by simulating human’s 
mechanism, the speech synthesizer has the potential to realize this procedure. Figure 6 
gives the flowchart of the processes involved in the proposed speech synthesizer. First, 
the articulator targets of the control points as well as the parameters for the lip tube and 
source are set according to the properties of phonemes, where the latter ones are used in 
calculating the acoustic characteristics. Then, the static forces are estimated by the 
EP-map at the beginning and exploited to activate the muscles, whereas the dynamic 
forces are calculated based on the muscle workspace stepwise during the articulatory 
movement. As a result, a time-varying vocal tract is obtained, by extracting the outlines 
of the articulators and the side branch of nasal cavity (if nasals are planed). An 
acoustical model is constructed from calculating the area function and adopting the 
transmission line model. Speech sounds are generated by applying a subglottal pressure 
to the acoustical model. In this study, a sub-glottal pressure with 8cm H2O is employed. 
 

Fig. 6. Flowchart for speech synthesis by applying the physiological acoustic model 

5.2   Synthesis of Chinese Vowels and Diphthongs 

In this section, we attempt to synthesize vowels and diphthongs of Chinese with the 
proposed synthesizer. To do so, the first step is to define a target set for the basic elements: 
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vowels and consonants. At present, only vowels and
diphthongs are taken into account [10].

Fig. 7. LPC based spectra for single vowels of Chinese  The solid line 
represents the spectrum envelope of synthetic speech and the dash line represents that 
of real speech sounds (the order is 16 for LPC analysis).

(/a/, /o/, /È/, /i/, /u/, /y/)
(/ai/, /§u/, /ei/, /Èu/, /ia/, /iQ/, /u§/, /uo/, /yQ/)

This physiological articulatory model was derived from a Japanese speaker. To
obtain the targets for Chinese vowels, the difference between Japanese vowels and
their corresponding Chinese vowels was investigated in the articulation level. For

Table .1 The articulatory targets for Chinese vowels (/a/, /o/, /È/, /i/, /u/, /y/). Tt and Td
represent tongue tip and tongue dorsum respectively, where the origin is at the apex of the
upper incisor. (Unit: cm)

(/a/, /o/, /È/, /i/, /u /, /y/).

/a/ /o/

/È/ /i/

/u/ /y/

Jaw_x Jaw_y Tt_x Tt_y Td_x Td_y
/a/ 0.7728 -1.5782 1.5428 -1.5282 6.3428 0.7318
/o/ 0.6328 -1.3182 2.4128 -0.6582 6.7428 1.2618
/È/ 0.3828 -0.5182 1.1228 -0.5682 5.6128 1.2818
/i/ 0.3828 -0.4582 1.0828 -0.7182 4.8328 2.1218
/u/ 0.4528 -0.7382 1.8728 -0.3182 7.8728 1.6818
/y/ 0.4028 -0.4882 1.1128 -0.4782 4.3728 2.1218
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Fig. 8. Spectrogram for diphthongs of Chinese

backward, which result in different positions for the articulators. For /e/, the
corresponding Chinese vowel is /È/, which has a more neutral position, with the
profile of the vocal tract looking like somehow a uniform tube. There is no
corresponding vowel in Japanese for Chinese vowel /y/. However, the articulatory
targets for this vowel can be derived from Chinese vowel /i/ by protruding the lips and
moving the highest point of tongue forward.

/ai/ /§u/

/ei/ /ia/

/iQ/ /Èu/

/u§/ /uo/

/yQ/

(/ai/, /§u/, /ei/, /Èu/, /ia/, /iQ/, /u§/, /uo/, /yQ/).

Japanese vowels /a/, /o/ and /i/, they are almost the same as the corresponding vowels
of Chinese. But for Chinese vowels /u/, the lip protrudes and tongue moves more
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After examining the difference between the Chinese vowels and their corresponding 
Japanese vowels at the articulator level, the targets for Chinese vowels are estimated 
based on the targets of Japanese vowels by means of analysis-by-synthesis method 
manually. The targets for Chinese vowels are listed in Table 1, where the origin is at the 
apex of the upper incisor. Fig. 7 gives the spectra of the synthetic vowels and that of real 
speech, which are calculated by means of LPC. It demonstrates that the spectra of the 
synthetic vowels are consistent with those of the real speech. 

As for the diphthongs, the targets are derived from those of the single vowels. The 
circumstance that coarticulation occurs between the vowels, which constitute the 
diphthongs, is taken into account. Moreover, for Chinese, the coarticulations between 
vowels are always not symmetrical because one of the vowels should be more 
dominant than others in triphthong and diphthongs of Chinese. Therefore, there is a 
requirement for quantifying the degree of coarticulation for each vowel within 
triphthong and diphthong, which is reflected by the deviation from its typical target. 
The targets for the diphthongs are generated based on the above considerations. Fig. 8 
gives the spectrogram of synthesized diphthongs. 

6   Summary 

The goal of this study is to construct a corpus independent speech synthesizer that can 
faithfully realize the mechanism of speech production, so that it can potentially provide 
a way to synthesize speech sounds with a variety of styles. In this paper, a physiological 
articulatory model based speech synthesizer is proposed to synthesize single vowels 
and diphthongs of Chinese.  

As mentioned above, the physiological articulatory model is aimed to realize 
human’s processes of speech production. For given articulatory targets, the muscle 
activation patterns are estimated by EP-map and muscle workspace, and employed to 
drive the articulators to their targets. In this way, a time-varying vocal tract is generated 
and its area function is estimated from the width of the vocal tract in sagittal planes. 
Eventually, the sound is produced by implementing the transmission line model with a 
proper sound source.  

For a primary examination, this framework is employed to synthesize Chinese 
vowels and diphthongs. The results, for the single vowels, illustrate the synthetic sound 
have consistent spectra with real speech sound.  For the diphthongs, most of them show 
proper characteristics in spectrogram. However, for some diphthongs, such as /Èu/ and 
/yQ/, there seems to be some problems with both transitions and the duration for 
individual phoneme. 

These problems can be caused by a number of factors such as the given target, the 
coarticulation between the vowels, and the control strategy of the articulatory model. In 
the future, we will clarify the causes using MRI system and the electromagnetic 
articulography and improve our speech synthesizer. 
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Abstract. In this paper we present our Hidden Markov Model (HMM)-based, 
Mandarin Chinese Text-to-Speech (TTS) system. Mandarin Chinese or 
Putonghua, “the common spoken language”, is a tone language where each of 
the 400 plus base syllables can have up to 5 different lexical tone patterns. Their 
segmental and supra-segmental information is first modeled by 3 corresponding 
HMMs, including: (1) spectral envelop and gain; (2) voiced/unvoiced and 
fundamental frequency; and (3) segment duration. The corresponding HMMs 
are trained from a read speech database of 1,000 sentences recorded by a female 
speaker. Specifically, the spectral information is derived from short-time LPC 
spectral analysis. Among all LPC parameters, Line Spectrum Pair (LSP) has the 
closest relevance to the natural resonances or the “formants” of a speech sound 
and it is selected to parameterize the spectral information. Furthermore, the  
property of clustered LSPs around a spectral peak justify augmenting LSPs with 
their dynamic counterparts, both in time and frequency, in both HMM modeling 
and parameter trajectory synthesis. One hundred sentences synthesized by 4 
LSP-based systems have been subjectively evaluated with an AB comparison 
test. The listening test results show that LSP and its dynamic counterpart, both 
in time and frequency, are preferred for the resultant higher synthesized speech 
quality.    

Keywords: Speech synthesis, Trainable TTS, corpus-based TTS, statistics-based 
TTS, LSP. 

1   Introduction 

HMM-based speech synthesis has been successfully applied to TTS synthesis of many 
different languages, e.g. Japanese and English [1-3]. In this framework, the spectral 
envelop, fundamental frequency, and duration are modeled simultaneously by the 
corresponding HMMs. For a given text sequence, speech parameter trajectories and 
corresponding signals are then generated from the trained HMMs in the Maximum 
Likelihood (ML) sense. HMM is very effective to model the evolution of speech 
signals as a stochastic sequence of acoustic feature vectors. Many techniques have 
been developed for HMM-based speech recognition, e.g. context-dependent 
modeling, state-tying based on decision tree clustering, and speaker adaptation. They 
can be applied equally well to HMM-based speech synthesis in the sense of parameter 
trajectory generation.  
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The current performance of HMM-based speech synthesis has been further 
improved by using dynamic feature constraint in trajectory generation [3] and global 
variance for parameter generation [4], a high quality vocoder called STRAIGHT [5], 
and Hidden Semi-Markov Model duration model [6], , and trajectory model [16] or 
minimum generation error training [17]. Compared with the large corpus based 
concatenative speech synthesis, HMM-based speech synthesis is statistics based and 
vocoded. The speech generated from it is fairly smooth. Characteristics of the 
synthetic speech can be easily controlled by transforming HMM parameters in a 
statistically tractable metric like likelihood function. Furthermore, the small footprint 
of the HMM synthesizer has made it an ideal choice for an embedded system.   

In this paper, we apply HMM-based speech synthesis to Mandarin, a syllabically 
paced tonal language. A tone-dependent phone set and corresponding phonetic and 
prosodic question set of decision tree are designed for HMM training. Line Spectrum 
Pair (LSP) [7], an alternative linear prediction parametric representation, is 
investigated as feature parameter to HMM-based speech instead of mel-ceptral 
features [8]. According to the properties of LSP [9], the speech generation module is 
revised correspondingly. The performances of four systems based on LSPs are tested 
in an AB comparison test. It shows that the System III, which uses LSP and the 
dynamic features of adjacent LSP differences, achieves the better performance than 
the System II, using the conventional method. 

The rest of paper is organized as follows. In Section 2, HMM-based speech 
synthesis system is briefly illustrated; the representation and properties of LSP are 
introduced in Section 3; the speech parameter generation algorithm based on LSP is 
proposed in Section 4; Section 5 shows the experimental evaluation; and the 
conclusions are given in Section 6. 

2   HMM-Based Speech Synthesis System 

The schematic diagram of HMM-based Speech Synthesis system is shown in Figure 1 
where both training and synthesis are shown. 

In the training phase, the speech signal is converted to a sequence of observed 
feature vectors through the module of feature extraction and modeled by a 
corresponding sequence of HMMs. The observed feature vector consists of spectral 
parameters and excitation parameters, which are separated into different streams. The 
spectral feature comprises line spectrum pair (LSP) and log gain, and the excitation 
feature is log fundamental frequency. LSPs are modeled by continuous HMMs and 
F0s are modeled by multi-space probability distribution HMM (MSD-HMM) [10], 
which provides a cogent modeling of F0 without any heuristic assumptions or 
interpolations. Context-dependent phone models are used to capture the phonetic and 
prosody co-articulation phenomena. State typing based on decision-tree and minimum 
description length (MDL) [11] criterion is applied to overcome the problem of data 
sparseness in training. Stream-dependent models are built to cluster the spectral, 
prosodic and duration features into separated decision trees. 



 An HMM-Based Mandarin Chinese Text-To-Speech System 225 

In the synthesis phase, input text is converted first into a sequence of contextual 
labels through the text analysis. The corresponding contextual HMMs are retrieved by 
traversing the trees of spectral and pitch information and the duration of each state is 
also obtained by traversing the duration tree, then the LSP, gain and F0 trajectories 
are generated by using the parameter generation algorithm based on maximum 
likelihood criterion with dynamic feature and global variance constraints. Finally, 
speech waveform is synthesized from the generated spectral and excitation parameters 
by LPC synthesis. 
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Fig. 1. HMM-based speech synthesis 

3   The Properties of LSP 

Line Spectrum Pair (LSP) [7] is an alternative linear prediction parametric 
representation. In LPC analysis, the speech signal is modeled as the output of an all-
pole filter H(z) defined as 

1

1 1
( )

( ) 1
M

i
i

i

H z
A z a z−

=

= =
−

 
(1) 

where M is the order of LPC analysis and 1{ }M
i ia =  are the corresponding LPC 

coefficients. The LPC coefficients can be represented by the LSP parameters, which 
are mathematically equivalent (one-to-one) and more amenable to quantization. LSP 
are calculated as follows: 

( 1) 1( ) ( ) ( )MP z A z z A z− + −= +  (2) 
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( 1) 1( ) ( ) ( )MQ z A z z A z− + −= −  (3) 

The symmetric polynomial P(z) and anti-symmetric polynomial Q(z) have the 
following two properties [9] : 1) All zeros of P(z) and Q(z) are on the unit circle; 2) 
zeros of P(z) and Q(z) are interlaced with each other. These properties are useful for 

finding the LSPs { } 1

M

i i
ω

=
, i.e., the roots the polynomial P(z) and Q(z), which are 

ordered and bounded, 

1 20 Mω ω ω π< < < < <  (4) 

LSP has many advantages for speech representation [9,12,13]:  

1) LSP parameters correlate well to “formant” or spectral peak location and 
bandwidth. The LPC power spectrum and the associated LSPs for vowel /a/ are 
shown in Figure 2, where clustered (two or three) LSPs depict a formant peak, 
in terms of both the center frequency and bandwidth. 

 

Fig. 2. LPC power spectrum and the associated LSPs for vowel /a/ 

2) Perturbation of an LSP parameter has a localized effect, i.e., a perturbation in a 
given LSP frequency only introduces a perturbation of LPC power spectrum in 
its neighborhood.  

3) LSP parameter has a good interpolation property. 

4   LSP Parameter Generation 

In the HMM-based speech synthesis shown in Section 2, the speech parameter 
generation from given HMM state sequence is based on maximum likelihood criterion. 
In order to generate a smoother parameter trajectory, dynamic features are used as a 
constraint in the generation algorithm [3]. For a given HMM λ , it determines a speech 

parameter vector sequence 2[ , , ]TO C C C= Δ Δ , 1 2[ , ,..., ]T T T T
TC c c c= , 

1 2[ , ,..., ]T T T T
TC c c cΔ = Δ Δ Δ , 2 2 2 2

1 2[ , ,..., ]T T T T
TC c c cΔ = Δ Δ Δ , which maximizes: 
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If given state sequence 1 2 3{ , , ,..., }TQ q q q q= , Eq. 5 only need consider maximizing 

the logarithm of ( | , )P O Q λ  with respect to O WC= , i.e., 
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We obtain 
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1 2
[ , ,..., ]

T

T T T T
q q qM m m m=  (9) 

1 2

1 1 1 1[ , ,..., ]
Tq q qU diag U U U− − − −=  (10) 

D is the dimension of feature vector and T is the total number of frame in the 
sentence. W is a block matrix which composes of three DT DT× matrices: Identity 
matrix ( FI ), delta coefficient matrix ( FWΔ ) and delta-delta coefficient matrix ( FWΔΔ ). 

M  and U are the 3 1DT ×  mean vector and the 3 3DT DT× covariance matrix, 
respectively.   
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As mentioned in Section 3, a gathering of (two or three) LSPs depicts a formant 
frequency and the closeness of the corresponding LSPs indicates the bandwidth of a 
given formant. Therefore, the distance between the adjacent LSPs is more critical than 
the absolute value of individual LSP. On the other hand, all LSP frequencies are 
ordered and bounded, i.e. any two adjacent LSP trajectories do not cross each other. 
Using static and dynamic LSPs in modeling and generation can not ensure the 
stability of LSPs. Consequently, we add the difference of adjacent LSP frequencies 
directly into spectral parameter modeling and generation. The W, which is used to 
transform the observation feature vector, is modified as 

[ ], , , , ,
T

F DF F F DF F F DFW I W W W W W W WΔ Δ ΔΔ ΔΔ=  (11) 

where F is static LSP; DF is the difference between adjacent LSP frequencies; 
FΔ and FΔΔ  are dynamic LSPs, i.e., first and second order time derivatives; and 

DFW  is ( 1)D T DT− ×  matrix and constructed as 

1 1

1 1

DFW

−
−

=  
(12) 

In this way, the correlation of adjacent LSPs can be modeled and diagonal 
covariance structure is still kept the same.  

5   Experimental Evaluations 

5.1   Experimental Setup 

A broadcast news style speech corpus recorded by a female speaker is used in this 
study. The training data composes of 1,000 phonetically and prosodically rich 
sentences [14]; while the testing data consists of 100 sentences. Speech signal are 
sampled at 16 kHz, windowed by 25-ms window with a 5-ms shift, and transformed 
into 24th-order LSPs and their dynamic features in both frequency and time. 

5-state,left-to-right HMMs with single, diagonal Gaussian distribution is adopted 
for phone model training. The phone set used is Ph97 [15], which achieved better 
performance than the other phone set in Mandarin tonal syllable recognition task. In 
Ph97, each Chinese tonal syllable is divided into a consonant followed by two 
consecutive tonal sonorant segments, e.g. /huang4/ is decomposed into /hu/, /aaH/ and 
/ngH/. Here, the glides like /i/ and /u/ are assigned to the Initial part and 2-scales 
(High/Low) pitch label is used instead of five numerical scales. The phone set 
designed in this way can carry tone information in the modeling at a little extra cost of 
the phone inventory size. 
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The phonetic and prosodic factors, which are used as question set in decision tree 
growing for contextual state tying, are listed as following 

1) {preceding, current, succeeding} phone 
2) Break index after the current word, three indices: minor, medium and major 

breaks, are used. 
3) tone label (in 5-categories) of {preceding, current, succeeding} syllable 
4) Position of a phone in a syllable 
5) Position of a syllable in a “prosodic word” which are sandwiched by minor 

breaks 
6) Position of a syllable in a breath group phrase which are limited by major 

breaks 
7) Length of the current breath group phrase in terms of number of syllables 

5.2   Experiments and Results 

Four synthesis systems based on LSP features are built for comparison.   

System I: 
The W generating the observation feature in O WC= is constructed as 

[ ], , , , ,
T

F DF F F DF F F DFW I W W W W W W WΔ Δ ΔΔ ΔΔ=   

where W is a 6DT DT× matrix. Considering the higher orders of LSP are almost 
evenly spaced and most of speech formants are located below 4kHz, only the 
lower 16 out of 24 LSPs are used to compute DF (the distance between the 
adjacent LSPs). Therefore, the total dimension of observation feature vector is 126 
(120 for LSP, 3 for gain and 3 for F0).   

System II: 
In this system, the observation feature vector is computed in conventional method. 
It consists of static, first and second order time derivatives. The corresponding W 
is defined as 

[ ], ,
T

F F FW I W WΔ ΔΔ=  

The total dimension of observation feature vector is 78. 

System III: 
In order to make the results comparable with system II in feature dimensions, we 
only use the static and dynamic features of LSP difference (in frequency) as 
observation vector. The W is modified as 

 

[ ], ,
T

F F DF F DFW I W W W WΔ ΔΔ=  

Here, the total dimension of observation feature vector is equal to that of system II.  

System IV: 
40th -order LSP are used instead of 24th -order LSP in System II. 
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One hundred sentences are synthesized by the above four systems and evaluated in 
a subjective test. Fifty out of the one hundred sentences are randomly selected for an 
AB comparison preference test. Eight subjects are forced to choose one which sounds 
more natural from each pair. The results of the preference test are given in Figure 3, 
where shows:  

a) System I achieves a better performance than System II. Modeling the 
difference of adjacent LSP frequency (DF) is very critical in reproducing the 
salient features of speech spectrum in HMM-based speech synthesis. 

b) System III gives almost the same performance as System I. But the 
dimensionality of feature vector in System III is much less than that of System 
I.  It indicates that with/without dynamic features of LSP frequency difference 
is critical to the performance of system. 

c) System IV slightly improve the performance comparing with system II, i.e., 
the performance improvement by using a higher order LSP is marginal. 

 

Fig. 3. The results of AB Test for four systems 

5.3   Analysis 

To analyze experimental results, we plot the spectra of synthesized and original 
speech signals for comparison. However, the duration of generated utterance can be  
 

different from that of the original since only means of state duration models are used 
in speech generation. An oracle experiment is designed to compare the spectra by 
isolating the effect of duration difference. A sequence of states, which are obtained by 
force-aligning the original feature observations with the spectral and pitch models, is 
used as Q in Eq. 6 for speech parameter generation. In this way, the spectra can be 
compared on a frame-by-frame basis between two different systems. An example of 
spectral comparison, LPC power spectra for vowel /u/ , is given in Fig. 4, where the 
bold dotted line, dotted line and solid line represent the spectra of the original, System 
II and System III, respetively. The log power spectrum is plotted in dB scale and 25dB  
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Fig. 4. LPC power spectra for vowel /u/ from original waveform, System II and System III 

offset is used for separating adjacent frames. In Fig. 4 the formant structure of the  
generated spectra of System II is sharper and closer to the original spectra than that of 
System III. 

6   Conclusions 

We present our HMM-based Text-to-Speech system for Mandarin Chinese synthesis 
in this paper. A tone-dependent phone set, Ph97, is employed in training HMMs with  
phonetic and prosodic question set in corresponding decision trees. We adopted LSP 
frequencies as acoustic spectral features for training HMMs. Subjective AB 
comparison preference test show that using LSPs and the dynamic features of 
adjacent LSPs in frequency considerably improve the quality of synthetic speech, in 
comparing with the conventional method. 
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Abstract. This paper presents a technique for synthesizing emotional speech 
based on an emotion-independent model which is called “average emotion” 
model. The average emotion model is trained using a multi-emotion speech da-
tabase. Applying a MLLR-based model adaptation method, we can transform 
the average emotion model to present the target emotion which is not included 
in the training data. A multi-emotion speech database including four emotions, 
“neutral”, “happiness”, “sadness”, and “anger”, is used in our experiment. The 
results of subjective tests show that the average emotion model can effectively 
synthesize neutral speech and can be adapted to the target emotion model using 
very limited training data. 

Keywords: average emotion model, model adaptation, affective space. 

1   Introduction 

With the development of speech synthesis techniques, the intelligibility and natural-
ness of the synthetic speech has been improved a lot in the last decades. However, it 
is still a difficult problem for the TTS system to synthesize speech of various speakers 
and speaking styles with a limited database. It is known that the HMM-based speech 
synthesis can model speech for different speakers and speaking styles, and voice char-
acteristics of the synthetic speech can be converted from one speaker to another by 
applying a model adaptation algorithm, such as the MLLR (Maximum Likelihood 
Linear Regression) algorithm, with a small amount of speech uttered by the target 
speaker [1], [2], [3]. Furthermore, the HMM-based emotional speech synthesis sys-
tems have been successfully constructed by directly training the models with enough 
emotion data or adapting the source model to the target emotion model when only a 
limited training data is available [4], [5]. 

We have realized a HMM-based speech synthesis system in which the LSP (Line 
Spectral Pair) coefficients and the STRAIGHT analysis-synthesis algorithm are em-
ployed [6], [7]. Then, by realizing the MLLR-based model adaptation algorithm, we 
provide our synthesis system with the ability of synthesizing voice of various speak-
ers with different styles [8]. As only a very limited amount of emotion training data is 
acquired, we use the model adaptation method to construct our emotional speech 
system. Commonly, the source model for emotion adaptation is trained using only 
neutral speech data. But in this paper, we train an emotion-independent model using a 
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multi-emotion speech database, which includes the neutral, happy and sad speech data 
of a female speaker. Compared with the neutral model, the average emotion model 
which considers the distributions of all emotions in the training data is a better cover-
age of the affective space. In fact, it takes the possible distribution of the target emo-
tion into account, so it can achieve a better adaptation performance than the neutral 
model. The average emotion model is obtained using a shared decision tree clustering 
method which assures all nodes of the decision tree always have training data of all 
emotions [9]. Then we adapt the average emotion model to the target emotion model 
using a small amount of target speech data and generate the target synthetic speech. 

In the following part of this paper, a description of our HMM-based emotional 
speech synthesis system is presented in section 2. Section 3 presents the speech data-
base information, the training set design and the results of subjective experiments, 
while section 4 provides a final conclusion. 

2   System Description 

The framework of our HMM-based emotional speech synthesis system, shown in 
Figure 1, is the same as the conventional HMM-based synthesis system except that an 
average emotion model is used as the source model and a MLLR-based model adapta-
tion stage, using context clustering decision tree and appropriate regression matrix, is 
added between the training stage and the synthesis stage. 

In the training stage, the LSP coefficients and the logarithm of fundamental fre-
quency are extracted by the STRAIGHT analysis. Afterwards, their dynamic features 
including delta and delta-delta coefficients are calculated. The MSD (multi-space 
probability distribution) HMMs are introduced to model spectrum and pitch patterns 
because of the discontinuity of pitch observations [10]. And state durations are mod-
eled by the multi-dimensional Gaussian distributions [11]. To obtain the average 
emotion model, firstly, the context-dependent models without context clustering are 
separately trained for each emotion. Then all these context-dependent emotion models 
are clustered using a shared decision tree and the Gaussian pdfs of the average emo-
tion model is calculated by tying all emotions’ Gaussian pdfs at every node of the 
tree. Finally, state duration distributions of the average emotion model are obtained 
under the same clustering procedure. 

In the adaptation stage, the spectrum, pitch and duration HMMs of the average 
emotion model are all adapted to those of the target emotion. To achieve superseg-
mental feature adaptation, the context decision tree constructed in the training stage is 
used to tie regression matrices. And because of the correlations between the LSP 
coefficients of adjacent orders, the appropriate regression matrix format is adopted 
according to the different amount of training data. At first, the spectrum and pitch 
HMMs are adapted to the target emotion HMMs. Then, on the basis of the converted 
spectrum and pitch HMMs, the target emotional utterances are segmented to get the 
duration adaptation data. So that the duration model adaptation can be achieved. 

In the synthesis stage, according to the given text to be synthesized, a sentence 
HMM is constructed by concatenating the converted phoneme HMMs. From the sen-
tence HMM, the LSP and pitch parameter sequences are obtained using the speech 
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parameter generation algorithm, where phoneme durations are determined based on 
the state duration distributions. Finally, the generated parameter sequences of spec-
trum, converted from the LSP coefficients, and F0 are put into the STRAIGHT de-
coder to synthesize the target emotion speech. 

 

Fig. 1. HMM-based emotional speech synthesis system 

3   Experiment and Evaluation 

3.1   Speech Database 

We constructed a multi-emotion Chinese speech database of a female speaker includ-
ing four emotions, “neutral”, “happiness”, “sadness” and “anger”. There are phoneti-
cally balanced 1200 sentences for “neutral” and 400 sentences for each of the other 
emotions. Contexts of all the emotion samples are different from each other. Firstly, 
we evaluated whether the recorded speech samples were uttered in the intended emo-
tions. All the speech samples were randomly presented to ten listeners, and the listen-
ers were asked to select an emotion from the four emotions. The listeners were asked 
to recognize the emotion of speech samples not by contexts but by acoustic presenta-
tions. Table 1 shows the classification rates for each emotion of the recorded speech. 
We can find that most of the recorded speech can successfully represent the intended 
emotions. 
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Table 1. Classification results of the recorded natural speech 

Classification (%) 
 

Neutral Happy Sad Angry 

Neutral 96.0 2.0 1.0 1.0 

Happy 7.0 85.5 0.5 7.0 

Sad 5.0 0 91.0 4.0 

Angry 1.5 6.0 1.0 91.5 

3.2   Training Set Design 

In order to realize an average emotion model, a good coverage for the affective space 
of the training data is expected. The affective space can be described with Russell’s 
circumplex model [12], [13]. As illustrated in Figure 2, Russell has developed a 
 

 

Fig. 2. Circumplex model of affect as described by Russell (1980) 

two dimensional circumplex model of affection that makes it straightforward to clas-
sify an emotion as close or distant from another one. He called the two dimensions 
“valence” and “arousal”. These terms correspond to a positive/negative dimension 
and an activity dimension respectively. As the multi-emotion database can only con-
tain several kinds of emotions sampled from the affective space, it is important to 
choose the most representative emotions for training. In our experiment, the multi-
emotion database has four emotions, neutral, happiness, sadness, and anger.  We de-
cide to use the speech data of neutral, happiness and sadness as the training data for 
the average emotion model, because happiness that is a very positive emotion with 
high arousal and sadness that is a very negative emotion with low arousal almost are 
two corresponding emotions and can be a rational representation of the affective 
space. Meanwhile, the angry speech data is left for model adaptation and evaluation. 
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3.3   Experimental Conditions 

The average emotion model is trained by 300 sentences of each emotion, including 
neutral, happy and sad, selected from the multi-emotion database. A neutral model is 
trained by 1000 neutral sentences selected from the multi-emotion database for com-
parison. And 100 angry sentences are used for the model adaptation and evaluation. 
The speech is sampled at a rate of 16KHz. Spectrum and pitch is obtained by the 
STRAIGHT analysis. Then they are converted to the LSP coefficients and the loga-
rithm F0 respectively, and their dynamic parameters are calculated. Finally, the fea-
ture vector of spectrum and pitch is composed of the 25-order LSP coefficients  
including the zeroth coefficient, the logarithm F0, as well as their delta and delta-delta 
coefficients. We use the 5-state left-to-right no-skip HMMs in which the spectral part 
of each state is modeled by the single diagonal Gaussian output distributions. The 
duration feature vector is a 5 dimensional vector, corresponding to the 5-state HMMs, 
and the state durations are modeled by the multi-dimensional Gaussian distributions. 

3.4   Experiments on the Average Emotion Model and the Neutral Model 

Table 2 shows the number of distributions of the average emotion model and the 
neutral model after decision tree context clustering. Here, we set the weight for ad-
justing the number of parameters of the model during the shared decision tree context 
clustering as 0.6. From the table, it can be seen that the two models have comparable 
distributions. 

Table 2. The number of distributions after context clustering 

 Neutral  Model Average Emotion Model 

Spectrum 3247 3115 

F0 4541 5020 

Duration 599 589 

50 sentences of the synthetic speech generated by each model were also presented 
to 10 listeners to choose the emotion from the four emotions and the result is illus-
trated in Table 3. It can be found that both the two models can effectively synthesize 
neutral speech. However, the result of the neutral model is a little better than that of  
 

Table 3. Classification results of the synthetic speech generated by the neutral model and the 
average emotion model 

Classification (%) 
 

Neutral Happy Sad Angry 

Neutral Model 92.2 5.7 2.1 0 
Average Emotion 

Model 
84.2 5.0 10.1 0.7 
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the average emotion model. Some of the synthetic speech generated by the average 
emotion was misrecognized as sad. That may be because sadness has a better expres-
sion than happiness in the training data, as shown in Table 1, so that the average emo-
tion model has a slight bias towards sadness. 

3.5   Experiments on the Emotion Adaptation 

In the model adaptation stage, the neutral model or the average emotion model is 
adapted to the target emotion model with 50 angry sentences which are not included 
in the adaptation training data. The 3-block regression matrix is adopted and the re-
gression matrices are grouped using a context decision tree clustering method. First, 
10 listeners were asked to recognize the emotion of 50 synthetic speech samples  
generated by the two methods from the four emotions. The classification results are 
presented in Table 4. It can be found that about 70% of the synthetic speech can by 
successfully recognized by the listeners and the average emotion model has a better 
adaptation performance. 

Table 4. Classification results of the synthetic speech generated by the angry model adapted 
from the neutral model and the average emotion model 

Classification (%) 
 

Neutral Happy Sad Angry 

Neutral Model 16.7 2.3 10.4 70.6 
Average Emotion 

Model 
13.1 3.4 10.0 73.5 

Compared to the speech synthesized by the adapted average emotion model, some 
speech samples generated by the adapted neutral model sound to be not natural especially 
in prosody. Figure 3 demonstrates the F0 contours of the synthetic speech generated from 
the adapted neutral model and the adapted average emotion model respectively, mean-
while the F0 contour of the target speech is also presented. The dotted red line pre-
sents the F0 contour generated from the adapted neutral model while the solid  
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Fig. 3. Comparison of F0 contours generated by the angry model adapted from the neutral 
model and the average emotion model 
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blue line is the result of the adapted average emotion model and the solid black line is 
the F0 contour of target speech. We can see that the values of F0 generated from the 
adapted average emotion model are more similar to those of the target speech. 

4   Conclusion 

A HMM-based emotional speech synthesis system is realized using a model adapta-
tion method. At first, an average emotion model is trained using a multi-emotion 
speech database. Then, the average emotion model is adapted to the target emotion 
model with a small amount of training data using a MLLR-based model adaptation 
technique in which a context decision tree is built to group HMMs of the average 
emotion model. To compare the performance of the proposed method, a neutral model 
is also trained and adapted. From the results of the subjective tests, it can be seen that 
both methods can effectively synthesize the intended emotion speech. In addition, the 
adaptation performance of the average emotion model is slightly better than that of 
the neutral model. 

If having more emotional speech data, there will be a better coverage of the affec-
tive space, so we can train a more reasonable average emotion model. Our future 
work will focus on increasing the number of emotion categories in the multi-emotion 
database and improving the performance of the average emotion model. At the same 
time, various emotions will be selected as the target emotion to evaluate the effective-
ness of the average emotion model. 
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Abstract. In this paper, the implementation of a Hakka text-to-speech (TTS) 
system is presented. The system is designed based on the same principle of 
developing a Mandarin and a Min-Nan TTS systems proposed previously. It 
takes 671 base-syllables as basic synthesis units and uses a recurrent neural 
network (RNN) based prosody generator to generate proper prosodic 
parameters for synthesizing natural output speech. The whole system is 
implemented by software and runs in real-time on PC. Informal subjective 
listening test confirmed that the system performed well. All synthetic speeches 
sounded well for well-tokenized texts and fair for texts with automatic 
tokenization.  

1   Introduction 

In Taiwan, there are three major languages including Mandarin, Min-Nan/Taiwanese 
and Hakka. Over 90% people speak Mandarin, about 70% whose mother-tongue are 
Taiwanese, and only 10% speak Hakka. In the past, there are only few studies in both 
Min-Nan and Hakka TTS [1-5]. This is due in part to the lack of a unified written-
form representation and in part to the difficulty of collecting a large speech database. 
In recent years, Taiwan government started to pay more attention to mother-tongue 
education such as Taiwanese and Hakka. This motivates us to accomplish the Min-
Nan and Hakka TTS system. In previous studies, we have built a Mandarin and a 
Min-Nan TTS systems [1-6]. In this study, we try to use the same technique to 
implement a Hakka TTS system. 

Hakka includes several sub-dialects, namely Hoi-Liuk, Si-Rhan, Ta-Pu, etc. We 
choose Si-Rhan in this study. Just like Mandarin and Min-Nan, Hakka speech is a 
monosyllabic and tonal language. Each character is pronounced as a syllable carrying 
a lexical tone. There are only 671 base-syllables and 6 tones. Fig. 1 shows typical 
pitch frequency contours of these 6 tones. These 671 base-syllables also have the 
same initial-final structure like Mandarin and Min-Nan base-syllables. There are 17 
initials and 72 finals.  Although Hakka speech has similar linguistic characteristics as 
Mandarin speech, it does not have a standard written form like Min-Nan speech. The 
written form is a hybrid one which uses Chinese characters to represent ordinary 
words and represents some extraordinary syllables in the Romanization form. 
Unfortunately, the system to represent words in Chinese characters is still not  
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Fig. 1. Typical pitch contours of 6 tones for Si-Rhan Hakka 

standardized nowadays in Taiwan. This makes the text analysis very difficult for 
Hakka language. 

In this paper, a study of developing a Hakka TTS system is presented. Since Hakka 
speech has similar linguistic characteristics as Mandarin and Min-Man speech, the 
system is designed based on the same principle as that used in our previous Mandarin 
and Min-Nan TTS system developments [1-6]. The system consists of four main 
parts: text analyzer, RNN-based prosody generator, waveform table, and PSOLA 
speech synthesizer. It tokenizes the input text into a word sequence in text analyzer, 
takes all 671 base-syllables as the basic synthesis units and stored in waveform table, 
adopts the RNN-based approach to generate prosodic parameters, and uses the 
PSOLA synthesis method to generate the output synthetic speech.  

The paper is organized as follows. Section 2 presents the proposed Hakka TTS 
system. All functional blocks of the system are discussed in detail. Experimental 
results to evaluate the system performance is discusses in Section 3. Some 
conclusions are given in the last section. 

2   System Description 

Fig. 2 shows a block diagram of the proposed Hakka TTS system. The system 
consists of four main parts: a text analyzer, an RNN-based prosodic generator, a 
waveform table of 671 base-syllables, and a PSOLA speech synthesizer. Input text is 
first analyzed in the text analyzer to obtain word, POS and syllable sequences. The 
basic waveform sequence corresponding to the syllable sequence is then formed by 
looking up the waveform table. Some linguistic features are extracted from the word 
and POS sequences and used in the RNN-based prosody generator to generate 
prosodic parameters. Lastly, the basic waveform sequence is modified in PSOLA by 
using the prosodic parameters to generate the output synthetic speech. We discuss 
these four main blocks in detail as follows. 
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Fig. 2. A block diagram of the Hakka TTS system 

2.1   Text Analyzer  

The task of the text analyzer is to analyze the input text to extract some linguistic 
features. In this study, input text is represented in a hybrid written form of Hakka. 
Each text is a concatenation of words. Each word is a concatenation of Chinese 
characters and/or monosyllables represented in Romanization form. Each Romanized 
monosyllable is an alphabet sequence. The text analyzer first tags the input text to 
obtain the word sequence represented by the Big-5 code by using a statistical model 
based method to find the best word and POS sequence simultaneously. Here, a 34541-
word lexicon, containing 1- to 8-syllabic words, and a long-word-first criterion are 
employed to segment and tokenize the Big-5 code sequence into word sequence. POS 
bigram model calculated from a database containing utterances of short sentences and 
paragraphic text are used in the tagging process.  

After obtaining the optimal word and the associated POS sequence, we then use 
two additional bracketing rules to construct two types of compound words which are 
not contained in the lexicon. One is for the character-duplicated compound word and 
the other is for determiner-measure compound word. 

Two sets of linguistic features are then extracted from the word sequence. One is 
the syllable sequence, which is extracted from the word sequence by looking up the 
lexicon. It will be used in waveform table to obtain the basic waveform sequence. The 
other consists of two subsets of syllable-level and word-level linguistic features and is 
used in the RNN-based prosody generator to synthesize proper prosodic parameters. 
The subset of syllable-level linguistic features contains four sequences of the initial 
consonant types of the syllables, the final vowel types of the syllables, tones of the 
syllables, and the position of the syllables in the corresponding words. The subset of 
word-level linguistic features includes the POS sequence, word lengths and 
punctuation marks. 
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2.2   RNN-Based Prosody Generator 

The function of the RNN-based prosody generator is to produce proper prosodic 
parameters by using the linguistic features generated by the text analyzer. Fig. 3 
shows a block diagram of the RNN-based prosody generator. The RNN has the same 
architecture as the one used in our previous Mandarin TTS and Min-Nan TTS studies. 
It is a four-layer network with one input layer, two hidden layers, and one output 
layer. It generates all prosodic parameters required in our system. They include pitch 
contour of syllable, energy level of syllable, initial and final durations of   syllable, 
and inter-syllable pause duration. It can be functionally decomposed into two parts. 
The first part consists of the input layer and the first hidden layer and is taken as a 
prosodic model to explore the prosodic phrase structure of the synthetic speech by 
using the input word-level linguistic features. It operates in a word-synchronous mode 
using word-level input linguistic features including 47 types of POS, word lengths, 
and 2 types of punctuation mark extracted from the context of the current word. The 
second part consists of the second hidden layer and the output layer. It operates in a 
syllable-synchronous mode using syllable-level input linguistic features including 
tones, initial types, final types, and syllable location in a word extracted from the 
context of the current syllable. In this study, RNN of this architecture has been proven 
in previous studies to be effective on exploring the contextual information of the input 
linguistic features for generating proper output prosodic parameters. So we choose it 
in this study. 

 

Fig. 3. A block diagram of the RNN-based prosody generator 

2.3   Waveform Table 

The function of the waveform table is to provide the basic primitive waveforms of the 
synthetic speech. It stores waveform templates of all 671 base-syllables, which are the 
basic synthesis units used in our system. All these waveform templates are obtained 
from isolated-syllable utterances pronounced clearly by a female speaker. All speech 
signals are direct digital recorded using a PC with a sound card. The sampling rate is 
16 kHz. In synthesis, all constituent waveform templates of the input syllable 
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sequence are extracted from the waveform table, directly concatenated together, and 
sent to PSOLA for prosody modification. 

2.4   The PSOLA Speech Synthesizer 

The PSOLA speech synthesizer is widely used in TTS. It can generate high quality 
synthetic speech in low computational complexity. The function of the PSOLA 
speech synthesizer is to generate the output synthetic speech by modifying the input 
basic primitive waveform sequence to make its prosodic parameters match the target 
ones generated by the RNN prosody generator. Prosody modifications include 
changing the pitch contour for each syllable, adjusting the durations of the initial 
consonant and the final vowel of each syllable, scaling the energy level of each 
syllable, and setting the inter-syllable pause duration. Finally, output the synthetic 
speech from a 16-bit Sound Blaster card. 

3   Experimental Results 

Performance of the proposed Hakka TTS system was examined by simulation using a 
single female speaker database. The database contains 316 utterances. The total 
number of syllables is 47408. Besides, a set of 671 isolated base-syllable utterances 
was recorded for developing the waveform table. All speech signals were digitally 
recorded in a 16 kHz rate. All the speech signals and the associated texts were 
manually pre-processed in order to extract the acoustic features and the linguistic 
features required to train and test the system. 

We first examined the performance of the RNN prosody generator. Table 1 lists the 
root mean square errors (RMSEs) of the synthesized prosodic parameters. Comparing 
with those obtained in [6] for Mandarin TTS, these RMSEs are a little worse. This 
may come from the larger variations of the prosodic features in this Hakka speech 
database. Fig. 4 shows a typical example of the synthesized prosodic parameters. It 
can be seen from the figure that the synthesized prosodic parameters of most syllables 
matched well with their original counterparts. To evaluate the performance of Text 
Analyzer, Table 2 shows the performance of word segmentation. 

The whole system was implemented by software on a PC with a 16-bit Sound 
Blaster card. An informal subjective listening test using various texts which were not 
included in the database was finally derived to examine the performance of the 

 

Table 1. The RMSEs of the synthesized prosodic parameters  

 Inside 
Test 

Outside 
Test 

F0 Contour 1.9ms 2.2ms 

Pause Duration 56.8ms 65.4ms 

Initial Duration 20.7ms 25.6ms 

Final Duration 42.9ms 45.7ms 

Energy Level 3.7dB 4.3dB 
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Fig. 4. A typical example: the synthesized sequences of  (a) pitch mean(ms), (b) energy 
level(dB), (c) initial duration(ms), and (d) final duration(ms) of syllables as well as (e) inter-
syllable pause duration(ms). The text is 

 

system. Many native Chinese living in Taiwan whose mother-tongue is Hakka 
confirmed that all synthesized speeches sounded well for well-tokenized texts and fair 
for texts with automatic tokenization. 
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Table 2. Performance for word segmentation 

N1(hand-segmented word number) 25306 

N2(TA-segmented word number) 26039 

N3(correct TA-segmented word number) 20910 

Recall(N3/N1) 82.63% 

Precision(N3/N2) 80.3% 

4   Conclusions 

We have presented the implementation of a Hakka TTS system in this paper. The 
system was designed based on the same principle of developing a Mandarin and a 
Min-Nan/Taiwanese TTS systems proposed previously. Experimental results 
confirmed that the system performed well. Further studies to improve the naturalness 
of the synthetic speech by incorporating a more sophisticated text analysis scheme 
and by adding some tone sandhi rules are worthwhile doing in the future. 
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Abstract. This paper presents a modified noise reduction algorithm
for speech enhancement based on the scheme of null-forming. A fixed
infinite-duration impulse response (IIR) filter is designed to calibrate the
mismatch of the microphone pair. To weaken the performance degrada-
tion caused by narrow-band effect, the signal is decomposed into several
specified sub-bands with auditory characters. This increases the signal
to noise ratio (SNR) considerably while preserving the auditory effect.
Experiments are carried out to show the effectiveness of these processes.

1 Introduction

The performance of speech communication and automatic speech recognition
(ASR) system is often disturbed by environmental noise. Many techniques fea-
turing microphone arrays have been used to improve the performances mentioned
above by enhancing desired speech signal while suppressing noise and interfer-
ence. Some of these techniques are also of great help to hearing aids.

With the help of microphone arrays, we can choose to focus on signals from
a particular direction [1]. Better estimation of signal and noise can also be
achieved. The Frost beamformer [2] was one of the first array structures to handle
adaptive broadband processing by canceling everything that does not come from
the look direction. Later, Griffiths and Jim developed an alternative method [3]
called generalized sidelobe canceler (GSC) which effectively reduces the com-
putational complexity as well as provides flexibility to implement beamformers
according to different designing principles by using the GSC-structure [4]. Other
algorithms include Zelinski’s approach of post-filtering [5], which employs auto-
and cross- correlation functions of signals to estimate the power spectral density
(PSD) of signals and noise.

The scheme of adaptive null-forming based on differential microphone tech-
nique was first put forward by Elko and Pong in 1995 [6], and developed by
Luo et al. [7], which features a simple structure employing two omni-directional
microphones in end-fire orientation. Compared to beamforming algorithms using
� This work is (partly) supported by Chinese 973 program (2004CB318106), National

Natural Science Foundation of China (10574140, 60535030), and Beijing Municipal
Science & Technology Commission(Z0005189040391).
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more than 4 microphones, it is hard to achieve sharp receiving pattern with less
sensors. Therefore, instead of trying to form a narrow beam aiming at the speech
source, null-forming focuses on forming a receiving pattern with a null steered
to the noise source adaptively while maintaining the desired signal coming from
the front. This algorithm is very effective and can handle non-stationery noise,
but is sensitive to the mismatch of the microphone pair. On encountering great
reverberation or more than one noise sources, the performance of the system will
drop to a certain extent.

In this paper, we present a modified algorithm based on adaptive null-forming
with auditory sub-bands. A fixed IIR filter is used to calibrate the mismatch of
the microphone pair. To weaken the performance degradation caused by narrow-
band effect, we decompose the signal into several sub-bands according to audi-
tory masking effect. This increases SNR considerably while preserving the audi-
tory effect.

2 Single-Band Adaptive Null-Forming Scheme

The adaptive null-forming algorithm, with two microphone in end-fire orienta-
tion, is shown in Fig. 1, in which

Fore signal received by microphone in the front
Back signal received by microphone in the back

θ signal arrival angle
c propagation speed of sound wave

x(n) first-order differential result of upper branch
y(n) first-order differential result of lower branch
W (n) coefficient of adaptive filter
z(n) system output

Delay d/c

Delay d/c

Fore

Back

x(n)

y(n)

+

+

-

- W(n)

z(n)

-

+

Fig. 1. Adaptive null-forming
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We take the front microphone as a reference and have x(n),y(n) and z(n) as

x(n) = 1 − exp

(
−j2πf

d

c
(1 + cos θ)

)
(1)

y(n) = exp

(
−j2πf

d

c

)
− exp

(
−j2π

d

c
cos θ

)
(2)

z(n) = 1 − exp

(
−j2πf

d

c
(1 + cos θ)

)
− W (n) ×

(
exp

(
−j2πf

d

c

)
− exp

(
−j2π

d

c
cos θ

))
(3)

where d is the spacing between the two microphones. All the right terms of
the equations above should be multiplied by the signal received by the front
microphone. The power of system output z(n) can be calculated.

Rz(n) = z(n)z∗(n) (4)

Insert (3) into (4), then Rz is 0 at a certain degree of arrival, θnull, if

sin
(

πf
d

c
(1 + cos θnull)

)
+ W (n)

(
sin

(
πf

d

c
(1 − cos θnull)

))
= 0 (5)

The equation above can be rearranged to yield

W (n) = − sin
(
πf d

c (1 + cos θnull)
)

sin
(
πf d

c (1 − cos θnull)
) (6)

With the approximation sin θ ≈ θ within the frequency range of interest, (6)
can be approximated as

W (n) = −1 + cos θnull

1 − cos θnull
(7)

Only the interval [0◦, 180◦] will be taken into consideration because of the
periodicity of cos θ.

dW (n)
dθnull

= 2
sin θnull

(1 − cos θnull)2
≥ 0 for 0◦ < θnull ≤ 180◦ (8)

Equation (8) shows that the relation between the null and W (n) is monotonic.
That is to say, a unique angle of null can be obtained given a W (n), which can
be calculated adaptively as demonstrated below.

E[z2(n)] = E[(x(n) − W (n)y(n))2]
= Rxx − 2W (n)Rxy + W 2(n)Ryy (9)

Minimizing (9) leads to

Wopt =
Rxy

Ryy
(10)

which can be calculated iteratively [7].
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3 Calibration of the Microphones

The conclusion of Sect.2 is under the assumption that the two microphones are
strictly identical, which can be hardly satisfied in practice. Mismatch of the
microphone pair can lead to distortion of receiving pattern and degradation of
the system performance. Thus, a calibration procedure is necessary.

Fig. 2. Stationary wave pipe

B(z)

A(z)

-

+

IIR Filter

Mic 1

Mic 2

l(n)

r(n)

g(n)

e(n)

Fig. 3. Computation of calibration filter

Here we use a fixed 8th-order IIR filter to calibrate the differences of amplitude
and phase between two microphones. Two microphones are placed closely in a
stationary wave pipe as in Fig.2, while a speaker emits white Gaussian noise.
Signals received by the two microphones are recorded simultaneously and then
sent to a system shown in Fig.3 in which l(n) and r(n) are the received signals.

g(n) =
8∑

i=0

bi(n) l(n − i) +
8∑

i=1

ai(n) g(n − i) (11)

In (11), {ai(n), i = 1 . . . 8} and {bi(n), i = 0 . . . 8} are coefficients of auto-
regressive and moving-average portion at the moment of n, respectively.

e(n) = r(n) − g(n) (12)
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Eliminating the difference between the two microphones requires a minimum
e(n), which is accomplished with least mean square (LMS) algorithm using the
output error method [8].

The IIR filter in the dashed line in Fig.3 converges to be the system we use to
fulfill the calibration. The amplitude and phase of real transfer function of front
microphone to back microphone before and after calibration is shown in Fig.4.

Fig. 4. Real transfer function of front mic to back mic. (a) and (b) are amplitude and
phase of transfer function before calibration, respectively. (c) and (d) are those of after
calibration. Frequency axes are shown in logarithmic form. Function value of (a) and
(c) is in dB, while (b) and (d) in degree(◦).

The real transfer function, which describes the degree of mismatch of the
microphone pair, represents a system which is able to take r(n) as input and get
l(n) at the output end. We neglect the system response with frequency lower
than 100Hz because signal components within that range is of little significance
as far as the application is concerned. Figure 4 shows that this calibration is
very helpful to correct the distortion caused by microphone mismatch. Maximum
distortions of phase and amplitude are reduced from 7.63◦ and 2.99dB to 1.15◦

and 0.27dB. This can be further shown in Sect.5 by the improvement of SNR.

4 Auditory Sub-band Null-Forming

From Sect.2, we learned that the relation between θnull and W (n) is monotonic.
That is, one W (n) decides only one θnull. But considering the frequency cue we
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lose while simplifying (6) to get (7), this is not exactly the case. We can presume
an example, when d = 0.0425m, c = 340m/s, W (n) = −0.5, and see θnull vary
at different frequency.

Freq.(Hz) 1000 2000 3000 4000
θnull(◦) 110.75 114.39 124.88 167.63

That is to say, when the noise source comes from an angle of θ and we get a
W (n) adaptively, there is only one frequency point fopt at which the receiving
pattern has a null at θ. At other frequencies far away from fopt, the null will
deviate so that the system can not cancel these components as effectively as
those near fopt.

Furthermore, when the number of noise sources is more than one, the al-
gorithm has a difficulty to steer the null to the right direction. θnull will either
converge between directions of the noise sources as an effect of average or vibrate
between them. The noise reduction effect will thus be weakened.
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Filterbank
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Back
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+
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Fig. 5. Auditory Sub-band Null-Forming

To solve these problems, a system is developed as shown in Fig.5. Differential
results of upper and lower branch are decomposed into 17 sub-bands respectively.
Adaptive null-forming is implemented in each sub-band, after which the results
are combined to make the final output. This enables the system to form a null
separately in each band so the effect of deviation with frequency mentioned above
is reduced. And angle of null in each band can be steered to different directions
when under the circumstance of multiple interferences.
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The sub-bands are made according to the Bark frequency group shown in
Table 1 [9]:

Table 1. Bark Frequency Group

No.(Bark) fc/Hz Δf/Hz 10 log(Δf/1Hz) fl/Hz fh/Hz

1 50 80 19 20 100
2 150 100 20 100 200
3 250 100 20 200 300
4 350 100 20 300 400
5 450 110 20 400 510
6 570 120 21 510 630
7 700 140 21 630 770
8 840 150 22 770 920
9 1000 160 22 920 1080
10 1170 190 23 1080 1270
11 1370 210 23 1270 1480
12 1600 240 24 1480 1720
13 1850 280 25 1720 2000
14 2150 320 25 2000 2320
15 2500 380 26 2320 2700
16 2900 450 27 2700 3150
17 3400 550 27 3150 3700

fc, fl and fh indicate the central frequency, low boundary and high boundary of
each band, respectively. Δf means the bandwidth (fh−fl), and 10 log(Δf/1Hz) is
the relative bandwidth. (Our implementation uses a sampling frequency of 8000Hz
so that the bands with frequency higher than 4000Hz are not listed.) The signal
components within each group are judged integrally by brain. Thus the enhanced
speech will sound more natural if division in frequency domain is made according
to this biological basis.

Our experiments show that better auditory effect can be achieved by employ-
ing auditory sub-bands compared with some other sub-banding schemes. The
filterbank for sub-banding features FIR filters with an order of 100 to provide
frequency response with stop band adequately narrow. The processing can be
optimized if polyphase filterbanks are used.

5 System Evaluation

5.1 Simulation Result

To test the performance of the proposed system, a computer based experiment
is carried out in which a small room of 5m × 4m × 3m with a reverberant time
of approximate 300ms is simulated using image method [10]. Two microphones
are placed in the center of the room when speech and noise sources are assigned
as Fig.6.
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Fore

Back

1m

1
m

1
m

Speech

Noise
Music

135°

0°

180°

Fig. 6. Simulation experiment

Table 2. Performance comparison - Simulations (Unit:dB)

Group Single Interference Double Interferences

SNRin -8.9 0.9 11.8 -10.8 -0.7 7.3

SNRori
gain 9.2 9.5 9.4 11.0 11.2 11.1

SNRsub
gain 12.3 12.2 11.8 13.6 13.9 13.2

Speech source is placed in front of the array, at the direction of 0◦ and is 1m
away from the microphones. White Gaussian noise is placed in the back, at 180◦

with the same distance away as speech. A non-stationary interference (music) is
at 135◦, 1m in the left of Gauss noise. The spacing between the two microphones
is set to be 4.25cm.

In one group of the experiments, the music source is mute. There is only
one source of noise under this circumstance. And in the other group, there are
two interference sources. In both groups, signals are recorded at a sampling
frequency of 8000Hz and with interferences in different intensities. All signals
are simulated to be recorded ideally so calibration is not necessary here. The
system performance is recorded in Table 2.

SNRin, SNRori
gain and SNRsub

gain indicate input SNR measured at one of the
two microphones, improvement on SNR by original single-band null-forming al-
gorithm and by sub-band method, respectively. An improvement of 2-3dB can
be clearly observed.
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5.2 Experiments in Anechoic Chamber

We also carry out the experiment in anechoic chamber. Assignment of instru-
ments is the same as the simulation, shown in Fig.6. We select Knowles FG-3329
microphones to form the array. Two group of experiments are conducted, one
with single interference and the other with two. The SNR of input signal is
controlled to be around −5dB.

Table 3. Performance comparison - Anechoic chamber (Unit:dB)

Group Single channel Sub-band

Calibration No Yes No Yes

Single Interference 4.6 10.7 6.0 12.2

Double Interferences 4.3 10.4 6.3 12.5

Table 3 shows the SNR gain of the original (single-channel) and sub-band
method with or without calibration, under the noise condition of one or two
interferences as depicted in Sect.5.1. An improvement of about 6dB is brought
forward by calibration, while sub-banding contributes about 2dB enhancement.

6 Conclusions

We propose an improved adaptive null-forming algorithm using sub-band tech-
niques with auditory features to increase the SNR gain as well as to preserve
auditory effect. A fixed IIR filter was also included to calibrate microphone mis-
match. Experiments show that these methods effectively improve the speech
quality.

Future work may concern the combination of null-forming and spectral sub-
traction (SS), which is commonly used in single-channel speech enhancement.
As shown in Fig.1, y(n) could reasonably serve as an estimate of noise since
speech signal contained in y(n) is comparatively trivial if speaker stays near the
direction of 0◦ of the array.
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Abstract. Multi-channel noise reduction has been widely researched to reduce 
acoustic noise signals and to improve the performance of many speech 
applications in noisy environments. In this paper, we first introduce the state-of-
the-art multi-channel noise reduction methods, especially beamforming based 
methods, and discuss their performance limitations. Subsequently, we present a 
multi-channel noise reduction system we are developing that consists of 
localized noise suppression by microphone array and non-localized noise 
suppression by post-filtering. Experimental results are also presented to show 
the benefits of our developed noise reduction system with respect to the 
traditional algorithms in terms of speech recognition rate. Some suggestions are 
finally presented for the further research.  

Keywords: Multi-channel noise reduction, beamforming technique, localized 
noise, non-localized noise, speech recognition. 

1   Introduction 

Acoustic noise signals dramatically degrade the performance of many speech 
applications, such as speech communication system and automatic speech recognition 
system, in noisy environments [1]. For example, for speech communication system, 
acoustic noises degrade the quality and intelligibility of the received signals. For 
automatic speech recognition system, acoustic noises cause the mismatch between the 
training and testing conditions, further decreasing the recognition accuracy in real-
world adverse conditions. Therefore, noise reduction must be very useful to improve 
the performance and robustness of these applications in noisy environments [1].  

Though the problem of dealing with acoustic noises has been researched for 
several decades, it is currently still a challenging research topic. The challenges are 
mainly caused by the complex and time-varying characteristics of the signals (speech 
and noise signals) and acoustic environments [1], [2]. Desired speech signals have a 
broad-band and highly time-varying spectral components. In practical environments, 
noise signals have very complex and time-varying properties. Take the noise 
condition in a car environment as an example. Noises generated by winds around the 
car come from all directions and have slowly time-varying spectral components 
including coherent and incoherent noise components that are generally modeled as 
diffuse noise. Noises generated by engine come from certain directions and have 
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slowly time-varying spectral components. Undesired interfering noises (e.g., 
passenger’s voice and radio), however, have some determinable directions and highly 
non-stationary speech-like spectral components. Noises with different characteristics 
from various kinds of sources make it difficult to construct an effective noise 
reduction system. Furthermore, the characteristics of noises do vary with time and 
environments in an unpredictable fashion, further increasing the difficulty of 
designing a noise reduction system. Additionally, considering the practical 
implementation, real-time processing is generally a “must” for noise reduction 
systems in real conditions [1], [2].  

To suppress various kinds of noises, many noise reduction algorithms have been 
published in the literature [1], [2]. Generally speaking, all of these noise reduction 
algorithms can be classified into two categories: single-channel technique and multi-
channel technique, according to the number of microphones which are needed in the 
implementation.  

A variety of single-channel noise reduction techniques [3], [4], [5], which exploit 
spectral and temporal differences between the speech and noise signals to suppress 
acoustical noises, have been proposed for speech enhancement and speech 
recognition. In real conditions, however, the speech and noise signals are 
considerably overlapped in the time-frequency domain, which makes it extremely 
difficult for single-channel techniques to substantially eliminate most of noise 
components without introducing speech distortion and artifacts (e.g., musical noise). 
As a result, single-channel techniques achieve very limited improvements in 
suppressing noise and in enhancing the speech enhancement and recognition 
performance [2]. 

In addition to the temporal and spectral characteristics, multi-channel techniques 
allow to exploit the spatial diversity of the speech and noise signals, resulting in the 
highly improved noise reduction performance [3]. In most scenarios, desired speech 
source and interfering noise source are physically located at different positions in the 
space. Exploiting the spatial diversity of the signals, multi-channel techniques can 
steer a main beam towards the desired speech source and/or nulls towards the 
interfering noise sources. Thus, compared to single-channel noise reduction 
techniques, multi-channel noise reduction techniques are substantially superior in 
suppressing the interfering signals arriving from the directions other than the specified 
“look” directions [2]. Additionally, among multi-channel noise reduction algorithms, 
post-filtering is normally needed to improve the entire performance in practical noisy 
environments. Therefore, multi-channel noise reduction systems with post-filtering 
have attracted increasing research interests [2].  

In this paper, we first give a review of the state-of-the-art multi-channel (i.e., 
beamforming based) noise reduction systems ranging from the simple delay-and-sum 
beamformer to the advanced adaptive beamformers, as well as post-filtering. We then 
introduce the multi-channel noise reduction system we are developing consisting of 
localized noise suppression by microphone array and non-localized noise suppression 
by post-filtering. Experimental results are also presented to illustrate the benefits of 
our proposed system in terms of speech recognition accuracy in realistic environments 
where interfering signal and ambient noise are present. We finally provide some 
suggestions for the further research.  
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2   State-of-the-Art Multi-channel Noise Reduction  

In comparison of single-channel noise reduction algorithms, multi-channel noise 
reduction algorithms have demonstrated a substantial superiority in reducing noise 
due to their spatial filtering capability. So far, many beamforming based algorithms 
have been reported in the literature [6], [7], [8], [9], [10], [11], [12], [13], [14]. The 
beamforming algorithms include fixed beamformer and adaptive beamformer, which 
are briefly discussed in the following sub-sections. Additionally, the widely used 
post-filtering algorithms are also discussed. Special attention is paid to the 
disadvantages of these existing algorithms.  

2.1   Fixed Beamforming 

The first class of beamforming techniques is fixed beamforming. In fixed 
beamforming techniques, the filter coefficients are normally optimized so that a beam 
is steered to the direction of the desired signal while suppressing the background 
noise coming from other directions as much as possible. These optimized filters are 
fixed, independent of the input signals, and then applied to the multi-channel 
microphone inputs [1], [2].  

The simplest beamformer, referred to as delay-and-sum (DS) beamformer [2], [6], 
enhances the desired speech signal by summing the in-phase microphone signals after 
compensating for the arrival time differences of the desired sound signal to each 
microphone by inserting delays after each microphone, that is, the array is first 
electronically steered to the look-direction. In other words, in the DS beamforer, the 
weights of filters are fixed to for all frequencies and all frames. The advantages of the 
DS beamformer are that it is very simple to implement and that it minimizes the noise 
sensitivity and hence provides a high robustness against errors in the assumed signal 
model. However, a large number of microphones are normally needed to obtain an 
acceptable performance in real-world environments [2]. The superdirective 
beamformer is another widely studied fixed beamformer [7]. The superdirective 
beamformer maximizes the directivity index in the direction of the speech source for a 
diffuse noise field. Actually, the superdirective beamformer minimize the noise power 
of the beamformer output subject to distortionless response for the “look” direction, 
hence, it is also a minimum variance distortionless response (MVDR) beamformer. 
The implementation simplicity of the superdirective beamformer leads to its widely 
use in some known noise field. However, its data-independent property results in that 
only limited noise reduction performance can be obtained in practical time-varying 
environments [2]. 

Fixed beamforming techniques are widely used in the conditions where the acoustical 
characteristics do not change with time. However, using the fixed beamforming 
techniques, it is generally not possible to design arbitrary spatial directivity patterns for 
arbitrary microphone array configuration and design spatial directivity patterns which can 
be optimized to the time-varying acoustic environments  [2], [7].  

2.2   Adaptive Beamforming 

The second class of beamforming techniques is adaptive beamforming. In contrast to 
fixed beamforming techniques, adaptive beamforming techniques make use of data-
dapendent filter coefficients that are adapted to respond to time-varying environments, 
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yielding a better noise reduction performance than fixed beamforming techniques, 
particularly if the number of interference is small (i.e., smaller than the number of 
microphones) and in the acoustic environments with low reverberation [1], [2].  

Adaptive beamforming techniques (e.g., the Frost beamformer) typically solve a 
linearly constrained minimum variance (LCMV) optimization problem [9], keeping 
the signals arriving from the desired look-direction (i.e., ideally the direction of the 
desired speech source) distortionless while suppressing the signals from other 
directions by minimizing the output power. The MVDR beamformer was proven as a 
special case of the LCMV beamformer under the assumption of zero correlations 
between the speech signal and the noise signal [2]. A generalized sidelobe canceller 
(GSC) beamformer, first presented by Griffiths and Jim as an alternative 
implementation structure of the LCMV beamformer, has also been widely researched 
[9]. The GSC beamformer consists of: a fixed beamformer which electronically steers 
the microphone array to the direction of interest (i.e., the speech source) and generates 
the so-called speech reference signal; a block matrix which steers the spatial nulls to 
the direction of speech source and generates the so-called noise reference signals; and 
a multi-channel noise canceller which suppress the residual noise components in the 
speech reference signal by using a multi-channel adaptive filter [9]. In addition, a 
wide variety of noise reduction algorithms that are based on the GSC beamformer 
have so far been suggested, which are of interest to be mentioned. Bitzer et al. 
presented an alternative implementation algorithm with a GSC structure of the 
superdirective beamforme and its performance was also analyzed in a diffuse noise 
field [10]. Fischer et al. proposed to apply a Wiener filter in the upper path of the 
GSC beamformer to suppress the uncorrelated noise components and then the 
correlated noise components are then reduced by the adaptive noise canceller in the 
lower path [11]. Recently, the GSC beamformer was extended to a transfer function 
generalized sidelobe canceller (TF-GSC) beamformer by considering the transfer 
functions which relate the speech source and the microphones, which was shown to 
yield high noise reduction performance in real-world environments [12]. Moreover, 
the theoretical performance of the GSC and TF-GSC beamformers was examined in 
the diffuse noise field [16], [17].  

In all variants of the LCMV and GSC beamformers, adaptive signal processing 
(e.g., LMS) is normally used to avoid cancellation of the desired speech signal, which 
introduces low convergence rate in practical conditions and low ability in reducing 
non-stationary noise (e.g., sudden noise). Moreover, the adaptive beamformers only 
perform well and provide acceptable performance when the number of interfering 
noise sources is less than that of the microphones. Their performance will be greatly 
degraded by the reverberation effect and in the scenario where more noise sources 
exist (e.g., larger than the number of sensors) [2]. 

2.3   Post-Filtering 

Multi-channel beamforming based algorithms provide high noise reduction 
performance especially for localized noise, however, only limited noise reduction 
performance is achieved in a diffuse noise field [2], [13], [14]. To further suppress 
residual noise at the beamformer output, post-filtering is normally needed to improve 
the noise reduction performance of the entire system in practical environments.  

A variety of post-filtering techniques have been presented in the literature [13], 
[14] [15]. One commonly used multi-channel post-filter, which is based on Wiener 
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filter, was first introduced by Zelinski [15]. The basic assumption behind this post-
filter is that noises on different microphones are mutually uncorrelated, corresponding 
to a perfectly incoherent noise field. This assumption is, however, seldom satisfied in 
practical environments, especially for closely-spaced microphones and low 
frequencies, which are characteristics by the high-correlated noise [15].  

To suppress the high-correlated noise, Fischer et al. proposed a noise reduction 
system which is based on the GSC beamformer [11]. The GSC beamformer 
suppresses the spatially coherent noise components, whereas a Wiener filter in the 
look direction is designed to suppress the spatially incoherent noise components [11]. 
However, Bitzer et al. pointed out that neither the GSC nor the standard Wiener post-
filter performs well at low frequencies in a diffuse noise field [16], [17]. Therefore, 
they proposed to add a second post-filter at the output of a GSC beamformer with 
standard Wiener post-filter to reduce the spatially correlated noise components [18]. 
Recently, McCowan et al. developed a general expression of the Zelinski post-filter 
based on the a priori coherence function of the noise field [19]. Although this post-
filter was shown to achieve improved speech quality and speech recognition accuracy 
compared to the Zelinski post-filter using the office room recordings, its performance 
is expected to be significantly degraded when difference between the “actual” and 
assumed coherence function exists.  

3   Proposed Multi-channel Noise Reduction  

3.1   Theoretical Principle of Proposed System --- Multi-channel Wiener Filter [2] 

The underlying theoretical principle of our proposed multi-channel noise reduction 
system is the multi-channel Wiener filter, which provides an optimal solution to the 
problem of multi-channel noise reduction for broadband inputs in minimum mean 
square error (MMSE) sense [2]. With the assumption that the desired signal and 
noise signals are mutually uncorrelated, Simmer et al. showed that the multi-channel 
Wiener filter can further be decomposed into a MVDR beamformer followed by a 
single-channel Wiener post-filter [2]. As an extension of this algorithm, we propose a 
multi-channel noise reduction system consisting of localized noise suppression by a 
microphone array and non-localized noise suppression by post-filtering. The detailed 
description is given in the following subsections.  

3.2   Signal Model in the Proposed System [14] 

Let us consider an array of M microphones in a noisy environment. In our research, 
the observed signal on each microphone consists of three components. The first one is 
the desired speech signal s(t) arriving from the direction such that the direction in 
arrival time between two microphones is ξ, The second is localized noise signals 

( )c
pn t arriving from the directions such that the time differences are δm,p (p=1,2,…,P) 

and the third is non-localized signal nuc(t) which propagates in all directions 
simultaneously and is normally modeled as diffuse noise. Thus, the observed signal 
can further be represented as 
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,
1

( ) ( ) ( ) ( )
P

c uc
m m p m p m

p

x t s t n t n tξ δ
=

= − + − +                           (1) 

Note that the localized noise signals ( )c
pn t  are generated by some point noise 

sources (e.g., fan, radio and competing speakers), which are fixed or movable in the 
space. Some localized noise sources are spectrally stationary or have slowly time-
varying spectral properties (e.g., fan), while others are spectrally highly non-
stationary (e.g., competing speech and sudden noise). The non-localized noise signals 

( )uc
mn t  are generally modeled as diffuse noise (e.g., wind noise in car environments) 

arriving from all directions in the space. In most situations, these kinds of noise 
sources are spectrally stationary or have slowly time-varying spectral properties. 

 

Fig. 1. Block diagram of the proposed noise reduction system 

3.3   Proposed Multi-channel Noise Reduction System 

The objective of this research is to reduce both localized and non-localized noises 
while keeping the desired signal distortionless. In the proposed system, spectra of 
localized noises are first estimated using a hybrid noise estimation technique which 
combines a multi-channel approach and a single-channel approach and then 
subtracted from the spectra of noisy signals in each channel; non-localized noise is 
then reduced using a hybrid post-filter which is a Wiener filter in theory. The block 
diagram of the proposed noise reduction algorithm is shown in Fig. 1, including 
localized noise reduction and non-localized noise reduction. 
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3.3.1   Localized Noise Reduction [14], [20], [21]  
To deal with localized noise components, we presented a microphone-array noise 
reduction algorithm based on a beamforming technique. The basic idea of our 
algorithm is that the spectra of localized noises are first estimated and then subtracted 
from those of the observed noise signals.  

To accurately estimate the spectra of localized noise, we proposed a hybrid noise 
estimation technique in a parallel structure which combines a multi-channel 
estimation approach and a single-channel approach. The multi-channel estimation 
approach was implemented using the subtractive beamformer based method since it 
yields much more accurate spectral estimates for localized noises at most instances. 
The single-channel estimation approach was implemented using a soft-decision based 
noise estimation technique due to its ability in estimating the spectrum of non-
stationary signal. Thus, the spectrum of localized noise in the k-th frequency bin and 

-th frame, ˆ ( , )cN k , calculated by this hybrid estimation technique, is given by 

[14], [20] 

not array nulls,

array nulls,

ˆ ( , ),ˆ ( , )
ˆ ( , ),

c
mc

c
s

N k
N k

N k
=                                    (2) 

where ˆ ( , )c
mN k  and ˆ ( , )c

sN k  are the spectral estimates determined by the multi-

channel approach [20] and the single-channel approach [22], respectively. The hybrid 
noise estimation technique is further enhanced by integrating a robust and accurate 
speech absence probability (RA-SAP) estimator [14]. Considering the strong 
correlation of speech presence uncertainty between adjacent frequency bins and 
consecutive frames, a RA-SAP estimator is developed. This RA-SAP estimator makes 
full use of the high estimation accuracy of the multi-channel estimation approach. 
Therefore, the final estimation accuracy for localized noises is greatly enhanced by 
the suggested RA-SAP estimator [14], [20]. The estimated spectra of localized noises 
are subsequently reduced from those of the noisy observations by using the non-linear 
spectral subtraction. More theoretically important, note that the subtractive 
beamformer based multi-channel localized noise suppression algorithm is in principle 
a MVDR beaformer [23].  

3.3.2   Non-localized Noise Reduction [24] 
At the output of localized noise reduction, the output signal ( , )mZ k  on m -th 

channel, consisting of desired signal and beamformer-processed non-localized noise 

( , )mD k , is re-formulated the time-frequency domain as 

( , ) ( , ) ( , ).m m mZ k S k D k= +                                       (3) 

Note that the non-localized noise component ( , )mD k  is different from the non-

localized component ( )uc
mN t at the system input, since the localized noise reduction 

influences the non-localized components.  
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To further deal with the residual non-localized noise, we propose a Wiener post-
filter with a hybrid structure under the assumption of a diffuse noise field. In the high 
frequency region, we present a modified Zelinski post-filter which considers and 
utilizes the correlation of noises on different microphones to improve the noise 
reduction with minimum speech distortion. The implementation of the modified 
Zelinski post-filter consists of four steps: determine the transient frequencies (i.e., the 
first minimum frequency of coherence function of diffuse noise field) according to the 
microphone array geometry; determine the microphone pairs on which noise is 
mutually uncorrelated for each frequency; compute the spectral densities of the 
desired and noisy signals; compute the gain function of the modified Zelinski post-
filter. Finally, the gain function of the modified Zelinski post-filter is derived as [24] 

( )
{ , } ( )

{ , } ( )

1 ˆ ( , )
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1 1
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| | 2
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Z Z Z Z
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k
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G k
k k

φ

φ φ

∈Ω

∈Ω

ℜ
Ω

=
+

Ω

             (4) 

where mΩ is the microphone pair sets for m-th sub-band on which noises are 

presumably low correlated, ℜ  is the real part operation, ˆ
i jZ Zφ and ˆ

i iZ Zφ  are the 

cross- and auto- spectral densities. Note that the first two steps can be done 
beforehand since they are only dependent on the microphone array geometry and 
independent of the input signals. Thus, the computational cost will greatly be reduced.  

In the low frequency region, a single-channel technique is used to estimate the 
Wiener filter, given by [24] 

priori

priori

( , )
( , ) ,

1 ( , )s

SNR k
G k

SNR k
=

+
                                       (5) 

where priori ( , )SNR k  is the a priori SNR which is updated in a decision-directed 

scheme, significantly reducing the residual “musical noise” as detailed in [5]. More 
theoretically important, note that the proposed hybrid post-filter is in principle a 
Wiener filter [24].  

4   Experiments and Results 

We investigated the performance of the proposed noise reduction system using the 
speech enhancement experiments and the comprehensive speech recognition 
experiments. The noise reduction system was first performed on the multi-channel 
noisy signals, enhancing the desired speech signals. For the recognition experiments, 
these enhanced speech signals were further fed into the speech recognizer for 
recognizing the utterance. The performance improvements caused by the proposed 
noise reduction system (PRO-MAPF) were finally compared to those obtained by the 
traditional delay-and-sum beamformer followed by Wiener post-filter (DSWF) [11]. 
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4.1   Speech Enhancement Experiments 

To assess the performance of the proposed noise reduction algorithm, an equally-
spaced linear array consisting of three microphones with the inter-element spacing of 
10 cm was mounted in a car. The noise recordings were performed across all channels 
simultaneously at the sampling frequency of 12 kHz. The target signals and the 
interfering signals were the Chinese province/city names, uttered by one male and one 
female. The target speaker was placed in the front of the microphone array and the 
interfering speaker was placed with DOA of 60 degrees to the right. The integrated 
noise signals were first generated by mixing the car noise signals and the interfering 
signals at the same energy level. The observed noisy signals were created by adding 
the integrated noise signals into the target speech signals at 5 dB.  

The speech enhancement results are plotted in Fig. 2. Fig. 2 (b) shows that the 
speech signals ( ) were corrupted by 
both the interfering signals ( ) and the car 
noises. Fig. 2 (c) illustrates that the output of the DSWF is characterized by the high-
level noise components (both the low-frequency car noises and the interfering signals). 
In contrast, the PRO-MAPF suppress almost all interfering signals and the car noises 
even in the regions where the speech and interfering signals are overlapped in the time-
frequency domain, as shown in Fig. 2 (d). These results show that the PRO-MAPF is 
powerful in suppressing both localized and non-localized noise components.  
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Fig. 2. Speech spectrograms. (a) Clean speech signal (  
); (b) Noisy signal at the first microphone (SNR = 5 dB);  (c) DSWF 

output; (d) PRO-MAPF output.  
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4.2   Speech Recognition Experiments  

For speech recognition, the non-localized noises were the car noises same as used in 
speech enhancement experiments. The speech data were selected from AURORA-2J 
database for training and testing. For training, 8440 sentences uttered by 55 persons 
were used. For testing, two sets of noise-corrupted data were generated. The first data 
set (Set A) involved the addition of the car noise recordings and 1001 test sentences at 
different SNRs from 0 to 20dB with 5dB step. The second data set (Set B) involved 
the addition of the multi-channel car noises and a passenger’s voice which was 
Japanese digit /iti/ with DOA of 60 degrees to the right, across 1001 test sentences at 
the different SNRs same as in Set A. Note that Set B corresponds to a realistic context 
for a typical car condition where a passenger is speaking. 

4.3   Experimental Results 

The recognition results for the noise reduction systems (DSWF and PRO-MAPF) in 
two noise conditions (Set A and Set B) are presented in Fig. 3.  

As Fig. 3 (left) shows, for data Set A, all tested noise reduction algorithms provide 
some degree of performance improvement in speech recognition rate compared with 
noisy inputs. The average recognition rate improvement achieved by DSWF 
algorithm amounts to 6.0% with respect to noisy inputs. Whereas, the highest 
recognition rate improvement of about 18.6% was achieved by our PRO-MAPF. The 
recognition rate improvements drastically increase as the noise level increase. 
Moreover, in very high SNR conditions, all the tested algorithms provide just slight 
performance improvement compared with the noisy inputs, which is reasonable since 
the inputs are “clean” enough and a relatively high recognition rate is obtained in 
these conditions.  
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Fig. 3. Speech recognition results for the testing data Set A (left) and for the testing data set B 
(right) 

Concerning the recognition results for data Set B shown in Fig. 3 (right), we can 
observe that PRO-MAPF also demonstrates highest recognition rate at all SNRs. In 
this noise condition, the recognition rate goes down greatly for unprocessed noisy 
testing data. Recognition rate improvements of 11.5% and 23.2% were demonstrated 
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by the DSWF and PRO-MAPF algorithms. The highest recognition rate of PRO-
MAPF can be attributed to the fact that it is successful in dealing with both 
passenger’s interfering speech and diffuse car noise simultaneously with minimum 
speech distortion, resulting in the higher speech recognition rate.  

5   Suggestions for Further Research 

In this research, we have so far developed a noise reduction algorithm that is designed 
using microphone array and post-filtering in noisy environments. Its performance was 
evaluated in various car noise conditions and was further shown to outperform many 
traditional noise reduction algorithms in terms of speech recognition rate. However, 
the proposed noise reduction algorithm should be further improved in the following 
ways. (1) So far, the input microphone signals were assumed to be perfectly time-
aligned in advance, that is, the desired speech signals were assumed to come from the 
front of the microphone array. In the practical implementation, it is necessary to take 
into account of the transfer function between the desired speech source and 
microphones. (2) Because of the small-size microphone array, improving the 
robustness of the noise reduction system against imperfections, such as the 
imperfection of microphone positions, is necessary for the real-world implementation, 
which is suggested as well for further research. (3) Moreover, in the real-world 
environments, the performance degradation of hands-free speech recognition systems 
is caused by not only acoustic background noise, but also reverberation and acoustic 
echoes. To further improve the performance of many speech applications in practical 
conditions, it is necessary to further deal with reverberation and acoustic echoes by 
combining the proposed noise reduction algorithm with other advanced 
dereverberation and echo cancellation techniques.  
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Abstract. The Minimum Phone Error (MPE) criterion for discriminative 
training was shown to be able to offer acoustic models with significantly 
improved performance. This concept was then further extended to Feature-
space Minimum Phone Error (fMPE) and offset fMPE for training feature 
parameters as well. This paper reviews the concept of MPE and reports the 
experiments and results in performing MPE, fMPE and offset fMPE on the task 
of Mandarin Broadcast News, and significant improvements were obtained 
similar to the results reported for other languages and other tasks by other sites. 
In addition, a new concept of dimension-weighted offset fMPE is proposed in 
this work and even better performance than offset fMPE was obtained. 

Keywords: Discriminative training, minimum phone error (MPE), feature-
space MPE (fMPE), offset fMPE, dimension-weighted, large-vocabulary 
continuous speech recognition (LVCSR). 

1   Introduction 

The MPE (Minimum Phone Error) criterion for discriminative training has been 
shown to offer HMM parameters with significantly improved performance [1, 2]. The 
basic concept of MPE is similar to other discriminative training approaches, in which 
the acoustic models are trained in such a way to force the acoustic models to 
recognize the training data correctly, or to try to differentiate the acoustic models 
when they turned out to be confusing with respect to the training data. 

Feature-space MPE (fMPE) is an extension of MPE in order to obtain improved 
version of feature parameters rather than acoustic models [3]. The basic idea is to 
train a feature-level transformation which offsets the original features to an optimal 
set of features, and the transformation is defined by a linear (matrix) projection from 
high-dimensional feature space based on posterior probabilities of Gaussians. Offset 
fMPE is then a further extension of fMPE [4]. 
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This paper reviews the concept of MPE and reports the experiments and results in 
performing MPE, fMPE and offset fMPE on the task of Mandarin Broadcast News, 
and significant improvements were obtained similar to the results reported for other 
languages and other tasks by other sites. In addition, a new concept of dimension-
weighted offset fMPE is proposed in this work, and even better performance than 
offset fMPE was obtained. 

This paper is organized as follows. In section 2, we briefly review several 
important discriminative training criteria derived from the basic minimum Bayesian 
risk principle. Section 3 and 4 then describe the frameworks of MPE and fMPE in 
more detail. In section 5, the dimension-weighted offset fMPE proposed in this paper 
is compared with fMPE and offset fMPE. Section 6 presents the experimental results, 
and section 7 gives the conclusions. 

2   Discriminative Training Criteria and MPE 

The minimum Bayesian risk (MBR) criterion is defined as 
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where rO  is the r-th training utterance, λ  is the acoustic model, Γ  is the language 

models, rs  and u  represents the correct transcriptions and the recognized results 

respectively. ( , )rL u s  is the loss function caused by the difference between u  and 

rs , and ( | )rP u O  is the posterior probability of u . The discriminative training is to 

estimate model parameters which minimize the above Bayesian risk. The reduction of 
Bayesian risk then leads to the reduction of word error rate. Quite several training 
criteria are extensions of this minimum Baysian risk criterion, as will be briefly 
summarized below. 

When the loss function is defined as a zero-one function, 
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equation (1) is reduced to 
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Equation (3) is the criterion of MAP. If we assume that the prior probability ( )rp O  

is a uniform distribution, equation (4) can be reduced to 
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which is the objective function of maximum likelihood estimation (MLE). 

If ( )rp O  is expressed as ( ) ( | ) ( )r r
v

p O p O v p v=  where v  is one of the 

possible recognition results, we have 
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which is the objective function of maximum mutual information (MMI) training. 
On the other hand, overall risk criterion estimation (ORCE) minimizes the 

Bayesian risk directly. The loss function is defined as the Levenhstein distance 
between the N-best and the correct transcription while focusing on word error rate 
reduction, 
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and the training criterion becomes the criterion for ORCE, 
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Minimum phone error (MPE) training aims to maximize the expected phone 
accuracy, 
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where the accuracy of the recognized result u , ( , )rAcc u s , weighted by its 

posterior probability is the target of maximization, and all possible recognized results 
are simulated by the word graph. MPE in equation (9) are actually quite different 
from ORCE in equation (8). The former focuses on phone accuracy and is 
implemented on a word graph, while the latter focuses on word error rate and is 
implemented on N-best results. Besides, MPE introduces the prior distribution of the 
new estimated models which are not taken into consideration by ORCE. 

MPE can also be regarded as a variation of MMI. MMI treated the correct 
transcriptions as the numerator lattice and the whole word graph as the denominator 
lattice or the competing sequences, while MPE treats all possible correct sequences on 
the word graph as the numerator lattice, and treats all possible wrong sequences as the 
denominator lattice. From this point of view, MPE takes more advantages of the word 
graph than MMI. 
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Fig. 1. The derivation flow of the various training criteria 

Fig. 1 shows the derivation flow of the various training criteria reviewed above. 

3   Minimum Phone Error (MPE)  

The objective function of equation (9) is 
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where ( , )rAcc u s is the accuracy of u , ν  is one out of all possible recognized 

results simulated by the word graph, and ( | ) ( )
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posterior of u . 

If we replace equation (10) by an auxiliary function and add it to a smoothing 
function, the training criterion becomes, 
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where ( )qsm tγ is the occupation probability of state s , mixture m , arc q  at time t, 

'
smμ  and '

smΣ  are current model parameters, smμ  and smΣ  are the new estimated 
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model parameters, and 
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the expected phone accuracy of all sequences on the word graph. For an arc q , if 

qC > avgC , q  will be classified as in the numerator lattice and used in positive 

training; if qC < avgC , q  will be classified as in the denominator lattice and used in 

negative training. If q avgC C= , this means q  has no competitors, or all other 

competitors have the same model as q . 

The statistics required for MPE training are computed from the numerator and the 
dominator lattices, 
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From the differential of equation (11), the model update equations are, 
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The update equations try to make the new model parameters closer to the features 
of the numerator lattice and farther away from those of the denominator lattice. 

4   Feature-Space MPE (fMPE) 

4.1   fMPE 

Feature-space minimum phone error (fMPE) is a discriminative training method 
which adds an offset to the old feature, 

t t ty x Mh= +     (20) 

where tx  is the old feature and ty  is the new feature. M  is a transform matrix 

estimated by MPE and updated by gradient descent. th  is composed of 100000 

Gaussian posterior probabilities spliced by adjacent frames [3]. 

For a certain element ijM  of M , it can be updated as 
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When using only direct differential to update the features, as shown in equation (23), 
significant improvements are obtainable but then lost very soon when the acoustic 
model is retrained with ML. The indirect differential part thus aims to reflect the 
model change from the ML training with new features, as shown in equation (24). 
Therefore, the features and models can be trained iteratively. Feature differential is 
then the sum of direct differential and indirect differential, as shown in equation (25): 
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In the above equations, smtl  is the log likelihood of state s , mixture m  at time t , 

( )sm tγ  is the occupation probability of state s  and mixture m  at time t , and smγ  is 

the sum of ( )sm tγ  over t , or 
1

( )
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sm sm
t

tγ γ
=

= . 

4.2   Offset fMPE 

The difference of offset fMPE from the original fMPE is the definition of the high-

dimensional vector th  of posterior probabilities [4]. For offset fMPE, th  is defined 

as 
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where i
tγ  represents the posterior of i -th Gaussian at time t , 
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and jg is the j -th Gaussian. Offset fMPE uses the Gaussian posterior probability and 

the offset (i.e., feature vector subtracts the mean and divided by the standard 
deviation, then weighted by the Gaussian posterior probability). The Gaussian 
posterior probability is given higher weight (5.0) as it is much more important [4]. 
The number of Gaussians needed is about 1000, which is significantly lower than 
100000 for the original fMPE. 

5   Dimension-Weighted Offset fMPE Proposed in This Paper 

Different from the offset fMPE which gives the same weight on each dimension of 
the feature offset vector, the dimension-weighted offset fMPE proposed in this paper 
calculates the posterior probability on each dimension of the feature offset vector, 
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= , where ( )ig d  is the i -th Gaussian on 

dimension d . When the Gaussian likelihood ( ( ) | ( ))t ip O d g d  is calculated, 

normalization is performed on each dimension with ( )i
t dγ , 
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So the weight is different according to the posterior probability of each dimension. 

6   Experimental Results 

6.1   Experimental Setup 

Two sets of feature parameters were tested in the large vocabulary Mandarin speech 
recognition experiments: (1) MFCC features: the conventional 39-dimensional MFCC 
feature vectors consist of 12 MFCCs and the log energy, and their first and second 
derivatives. Utterance-based Cepstral Mean Subtraction (CMS) was applied to all the 
training and testing materials. (2) HLDA features: Heteroscedastic Linear 
Discriminant Analysis (HLDA) [6, 7] was directly applied on the Mel-scale filterbank 
outputs to construct the 39-dimensional feature vectors. Maximum Likelihood Linear 
Transform (MLLT) [8] and Cepstral Normalization (CN) were then applied on these 
feature vectors. 

The speech corpus for training and testing is from the Mandarin Broadcast News 
corpus (MATBN) collected in Taipei [9]. About 25 hours of gender-balanced data for 
the field reporters collected between Nov 2001 and Dec 2002 were used for training, 
while another set of 1.5-hour data of field reporters collected within 2003 for testing. 
The baseline acoustic models for both MFCC and HLDA features were trained by 40 
iterations of ML training. 

The lexicon size used for this task is 72K words. The background language model 
is trained on the Chinese News Agency (CNA) 2001 and 2002 text corpus, including 
roughly 170 million characters. Trigram models were used. Meanwhile the reference 
transcriptions of the 25-hour training utterances, consisting of about 500K characters, 
were regarded as in-domain text corpus and used to train an in-domain language 
model, which is then to be interpolated with the background language model and used 
as the final language model for the experiments. 

6.2   MPE Model Training 

The results for MPE model training with 10 iterations are listed in the center row of 
Table 1. It can be found that the MPE model training significantly improved the 
performance on syllable, character and word levels regardless of the features used. 
For MFCC features, the absolute error rate reduction was 3.51% in syllable error rate 
(SER) (21.04% to 17.53%), 3.64% in character error rate (CER) (28.53% to 24.89%), 
and 3.90% in word error rate (WER) (37.33% to 33.43%). Similar results were 
obtained for HLDA features, for example with an absolute CER reduction of 2.81% 
(25.52% to 22.71%), or 11.01% relative CER reduction. Note that although HLDA 
features have been transformed discriminatively, the MPE training here was still able 
to give significant extra improvements. Also, as shown in Fig. 2(a), (b) and (c), the 
performance of MPE converged at 6-9 iterations for MFCC features, while for HLDA 
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features which have been transformed discriminatively, the convergence was 
smoother and more stable, even improving at the 10-th iterations. 

Table 1. Error rates (%) for MPE and fMPE for different features, on different acoustic levels 

MFCC HLDA 
Error Rate (%) 

Syllable Character Word Syllable Character Word 

Baseline (ML 40) 21.04 28.53 37.33 18.17 25.52 34.48 

MPE (10 iterations) 17.53 24.89 33.43 15.43 22.71 31.19 

fMPE (3 iterations) 16.56 24.01 32.74 14.28 22.09 30.92 

 

Fig. 2. Comparison of MPE and fMPE results for MFCC and HLDA features: (a) syllable error 
rates (SER), (b) character error rates (CER), and (c) word error rates (WER) as functions of 
numbers of iterations 

6.3   fMPE Feature Training 

14562 Gaussians and 9-context expansion were used in the baseline fMPE. As shown 
in the last row of Table 1, fMPE (3 iterations) significantly improved the performance 
on syllable, character and word levels regardless of the features used. For MFCC 
features the absolute error rate reduction was 4.48% in syllable error rate (SER) 
(21.04% to 16.56%), 4.52% in character error rate (CER) (28.53% to 24.01%), and 
4.59% in word error rate (WER) (37.33% to 32.74%). Similar results were obtained 
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for HLDA features, for example with an absolute CER reduction of 3.43% (25.52% to 
22.09%) or 13.44% relative CER reduction. Note that both HLDA and fMPE 
transformed the features discriminatively, but fMPE offered extra improvements in 
addition to HLDA. 

As shown in Fig. 2(a), (b) and (c), the performance of fMPE converges very 
quickly (2-3 iterations) for both MFCC and HLDA features as compared to MPE. 
From Fig. 2, fMPE gave more significant error reductions in the first iteration than in 
the second or the third. By examining the percentage of elements in the transform 
matrix which changed their signs (between positive and negative) after each iteration, 
we also found that this percentage decreased in each iteration. For HLDA features as 
an example, this percentage of elements which changed their signs are 39.86, 32.80, 
and 23.56 respectively for the first, second, and third iterations. For fMPE, the 
convergence was also faster, smoother and more stable for HLDA than for MFCC 
features. This seemed to indicate that more discriminative features are more robust to 
the iteration numbers or the learning rate of fMPE. 

MPE makes the models closer to the features of the numerator lattice and farther 
away from those of the denominator lattice, while fMPE makes the features closer to 
the correct models and farther away from other confusing models. By estimating the 
entropy roughly by the posterior probabilities of the high-dimensional features, we 
also found that this entropy decreased in each iteration, which indicated the reduction 
of the degree of confusion. 

6.4   Offset fMPE and Dimension-Weighted Offset fMPE 

1908 Gaussians and 1-context expansion were used for both offset fMPE and 
dimension-weighted offset fMPE. The results of CER for both MFCC and HLDA 
features are shown in Fig. 3. Compared with Fig. 2(b), it can be found that here offset 
fMPE offered slightly higher CER than the original fMPE but using much smaller 
number of Gaussians. This is different from the results reported easier [4], where 
better performance can be obtained by offset fMPE with a longer context expansion 
and very delicate design of the iterations. However, the offset fMPE here still 
improved the performance significantly from baseline for both MFCC (CER 28.53% 
to 25.47%) and HLDA features (CER 25.52% to 23.61%). Similar improvements 
were also obtained on syllable and word levels. 

Also shown in Fig. 3 are the results for the dimension-weighted offset fMPE 
proposed in this paper, which actually further reduced the CER to 25.23% for MFCC 
and to 23.44% for HLDA features at the second iteration. In addition, the dimension-
weighted offset fMPE seemed to be more robust with respect to the choice of the 
learning rate parameter than the original offset fMPE. As shown in Fig. 4, if we 
change the parameter E (the inverse of learning rate) from E=5 to E=1, the error rate 
of offset fMPE increases significantly while the proposed dimension-weighted offset 
fMPE performed very stably here. This is probably because the dimension-weighted 
offset fMPE gives more flexibility for each dimension to determine the proper value 
of the offset by considering the posterior probability on each dimension, while the 
original offset fMPE only considers the posterior probability for a whole feature 
vector. In other words, some dimensions of the feature vector may dominate the offset 
for all the dimensions in the original offset fMPE, and the resulting features may even 
deteriorate due to the improper offset when the learning rate is set too large. 
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Fig. 4. Comparison of offset fMPE and dimension-weighted offset fMPE for different values of 
learning rate parameter E with HLDA features 

7   Conclusion 

This work reports the experiments and results in performing MPE, fMPE and offset 
fMPE on Mandarin Broadcast News task, and significant improvements in syllable, 
character and word error rate reductions were obtained. Trained from the same set of 
baseline models with HLDA features, MPE, fMPE (with 9- context expansion) and 
offset fMPE (with 1-context expansion) offered 2.81%, 3.43% and 1.91% character 
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error rate reductions, respectively. In addition, the proposed dimension-weighted 
offset fMPE, which weights the offset on each dimension of a high-dimensional 
feature by the posterior probabilities of that dimension, is shown to be more robust 
with better performance than the offset fMPE. The integration of discriminative 
training and robust speech recognition techniques such as MMI-SPLICE [10] 
indicated promising extension and applications of the work in the future. 
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Abstract. Aiming at building a dialectal Chinese speech recognizer from a 
standard Chinese speech recognizer with a small amount of dialectal Chinese 
speech, a novel, simple but effective acoustic modeling method, named state-
dependent phoneme-based model merging (SDPBMM) method, is proposed and 
evaluated, where a tied-state of standard triphone(s) will be merged with a state 
of the dialectal monophone that is identical with the central phoneme in the 
triphone(s). It can be seen that the proposed method has a good performance 
however it will introduce a Gaussian mixtures expansion problem. To deal with 
it, an acoustic model distance measure, named pseudo-divergence based 
distance measure, is proposed based on the difference measurement of 
Gaussian mixture models and then implemented to downsize the model size 
almost without causing any performance degradation for dialectal speech. With 
a small amount of only 40-minute Shanghai-dialectal Chinese speech, the 
proposed SDPBMM achieves a significant absolute syllable error rate (SER) 
reduction of 5.9% for dialectal Chinese and almost no performance degradation 
for standard Chinese. In combination with a certain existing adaptation method, 
another absolute SER reduction of 1.9% can be further achieved. 

Keywords: Speech recognition, dialectal Chinese speech recognition, state-
dependent phoneme-based model merging, acoustic modeling, acoustic model 
distance measure.  

1   Introduction 

With regard to accented and dialectal speech recognition, a great deal of work has 
been done at various levels. Most of the dialect-specific automatic speech recognition 
(ASR) systems are concentrated on lexicon adaptation by capturing the pronunciation 
variations between standard speech and dialectal speech, and furthermore, 
characterizing these variation trends via a pronunciation lexicon [1-3]. Different from 
phone-level pronunciation modeling, the state-level pronunciation modeling is 
implemented to cover both the dialectal and the standard pronunciation characteristics 
[4, 5]. With regard to acoustic modeling, the adaptation techniques are most widely 
used through which dramatically significant improvement can usually be achieved  
[6, 7]. Some retraining mechanisms have also been proposed in which standard 
speech and dialectal/accented speech are pooled together [8]. Some researchers pay 
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attention to language adaptation for accented speakers [9]. Additionally, the decoder 
is adjusted to cope with the differences between standard speech and dialectal speech 
[2]. In practice, these approaches are always integrated together to achieve much 
better performance in dialectal/accented speech recognition.  

As far as acoustic modeling for accented speech recognition is concerned, a couple 
of methods are usually used, including: 1) Adaptation. The acoustic models trained 
with standard speech are transformed into accent-specific ones with a certain amount 
of accented speech by means of adaptation. The adaptation method has been applied 
by many researchers to the accented speech recognition with good results. However, 
while the pronunciations in the target accent/dialect being primarily considered, those 
in the original accent/dialect cannot be sufficiently covered simultaneously at acoustic 
level. 2) Retraining. It is the most straightforward approach that pools accented 
training data with standard data so as to retrain the acoustic models using combined 
data. In [10], it is shown that by simply pooling 34 hours of standard data with 52 
minutes of accented data the word error rate can be reduced from 49.3% to 42.7%. 
Although significant improvement was achieved with a small amount of accented data 
for “pooled” training, an obvious disadvantage was that the retraining was 
dramatically time-consuming. 3) Combination of acoustic modeling with state-level 
pronunciation modeling [4, 5]. In [4], state-level pronunciation modeling was 
integrated with acoustic modeling to better characterize the phone changes in which a 
syllable error rate (SER) reduction of approximately 2.39% was achieved for 
spontaneous speech recognition. The problem is that a large amount of accented 
speech data is needed and that the proposed method is sometimes too complicated to 
be readily applied. 4) Dialect detection [11, 12]. It is often used as a front-end in 
state-of-the-art ASR systems. In this method, dialect-specific recognizers have to be 
built for each dialect or sub-dialect, which also needs a large amount of dialectal data, 
and the performance, relies heavily on the outcome of dialect detection. 

In China, Putonghua (or standard Chinese) is the official language through which 
people from different regions can be mutually understood. In addition to Putonghua, 
there are other 8 major dialects, which can be detailedly divided into over 40 sub-
dialects [6] or over 1,000 sub-sub-dialects [13]. Putonghua spoken by most Chinese 
people is usually influenced by their native dialect more or less. In this paper, we refer 
to Putonghua influenced by a certain Chinese dialect as dialectal Chinese. One of our 
motivations here is to build a robust recognizer for a certain dialectal Chinese based 
on the handy Putonghua model with a small amount of dialectal speech data (less 
than one hour). To build a robust and practical dialectal Chinese-specific recognizer, 
the following four requirements should be met: 1) the modeling method as simple as 
possible, which is a prerequisite for fast deployment of ASR systems; 2) only a small 
amount of dialectal speech data needed. In China, there are so many dialects that it is 
impossible to collect a large amount of speech data for each dialectal Chinese due to 
some economical considerations; 3) good performance in dialectal speech recognition 
as well as standard speech recognition. Essentially, a dialect-specific recognizer is 
regarded as the extension of a Putonghua recognizer. It is natural that the better 
performance should be obtained for dialectal Chinese speech recognition without (or 
almost without) any performance degradation for Putonghua speech recognition; 4) a 
complementary or additive approach to the existing adaptation techniques. It is 
generally believed that adaptation is one of the most effective ways for speech 
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recognition of a dialectal Chinese of interest. Hopefully, the proposed modeling 
method can be used as a complement for the adaptation techniques in order to further 
improve the performance. 

In order to reach the goal mentioned above, a novel, simple but effective acoustic 
modeling method is proposed in this paper, named as state-dependent phoneme-based 
model merging (SDPBMM) method. In SDPBMM, based on a same phoneme, the 
state-level parameters from a context-dependent Putonghua HMM and its phoneme-
related context-independent dialectal HMM are merged according to a certain 
criterion. The idea comes from the assumption that the HMM from standard speech 
can “borrow” some information from its corresponding HMM in the target dialectal 
speech in order to reduce the differences between the dialectal speech and the 
standard speech. To a great extent, the newly-merged HMM can cover both dialectal 
and standard speech acoustically. In this paper, with only 40-minute Shanghai-
dialectal speech data adopted, a cost-effective acoustic model for the target dialectal 
Chinese can be built from the Putonghua recognizer using SDPBMM method. It is 
experimentally shown that SDPBMM is able to meet the foresaid four requirements. 

As a side effect of SDPBMM, the number of Gaussian mixtures within the merged 
HMMs is increased definitely, we regard it as a Gaussian mixtures expansion 
problem. To deal with it, an acoustic distance measure, named pseudo-divergence 
based distance measure (PDBDM), is proposed based on the difference measurement 
of Gaussian mixture models, and then implemented under the assumption that the 
similarity between two states can be measured by an acoustic distance between them. 
As a result, PDBDM can differentiate the states that need model merging from those 
that do not need merging in SDPBMM. More importantly, PDBDM can downsize the 
parameter scale of HMMs almost without causing any performance degradation on 
dialectal Chinese speech. 

The remainder of this paper is organized as follows. The basic ideas of the 
SDPBMM will be described comprehensively in Section 2. In Section 3, a merging 
criterion, namely PDBDM, will be introduced which is to reduce the parameter scale 
in the SDPBMM-based HMMs. A series of experiments designed to evaluate the 
effectiveness of the proposed methods as well as the experimental results will be 
presented in Section 4. Finally, conclusions are drawn and future work is suggested in 
Section 5. 

2   State-Dependent Phoneme-Based Model Merging 

2.1   Description and Formulation of SDPBMM 

In [4], a state-level pronunciation modeling method, the partial change phone models, 
was proposed, which could cover both the base form pronunciation and the surface 
form pronunciation simultaneously. The actually realized pronunciations except for 
the canonical pronunciation were merged with the pre-trained base form-based 
acoustic models in terms of the acoustic model reconstruction. Inspired by the idea, 
we make an attempt to take the standard pronunciation and dialectal pronunciation  
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into consideration in acoustic modeling. In SDPBMM, the context-dependent HMMs 
for standard Chinese are merged with their phoneme-related context-independent 
HMMs for dialectal Chinese at state level. In other words, the “correct” (base form) 
pronunciations in dialectal speech are involved in the merging instead of “wrong” 
(surface form) pronunciations adopted in [4, 5]. Due to the data sparseness issue, only 
monophone HMMs for dialectal Chinese are considered in SDPBMM. Compared 
with the acoustic model reconstruction based on triphone HMMs, a remarkably small 
amount of dialectal data is needed to build monophone HMMs and no further training 
process is necessary. 

Most the state-of-the-art ASR systems tend to use context-dependent triphone 
HMMs to achieve a higher accuracy. In order to reduce the model complexity, 
downsize the redundant Gaussian components and re-estimate the unseen triphones in 
training data, the decision tree based state tying method is commonly used [14]. The 
states from some triphones with the same central phoneme are presented by a decision 
tree in which the tied states are presented by a leaf node. The idea is illustrated in 
Figure 1. In the left part of Figure 1, all the second states of the an-centered triphones 
are presented by a decision tree. In addition, both a state of monophone from dialectal 
speech and a state of triphone from standard speech are composed of multiple 
Gaussian mixtures. To accomplish the merging, the second state from the dialectal 
monophone an is merged with the leaf nodes of an-centered decision tree, i.e. the tied 
states. The merging process is depicted in the right part of Figure 1. The merging 
takes place between a monophone from dialectal speech and a triphone from standard 
speech whose central phoneme is the same as the monophone at the state level. As a 
result, a merged tied-state consists of multiple Gaussian mixtures from both the state 
of standard triphone HMM and its corresponding state of dialectal monophone HMM, 
as denoted by black solid curves and red dotted curves in Figure 1, respectively. 
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Fig. 1. The topology before and after the application of SDPBMM 

Let x, s, and d be an input vector, a state from standard speech, and a state from 
dialectal speech, respectively, the original probability density function for continuous 
density HMM P(x|s) is 
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P x s w N x μ
=
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where wsk is the mixture weight of k-th mixture component of state s, K is the total 
number of Gaussian mixtures in state s. For simplification, Nsk(⋅) will be used to 
denote N(x;μsk; sk) of state s hereinafter.  

Let P'(x|s) be the revised output distribution of a merged state after applying 
SDPBMM, it can be represented as 

( ) ( ) (1 ) ( , ) ( )'P x s P x s P x s d P d sλ λ= + −  , (2) 

where λ is a linear interpolating coefficient between the standard and the dialectal 
acoustic models and is usually determined experimentally, and P(d|s) can be regarded 
as a kind of pronunciation modeling. Because the purpose here is to verify the 
effectiveness of SDPBMM, the pronunciation variations between standard 
pronunciation and dialectal pronunciation are not taken into consideration in this 
paper and therefore we set P(d|s) ≡ 1. Afterwards, Equation 2 can be further 
simplified as Equations 3 and 4. 

'( ) ( ) (1 ) ( )P x s P x s P x dλ λ= + −  , (3) 
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Equation 3 is actually a kind of interpolation method [8]. In Equation 4, K and N 
are the numbers of Gaussian mixtures of state s from standard speech and state d from 
dialectal speech, respectively; nevertheless parameters K and N are not necessary to 
be equal to each other. Parameters w’

sk and w’
dn are new mixture weights in a merged 

state of SDPBMM, just as indicated in Equation 4, '
w w

sk sk
λ=  and '

(1 )w w
dn dn

λ= − . 

2.2   Analysis 

In SDPBMM, it is very easy to build context-independent monophone HMMs via just 
a quite small amount of dialectal data, and the merging is performed based on a 
standard triphone decision tree at state level. The SDPBMM-based acoustic model 
does not need retraining, which will save time and efforts dramatically. In essence, 
the SDPBMM-based acoustic model is still a standard recognizer just with much 
more acoustic coverage on dialectal speech, and so it is expected to be able to achieve 
good performance for both dialectal speech and standard speech recognition. 
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3   Pseudo-divergence Based Distance Measure  

With the application of SDPBMM, the acoustic coverage is enlarged so that the 
accuracy for dialectal speech recognition can be improved; however, the Gaussian 
mixtures in the merged states are definitely increased. The efficiency is lowered due 
to much time consumption during the decoding procedure. For example, when a 
standard state consisting of 14 Gaussians is merged with a dialectal state of 6 
Gaussians, the number of Gaussian mixtures is increased by 43% and thereby the time 
consumption is increased by 56% if all standard states are involved in the merging 
process. This is a Gaussian mixtures expansion problem. To deal with it, a mechanism 
has to be proposed to tell the states that need merging from those that do not need 
merging. Intuitively, there exists a different level similarity among states of dialectal 
monophone and states of standard triphone. Presumably, some measures can be taken 
to evaluate the similarity which can act as a criterion to classify the states 
participating in merging process. In practice, the similarity can be measured by the 
distance between two states instead. 

In HMMs, each state is represented by a probability distribution function (PDF) in 
terms of mixed Gaussian mixtures. Several approaches have been proposed to 
measure the distance between two HHM states. 1) The relative entropy or Kullback 
Leibler distance (KLD) [15], which can represent the distance comprehensively but 
accordingly the computation complexity will easily go beyond control with the 
increased dimension. 2) Extended KLD, which is a practical way to approximate the 
distance [16]. But it can not be used to deal well with mixed-mixture PDFs and great 
time consumption is required. 3) Parametric distance metric for mixture PDF [17], 
which can effectively measure the distance directly between PDFs with mixed 
mixtures from the model's parameter. Actually, this approach is an issue of linear 
programming and can be solved via simplex tableau. However, sometimes the optimal 
solution can not be obtained under some rigid constraints. In this paper, as a tradeoff 
between precision and efficiency, a distance measure, named pseudo-divergence 
based distance measure (PDBDM), which was initially used and implemented in 
speaker recognition [18], is modified here to act as the distance measure between a 
state of dialectal monophone HMM and a tied-state of standard triphone HMM.  

3.1   Basic Idea of PDBDM 

In this section, the basic idea of PDBDM is to be illustrated in detail. First, the 
dispersion between two HMM states is defined as 

( ),

1 1

( , ) ,
M N

Ai Bj A B

i j

dispersion A B w w d i j
= =

=  , (5) 

where A and B are two HMM states, dA,B(i, j) is the distance between the i-th mixture 
from A and j-th mixture from B. M and N are the total numbers of Gaussian mixtures 
in A and B, respectively. Accordingly, the self-dispersion is 

( ),

1 1

( , ) ,
M M

Ai Aj A A

i j

dispersion A A w w d i j
= =

=  . (6) 
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Then the pseudo-divergence between two HMM states is formulated as1: 

( ) ( , )
- ,

( , )
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pseudo divergence

dispersion A A
λ λ =  , (7) 

( ) ( , )
- ,

( , )
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dispersion B A
pseudo divergence

dispersion B B
λ λ =  . (8) 

Usually ( ) ( )- , - ,
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pseudo divergence pseudo divergenceλ λ λ λ≠ . To minimize 

the statistical difference, the distance between two HMM states is redefined as 

( ) 1 ( , ) ( , )

2 ( , ) ( , )
,A B

dispersion A B dispersion B A
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dispersion A A dispersion B B
λ λ = +  . (9) 

As for the distance between two single Gaussian mixtures, i.e. dA,B(i, j) in Equation 
5, there are normally four options, the Euclidean distance measure, the Mahalanobis 
distance measure, the weighted Mahalanobis distance measure and the 
Bhattachyaryya distance measure. The Bhattachyaryya distance measure is adopted 
here because it is thought to be able to characterize the distance more precisely by 
taking the difference of covariance into account [17]. Given two Gaussian mixtures, 
λ1(μ1, 1) and λ2(μ2, 2), the Bhattachyaryya distance measure is defined as  

1 2

1 1
2 2

1 ( )

21 2

1 2 1 2 1 2

1 2

1 1
( , ) ( ) ( ) ln

8 2 2

Td λ λ μ μ μ μ
− ++

= − − +  . (10) 

3.2   Combination of SDPBMM with PDBDM 

A state from a dialectal monophone HMM and its corresponding state on a basis of the 
same phoneme from a standard triphone HMM form a pair for the calculation of 
distance. The distances of all pairs are computed using Equation 9. Subsequently, a 
certain percentage, i.e. 70% relative to the amount of pairs, is set as a threshold in the 
descending order of distance so that the pairs with a large distance have a higher 
priority to be chosen to participate in the merging. The idea is depicted in Equation 11. 

,        distance( , )  

- ,   distance( , ) <

merging d s threshold

no merging d s threshold

≥
 (11) 

The application of PDBDM in SDPBMM is based on the assumption that the 
distance can be used to characterize the similarity between two states instead, but in a 
reverse sense that a smaller distance corresponds to a bigger similarity. If the distance 
between two states is small, it can be safely inferred that there is less variability 
between them and in which case no merging is necessary because the original state 

                                                           
1  In the paper, the concept of divergence is not completely same as the classic definition of 

divergence, so pseudo-divergence is named.  
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from the standard speech has already covered the acoustic space sufficiently. As for 
the pairs with big distances, the merging is performed to cover both the standard and 
the dialectal speech acoustically. Notice the fact that in the right part of Figure 1, 
some states, for example l-an+d[2] and f-an+m[2], are not involved in the merging, 
which represents the purpose of PDBDM. It is expected that the scale of Gaussian 
mixtures can be downsized by PDBDM while no performance degradation takes place 
for dialectal speech recognition. 

4   Experiments and Results 

The Mandarin Broadcast News (MBN) database (Hub4NE), a read style standard 
Chinese speech corpus, was used to train the baseline system, the Putonghua 
recognizer. It contained about 30 hours of high quality wideband speech with detailed 
Chinese Iinital/Final (IF) transcriptions. The acoustic models of Putonghua-based 
baseline were tied-state cross-word standard tri-IF HMMs. Each tri-IF was modeled 
using a left-to-right non-skip 3-state continuous HMM, with 14 Gaussian mixtures per 
state. 39-dimensional MFCC coefficients with Δ and ΔΔ were used as features with 
cepstral mean normalization [19]. The HMMs achieve good performance statistically 
upon which many research was carried out [12]. Additionally, 6 zero-Initials were 
added to the standard IF set to help improve the performance and make the modeling 
process consistent. Another database, namely Wu dialectal Chinese database (WDC) 
[20], contained 100 native Shanghai speakers, 50 males and 50 females. The speech 
data of WDC was recorded under a similar condition to that of MBN. The use of this 
database was to minimize the channel affect. The WDC was composed of the speech 
from medium and strong Shanghai-accented speakers. Further details on the database 
can be found in [20]. Adopted in the following experiments as the recognition lexicon 
were 406 toneless Chinese syllables. 

Three data sets were selected from the WDC and MBN, one was the development 
training set, Dev_WDC, which consisted of about 40-minute Shanghai-dialectal 
Chinese speech by 10 speakers. The Dev_WDC was used to build 65 context-
independent dialectal mono-IF HMMs for SDPBMM, each monophone HMMs was 
of the exactly same topology as that of standard tri-IFs except that there were 6 
Gaussian mixtures per state. Another data set was Test_WDC composed of 20 
speakers' speech from the WDC. The third data set was Test_MBN from MBN also 
used for testing. The three data sets were not overlapping with one another. The 
detailed information for the data sets used in the experiments is listed in Table 1. 
Initially, the MBN-based Putonghua HMMs achieved SERs of 30.5% and 49.8% on 
Test_MBN and Test_WDC, respectively; there was an absolute degradation of 
approximately 20% on the Shanghai-dialectal Chinese speech. An SER of 54.1% on 
Test_WDC was achieved by the dialectal mono-IF HMMs built upon Dev_WDC. 
Because acoustic modeling was our research focus no language models were used. 
Our experiments were performed at the syllable level and the SER reduction was used 
as a measure of the improvement. Besides, HTK [21] was used in the experiments. 
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Table 1. Detailed information for the development and test sets 

Data set Database Details 
Dev_WDC WDC 10 speakers, 510 utterances, totally 40-minute speech 
Test_WDC WDC 20 speakers, 995 utterances, totally 60-mintue speech 
Test_MBN MBN 1,200 utterances, totally 80-minute speech 

 

The linear coefficient in Equation 3 was determined experimentally and λ was set 
to 0.72. With the application of PDBDM, there were 70% of tied states from 
Putonghua tri-IFs involved in the SDPBMM. The recognition results on the dialectal 
test set, Test_WDC, are listed in Table 2. It can be seen that the SDPBMM can reduce 
the SER by 6.2% absolutely on dialectal speech with only 40-minute dialectal 
Chinese speech data. However the number of Gaussian mixtures was increased by 
approximately 43%. To deal specifically with the Gaussian mixtures expansion 
problem, the PDBDM was adopted with the expectation that no degradation is 
introduced. Thus, the number of Gaussian mixtures in SDPBMM+PDBDM was 
decreased by 30% with a slight SER increase of 0.3% absolutely. Compared with the 
baseline, an absolute SER reduction of 5.9% was still achieved by the 
SDPBMM+PDBDM. It is shown that PDBDM can downsize the parameter scale 
without significant performance degradation. In the following experiments, 
SDPBMM+PDBDM was used as the default SDPBMM-based acoustic modeling. 

Table 2. The results for Putonghua, SDPBMM, and SDPBMM in conjunction with PDBDM 
on Test_WDC 

 Putonghua SDPBMM  SDPBMM+PDBDM 
States 3,230 3,230 3,230 
Gaussians 45,220 64,600 58,786 
Tri-IFs 7,411 7,411 7,411 
SER 49.8% 43.6% 43.9% 

4.1   Comparison Conditioned on Same Amount of Gaussian Mixtures  

As for SDPBMM-based acoustic model, it is naturally assumed that the improvement 
in dialectal speech recognition may result from the increase of Gaussian mixtures in 
the merged states. Compared with the Putonghua HMMs with 14 Gaussian mixtures 
per state, on average, there were 18.2 mixtures per state in SDPBMM-based HMMs. 
To make a fair comparison, another Putonghua acoustic model with 18 Gaussian 
mixtures per state was generated which had approximately equal parameter scale as 
that of the SDPBMM. The SER on Test_WDC was decreased from 49.8% to 49.1% 
compared with the baseline, but there still existed an SER gap of 5.2% absolutely in 
comparison with the SDPBMM. It is shown that increasing the parameter scale solely 
can not achieve significant improvement in dialectal speech recognition. 

4.2   Evaluation on Standard Speech Recognition 

The effectiveness of SDPBMM-based acoustic model on standard speech recognition 
can be seen from the results listed in Table 3 with Test_MBN taken as the test set. It is 



 SDPBMM for Dialectal Chinese Speech Recognition 291 

shown that as expected, the SDPBMM can achieve a slightly higher SER (an absolute 
0.6% higher) on standard speech than the Putonghua acoustic model. It could be 
concluded that the SDPBMM can achieve significant improvement in dialectal speech 
recognition without significant degradation in standard speech recognition. 

Table 3.  The results for Putonghua and SDPBMM on Test_MBN 

 Putonghua SDPBMM  
SER 30.5% 31.1% 

4.3   Integration with Adaptation 

Adaptation is one of the most effective ways for dialectal speech recognition. Most 
widely used adaptation techniques include the maximum linear likelihood regression 
(MLLR) and the maximum a posteriori adaptation (MAP) methods [19]. For 
comparison, the adaptation was performed with exactly the same amount of dialectal 
speech data as in the experiment regarding SDPBMM. Considering that MLLR is 
much beneficial when there is only a small amount of adaptation data available [7], 
we adopted MLLR for model adaptation. The MLLR adaptation was performed based 
on the Putonghua acoustic model, denoted as MLLR, in which all the standard tri-IFs 
were classified into 65 classes, and mean update was performed in transformation 
matrix. Note that, Dev_WDC was also used as the adaptation data in MLLR 
adaptation. As a result, an SER of 44.1% was achieved on Test_WDC which was still 
slightly higher than the SER of 43.9% by SDPBMM with exactly the same data set. 
The results are listed in columns SDPBMM and MLLR in Figure 2, respectively. It is 
shown that compared with MLLR, SDPBMM can achieve a comparable performance 
on dialectal speech recognition with only a small amount of dialectal data available.  
In addition, it is assumed that SDPBMM primarily concentrates on addressing the 
issues of the phonetic mismatch between the dialectal speech and the standard speech. 
As a matter of fact, the adaptation can be a good solution to channel mismatch. 
Therefore it is expected that the SDPBMM in combination with a certain adaptation 
method can have the potential to further improve the performance on dialectal speech 
recognition. To verify the assumption, another development data set of Shanghai-
dialectal Chinese, Dev_WDC1, was selected from WDC database, which consisted of 
410 utterances by 10 speakers (approximately 30 minutes). By using Dev_WDC and 
Dev_WDC1, two new acoustic models were built, namely SDPBMM+MLLR and 
MLLR+SDPBMM, where the order in the names means the order that the components 
were performed. In SDPBMM+MLLR, the SDPBMM was performed using 
Dev_WDC based on Putonghua HMMs followed by the MLLR adaptation using 
Dev_WDC1; and vice versa. The results are also listed in Figure 2. From the figure, it 
can be clearly seen that in combination with the MLLR adaptation, another two 
absolute SER reductions of 1.9% and 1.8% on dialectal Chinese speech can be further 
achieved by SDPBMM+MLLR and MLLR+SDPBMM, respectively. The results 
correspond to columns SDPBMM+MLLR and MLLR+SDPBMM in Figure 2, 
respectively. Another phenomenon is that SDPBMM+MLLR and MLLR+SDPBMM 
achieved approximately an equal SER, which is to say, the SDPBMM and MLLR can 
collaborate perfectly irregardless of the application order. In conclusion, SDPBMM 
and MLLR are additive and exchangeable algebraically. 
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Fig. 2. Comparison with MLLR adaptation on Test_WDC and integration with MLLR adaptation 
on Test_WDC and Test_WDC1 

5   Conclusions and Future Work 

In the paper, a novel, simple but effective acoustic modeling method for dialectal 
Chinese speech recognition, SDPBMM, is proposed. Though it will introduce a 
Gaussian mixtures expansion problem, a corresponding PDBDM acting as a merging 
criterion is proposed to be integrated into SDPBMM, which can result in no 
significant degradation for dialectal Chinese speech recognition. From a series of 
experiments, it can be concluded that the SDPBMM has the advantages: 1) It is 
simple but practical for acoustic modeling when there is quite a small amount 
dialectal speech data available; 2) It can make a significant performance improvement 
for dialectal speech recognition; 3) It can have good performance for both standard 
and dialectal speech recognition; 4) It can achieve comparable performance to 
adaptation with only a small amount dialectal speech data available; 5) It is additive 
to adaptation, that is to say, the application of SDPBMM and adaptation in any order 
can further improve the performance for dialectal speech recognition. In a word, the 
SDPBMM is one of the most effective acoustic modeling methods for read-style 
dialectal Chinese speech recognition. In this paper, the experiments were done on 
Shanghai-dialectal Chinese, but no dialect-specific prior knowledge is incorporated in 
SDPBMM, thus, this method can be easily generalized to other dialectal Chinese. 

Another issue is that the experiments in this paper were based on read speech. In 
our next step the research on spontaneous speech will be carried out where 
pronunciation modeling [22] should be taken into account. It is believed that the use 
of pronunciation modeling can help build much precise acoustic model to better 
characterize pronunciation variations between dialectal Chinese and Putonghua, not 
only for spontaneous speech but also for read speech. 
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Abstract. In conventional Gaussian mixture based Hidden Markov
Model (HMM), all states are usually modeled with a uniform, fixed num-
ber of Gaussian kernels. In this paper, we propose to allocate kernels non-
uniformly to construct a more parsimonious HMM. Different number of
Gaussian kernels are allocated to states in a non-uniform and parsimo-
nious way so as to optimize the Minimum Description Length (MDL) cri-
terion, which is a combination of data likelihood and model complexity
penalty. By using the likelihoods obtained in Baum-Welch training, we
develop an effcient backward kernel pruning algorithm, and it is shown to
be optimal under two mild assumptions. Two databases, Resource Man-
agement and Microsoft Mandarin Speech Toolbox, are used to test the
proposed parsimonious modeling algorithm. The new parsimonious mod-
els improve the baseline word recognition error rate by 11.1% and 5.7%,
relatively. Or at the same performance level, a 35-50% model compressions
can be obtained.

1 Introduction

In the state-of-the-art of Automatic Speech Recognition (ASR), Hidden Markov
Models (HMMs) have been successfully applied to modeling the dynamic evo-
lution of speech signals, and Gaussian Mixture Models (GMMs), which is quite
flexible to approximate various distributions, are the most popular statistical
models in modeling the output observations of HMM states. In a typical ASR
system, we just assign each phoneme an identical HMM topology, and model
each state with a fixed number of Gaussian kernels.

However, given the well-known Occam’s razor [1] “Given two equally predic-
tive theories, choose the simpler,” we should search for a parsimonious model
for better performance and robustness. In general, the purpose of parsimony is
to build statistical models with adequate topology and number of parameters,
which can be considered from two viewpoints: 1) how to determine the number
of parameters of a system? 2) given the total number of parameters, how to
allocate parameters optimally to each part of the system? Typically, the two
problems can be solved by exploiting model complexity penalization criterion,
e.g. Akaike Information Criteria (AIC) [2], Bayesian Information Criteria (BIC)
[3] and Minimum Description Length (MDL) [4].

Q. Huo et al.(Eds.): ISCSLP 2006, LNAI 4274, pp. 294–302, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In this study, we apply MDL criterion to speech model training. By parsimo-
nious modeling, we aim at constructing a recognition system with good classifi-
cation performance and compressing models to achieve comparable performance
but with significantly fewer parameters [5].

In HMM based ASR system, we can find parsimonious models with more com-
pact model topologies, e.g. number of HMMs, number of states in each HMM,
and/or the number of Gaussian kernels in each state. For the first issue, succes-
sive state spliting (SSS) [6] provides us a good generic solution. In this paper,
we concentrate on the second issue. Namely, how to optimally allocate different
numbers of kernels to each state in an HMM system. A couple of reasonable as-
sumptions are adopted to simplify solution. By making use of the by-products in
conventional mixture-up Baum-Welch training process, we develop an effective
and efficient kernel allocation algorithm.

The rest of the paper is organized as follows: In Section 2, a general opti-
mization framework of parsimonious Gaussian kernel assignment is presented;
in Section 3, we simplify the optimization problem for an effective and efficient
step back algorithm; in Section 4, experimental results are given and discussed;
conclusions are finally given in section 5.

2 MDL Based Gaussian Kernal Allocation for HMMs

States in HMMs are usually modeled as a mixture of uniform, fixed number
of Gaussian kernels [7]. However, conceptually, we tend to believe that each
state output distribution should characterized by different number of Gaussian
kernels. By allocating Gaussian kernels non-uniformly across different states, we
can maximize the modeling efficiency. We give an example of a 6-component
Gaussian mixture of C1 in Figure 1. The distribution can be probably modeled
well by a 2-component mixture without sacrificing and modeling resolution.

Maximum Likelihood (ML) criterion is widely adopted in acoustic modeling,
and the Baum-Welch algorithm [8] has been developed to train HMMs. To prevent
overtraining the model penalized by model complexity, ML can be modified to
MDL. Here we make effort to assign appropriate number of Gaussian kernels to
each state in the MDL sense based on the conventional training process. Denote
J the total number of states, T the total number of frames in the training set, and
d the feature demension, MDL criterion used in HMM training can be written as:

C( m) =
J∑

j=1

T∑
t=1

γj(t) log bj(ot)︸ ︷︷ ︸
L( m)

− K

2
log(Td)︸ ︷︷ ︸
P ( m)

(1)

where m = (m1, . . . , mJ)� is the configuration of number of kernels, with de-
noting mj the number of kernels of the jth state K =

∑J
j=1 mj(1+2d)−J is the

total number of parameters in the system; γj(t) and bj(ot) are the occupancy
and likelihood of the jth state, given the tth training frame, respectively, both
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of them depents on m. The two terms L( m) and P ( m) in this criterion are
likelihood and panelty of the model complexity respectively. Actually, we have
various choices for the penalty term, here the simplest form which is equivalent
to BIC is adopted.

By adopting MDL criterion, parsimonious HMM modeling in terms of kernel
allocation is given by the following optimization:

m̂ = argmax mC( m) (s.t.
J∑

j=1

mj = JMT) (2)

where MT is the target average number of Gaussian kernels per state. Here
the constraint in number of kernels is optional: Without the constraint, we are
finding the global optimal configuration in MDL sense. With the constraint,
we are finding the optimal kernel allocation. Because the penalty term adopted
here is in proportional to total number of kernels, the constrained optimization
is reduced to a ML problem.

−25 −20 −15 −10 −5 0 5 10 15
0

0.01

0.02

0.03

0.04

0.05
Original GMM
Weighted Kernels

Fig. 1. An example of over-modeled Gaussian mixture

2.1 Likelihood Decomposition

In principle, given an arbitrary m, we need to re-train corresponding HMMs to ob-
tain the likelihoods. However, this may be too expensive to be practical. Therefore,
we introduce some reasonable assumptions to simplify the optimization process,
and no re-training is needed. A basic assumption adopted is as follows:

Assumption 1: The likelihood of a given state of m kernels is independent of
any other states.

Since γj(t) reflects the state occupancy on the implicit segmentations of the
reference transcription, it is reasonable to assume that they only change slightly
from one configuration to another. Hence, assumption 1 can also be adopted
approximately. Actually, this assumption is based on a intrinsic nature of refer-
ence data likelihood: Given an observation, the likelihood of a certain model is
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independent of other competing models. For other discriminative measures such
as posterior probability or mutual information, the property is not valid.

With assumption 1, the total likelihood of the entire database can be decom-
posed into state likelihoods. Or equivalently, for a given configuration m, we
have:

L(m) =
J∑

j=1

Lj(mj) (3)

where Lj(mj) =
∑T

t=1 γj(t) log bj(ot) is the sum of likelihoods of all frames
belong to the jth state with mj Gaussian kernels. In this paper, we refer to it
as the state likelihood function.

Based on the decomposition, (2) can be simplified to:

m̂ = argmax m

[ J∑
j=1

Lj(mj)−P ( m)
]

(s.t.
J∑

j=1

mj =JMT) (4)

Because the panelty terms are pre-defined, we can perform the optimization as
a post-process without re-training to obtain the corresponding state likelihoods.

2.2 Likelihood Normalization

Since state occupancies can be affected by Baum-Welch training, we normalize
the state likelihoods functions to make the assumption 1 more plausible.

Donote Γ j(mj) =
∑T

t=1 γj(t) |mj the total occupancy of state j with mj

kernels, we obatin average occupancy of first:

Γ̄j =
1

MU

MU∑
mj=1

Γj(mj) (5)

where MU is maximal number of kernel per state used in the training process.
Accordingly, the normalized state likelihood function is then:

L̄j(mj) =
Γ̄j

Γj(mj)
Lj(mj) (6)

The resultant normalized state likelihood functions are used in the optimization
of (4).

3 Step Back Algorithm with Convex Likelihood Functions

Now we are facing the problem of (4), which is a combinatorial optimization.
Because the number of possible hypotheses of configuration vector m can be
huge, it is very expensive to solve the problem exhaustively. Therefore, we try
to simplify the solution by introducing one more assumption:
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Assumption 2: Normalized state likelihood of all states are convex, or equiva-
lently:

L̄j(m) − L̄j(m − 1) ≥ L̄j(m + 1) − L̄j(m) (7)

The physical meaning is that the marginal contribution of each new Gaussian
kernel to the state likelihood does not increase with increasing kernels. We found
that the assumption is approximately correct and confirmed experimentally. To
illustrate this, we show the normalized state likelihoods as a function of different
number of kernels obtained in the training process. The curves are plotted in
Figure 2. From the figure we observe that the normalized state likelihood func-
tions are approximatively convex. Note that P ( m) is proportional to the total
number of kernels, the overall criterion is also convex.
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Fig. 2. Examples of convex state likelihood functions

Let MU, ML denote the maximum, minimum number of kernels in each state,
respectively, MT denotes the target average number of kernels, where ML <
MT < MU, we come up with an algorithm to solve (5). Denote ΔCj(mj) =
L̄j(mj) − L̄j(mj − 1) − (0.5 + d) log Td, the psuedo code of the algorithm is
shown in Table 1.

In Table 1, the first block is the conventional Baum-Welch training process,
where all the state likelihoods are saved. The second block is MDL based kernel
allocation. It reduces the model size successively by eliminating one kernel from
the state which yields the minimum reduction of normalized likelihood. The
algorithm starts with a relatively larger number of kernels for each state and
avoids re-training in pruning. Although the algorithm is greedy in nature, it is
easy to prove that the optimal configuration is obtained if the two assumptions
are valid. If the number of kernels are constrained, the termination condition of
the state pruning can be set at: total number of kernels = J × MT.
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Table 1. Step back algorithm for non-uniform kernel allocation

Initialization:

Do Baum-Welch training for models with MU ker-
nels per state and record state likelihood functions
Lj

For each state 1 ≤ j ≤ J
Normalize Lj to L̄j

Set mj to MU
Pruning:

While minj,mj>ML
ΔCj(mj) ≤ 0

Find the state i with minimal criterion reduction:
i = argminj,mj>ML

ΔCj(mj)

Decrement mi and total number of kernels by 1.

Kernel grouping and refinement:

For each state 1 ≤ j ≤ J
Group the MU kernels to mj kernels

Retrain the models using Baum-Welch algorithm.

3.1 Kernel Pruning by Heap Sorting

We apply heap sorting to the kernel pruning process for selecting the state to
eliminate a kernel in each step: 1) Heap initialization: the heap is initialized
with delta likelihoods ΔL̃j of all the states; 2) State selecting: in each step,
the state with minimum delta likelihood is selected from the heap; 3) State
refreshing: after pruning, the new delta likelihood of the same state is inserted
back into the heap. The complexity of the entire kernel pruning procedure is
O[(MU − MT)J2 log J ].

3.2 Gaussian Kernel Grouping

The kernel grouping and refinement in the algorithm is performed in two suc-
cessive steps: First, the MU kernels in each state are clustered into m̂j groups;
second, a new Gaussian model of each class is Baum-Welch re-estimated in the
maximaum likelihood sense.

In the clustering stage, Kullback-Leibler divergence [9][10] is used as a measure
of kernel similarity. The adopted criterion is to minimize the sum of all the
intra-class KLDs weighted by the product of the priors of the two corresponding
kernels.

In the merging stage, given the K Gaussian kernels N (x; μk,Σk) belongs to
the same class and their prior wk, the parameters of the merged Gaussian model
N (x; μ,Σ) and its prior w can be calculated as:⎧⎪⎪⎨⎪⎪⎩

w =
∑K

k=1 wk

μ =
∑K

k=1 wkμk

/
w

Σ =
∑K

k=1 wk[Σk + (μ − μk)(μ − μk)�]μk

/
w

(8)
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The re-estimated models are refined by several Baum-Welch iterations in the
last step.

4 Experiments

To verify the proposed approaches, we carried out experiments DARPA Naval
Resource Management (RM) database and MSRA Mandarin Speech Toolbox
(MST) [11] database. The models are trained on the corresponding training sets
using 39-dimensional MFCC features.
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Fig. 3. Histogram of model size (number of kernels) of states

First, we study the model size of states (in terms of number of kernels) after
non-uniform kernel allocation. On RM task, with ML=3, MU=16, the statistics
of kernel distribution is shown Figure 3. We observe that quite a few models
are sufficiently modeled by smaller (than average) number of kernels and extra
kernels are allocated to the states which need higher resolutions.

Recognition performance and MDL criterion C in terms of Word Error Rate
(WER) is shown in Figure 4, where we adopt ML = 1/2MT, MU = 1/2MT
for parsimonious kernel allocation. It can be observed that parsimonious mod-
els outperform baseline models whith a fixed model size per state: For the two
databases, when the same total numbers of Gaussian kernels are used, aver-
age WER reduction are 11.1% and 5.7%, respectively. The model size can be
comprressed by about 35-50% without any loss in accuracy.

We also show the optimal operating points determined by MDL without con-
straints in number of states. On RM, we can achieve a WER of 3.78% with 5.1 ker-
nels per state,while onMandarin SpeechToolbox,we can achieve aWERof 20.20%
with 14.6 kernels per state. The operating points are significantly better than the
baseline, and the model size are compact. But the WERs have not reached optima
at these points. This may indicate that for achieving best recognition performance,
a more discriminative criterion then ML or MDL is still desirable.
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Fig. 4. Recognition performance (WER) and MDL criterion (C) with respect to num-
ber of kernels per state. (Dashed lines: uniform kernel allocation; Solid lines: non-
uniform kernel allocation; �: optimal model size determined by MDL)

Another observation is when the average number of kernels equals to 2, par-
simonious modeling achieves less improvement than other cases. It might be
explained by the bimodal distribution of male and female data. Two Gaussian
kernels seem to be necessary for characterizing most of the states. Correspond-
ingly, the parsimonious modeling dose not have degrees of freedom to allocate
the kernels non-uniformly other than 2 kernels to each state.

5 Conclusions and Discussion

In this paper, we propose a parsimonious modeling algorithm for training HMM
by Gaussian kernel allocation. The criteria to be optimized is MDL, and the
algorithm is shown to be computational efficient and performance-wise effective.
From the experimental results we observe:

1) Parsimonious kernel allocation is promising for model refinement and/or
compression.

2) In the ML sense, Gaussian kernel allocation can be solved with a straight-
forward step-back algorithm, and the resultant models are more parsimonious in
describing the overall training data statistics with same number of parameters.

Parsimonious HMMs leads to more compact description of the data. On recog-
nition, the problem can also be investiagted under discriminative criteria, where
the non-uniform kernel allocation based upon ML or MDL can be used as a
starting point.
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Abstract. Most speech models represent the static and derivative cep-
stral features with separate models that can be inconsistent with each
other. In our previous work, we proposed the hidden spectral peak trajec-
tory model (HSPTM) in which the static cepstral trajectories are derived
from a set of hidden trajectories of the spectral peaks (captured as spec-
tral poles) in the time-frequency domain. In this work, the HSPTM is
generalized such that both the static and derivative features are derived
from a single set of hidden pole trajectories using the well-known rela-
tionship between the spectral poles and cepstral coefficients. As the pole
trajectories represent the resonance frequencies across time, they can be
interpreted as formant tracks in voiced speech which have been shown
to contain important cues for phonemic identification. To preserve the
common recognition framework, the likelihood functions are still defined
in the cepstral domain with the acoustic models defined by the static
and derivative cepstral trajectories. However, these trajectories are no
longer separately estimated but jointly derived, and thus are ensured to
be consistent with each other. Vowel classification experiments were per-
formed on the TIMIT corpus, using low complexity models (2-mixture).
They showed 3% (absolute) classification error reduction compared to
the standard HMM of the same complexity.

1 Introduction

Cepstral-basedHidden Markovmodels (HMMs) are widely used in speech recogni-
tion. Most HMMs are frame-based that assume conditional independence between
frames. To capture the temporal dependence of speech, cepstral time-derivative
features, often also called the dynamic features, are added to augment the “static”
cepstral coefficients. These static and dynamic features are typically considered as
separate features and no constraint is imposed to ensure the consistence between
the trajectories inferred by them. Let us consider the case of a simple multi-state
HMM with single diagonal Gaussians as the observation distributions. Suppose
the observation space includes 10 static cepstral coefficients and 10 first order
derivatives and the Gaussian means are non-zero for all features. Then, the static
portion of the model infers a piece-wise constant cepstral trajectory. On the other
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hand, the non-zero derivatives infer a linearly changing cepstral trajectory which
is inconsistent with the trajectory inferred by the static coefficients. If we consider
the HMMs as a generative model, many of the generated features (including both
static and derivatives) do not correspond to any physical cepstral sequence.

Alternatives were proposed to capture the temporal dependence such as the
segmental models [1,2,3,4,5,6]. Although these models make fewer assumptions
about the correlation between adjacent frames and can improve the recognition
performance, dynamic features are again used to augment the static features to
obtain better performance. Thus, the model inconsistency issue remains.

Because the dynamic features are functions of the static features, they are
really dependent variables instead of independent variables. The fact that many
of the generated feature sequences do not match with any physical cepstral
sequence implies that the models are assigning probability to a portion of the
feature space that in fact should have zero probability. In [7], the trajectory
HMM was proposed that treats the dynamic features as a regression function of
the static features with a “corrected” likelihood function. Because the dynamic
features depend on the static coefficients across a fixed time span, this likelihood
function can be evaluated when the state sequence for the whole sentence is
known. This has been shown to work well in both recognition and synthesis but
the parameters in an individual modeling unit depend on others so that a large
set of linear equations have to be solved in model training.

Instead of correcting the likelihood, another approach to handling model con-
sistency is by generating both the static and time-derivative model from a single
set of parameters. The spectral domain is a natural choice because the cepstra
is in fact a function of spectral parameters. In [8], vocal tract resonance (VTR)
tracks are extracted from the speech acoustics using a stochastic process with
continuity constraints in the spectral domain and transformed into the cepstral
domain for estimating phonemic models. The advantage is that these tracks are
constrained not only within a phonetic unit but also continuous across differ-
ent units. This is particularly useful for capturing co-articulation effects. Biases,
separately estimated for both the static and dynamic features, are added to im-
prove the modeling accuracy. While the cepstral models derived from the VTR
are consistent, the addition of the bias again creates an inconsistent model.

Based on the fact that the cepstral trajectories are driven by the spectral
parameters, the hidden spectral peak trajectory model (HSPTM) is proposed
in our previous work to represent the time-frequency characteristic of speech
using the trajectory of all-pole representation of spectrum [9]. These trajecto-
ries are modeled as polynomial functions across time similar to the polynomial
segment models [10]. Different from [8], the spectral peak trajectories are esti-
mated implicitly using the static cepstral coefficients on a phoneme-by-phoneme
basis. The original motivation is to have a more parsimonious representation
of the acoustic model. The HSPTM, however, can be extended to derive the
time-derivative features. As the polynomials are used to represent the spectral
peak trajectories in HSPTM, the time-derivative models in cepstral domain are
easily generated from the spectral peaks trajectory parameters. More impor-
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tantly, within each acoustic unit, these time-derivative models are consistent
with the static model in cepstral domain because they are generated from the
same set of underlying parameters. Contrast with modeling the VTR, the spec-
tral peaks only capture the spectral-time characteristic and have no prior phys-
ical meaning in the acoustic although they can capture the formant in vowels as
the formants carry most energy in voiced speech. But in other phonetic units,
the spectral peaks serve as band-pass filters that capture the resonances of sound
production articulators. Therefore, it may not be necessary to use the bias in
the cepstral model and consistence of static and time-derivative trajectories can
be maintained.

Besides modeling the temporal information of speech, two modifications of
HSPTM will also be presented. First, it is well known that single Gaussian is
not enough to capture the statically variation of speech. Therefore, Gaussian
mixtures are usually used in recognition system and this can also be applied in
HSPTM to improve the recognition accuracy. Second, the phonetic units can be
represented using multiple trajectories. According to the results reported in [10],
using multiple segments is preferable in speech recognition. Although this would
reduce the modeling power of temporal information, the sub-phonetic boundary
can be varied so that it is more flexible to model the variation in the phonetic
units when linear normalization is used in the trajectories model.

In this paper, we will formulate the time-derivative cepstral model using spec-
tral peak trajectories and discuss the use of the sub-phonetic HSPTM in Sec-
tion 2. In Section 3, the HSPTM parameter estimation will be presented together
with the extension to mixture model. Since our purpose is to illustrate the fea-
sibility of a consistent HSPTM and to simplify the experimental complexity,
only low complexity models with two mixture components were used in our ex-
periments. The experimental results on vowel classification will be reported in
section 4. The paper will be summarized in section 5.

2 The Hidden Spectral Peak Trajectory Model

Using the relationship between the cepstral coefficients and the spectral peaks,
the HSPTM can capture the coarse shapes of frequency-time characteristic [9].
Since the temporal information of speech is also important for recognition, es-
pecially for phonetic units with short duration, the time-derivative features can
be used as additional information. Under HSPTM, the spectral peaks for each
acoustic unit are represented using polynomial functions and can easily be ex-
tended to generate both static and the time-derivative models in the cepstral
domain. The time-derivative model generated is guaranteed to be consistent
with the static model. As the dynamic cepstral features are now part of the
observations in deriving the spectral peak parameters, they provided informa-
tion on a wider time span such that higher order polynomial coefficients can be
estimated even on segments with short durations, such as in the case of only a
few frames in the sub-phonetic units. More detail will be discussed below.
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Let us consider an all-pole model with 2p poles. The spectral transfer function
H(z) can be written as

H(z) =
G

p∏
i=1

(1 − ziz−1)(1 − z∗i z−1)
, (1)

where G is the gain and, zi and z∗i denote a root and its complex conjugate. The
ith root can be expressed as

zi = e−πBi+j2πFi , 1≤i≤p, (2)

where Bi, Fi (0 < Fi < 1
2 ) are its bandwidth and center frequency .

To capture the time-dependent characteristics, the spectral peaks trajectories
are represented by polynomial time functions. Denote the bandwidth and center
frequency of the ith spectral peak trajectory at time frame n as Bi(n) and Fi(n),
which are polynomial functions with a normalized time scale as described in [1].
For a length-N linear segment, Fi(n) and Bi(n) are then defined as

Fi(n) =
J∑

j=0

ω(i, j)
(

n − 1
N − 1

)j

, (3)

Bi(n) =
J∑

j=0

β(i, j)
(

n − 1
N − 1

)j

, (4)

where ω(i, j) and β(i, j) are the jth coefficients of a J-th order polynomial for the
ith trajectories. To be consistent with formant in the voiced sounds, the spectral
peak trajectories are assumed to be in order and cannot cross each other.

The cepstral coefficients can be computed by taking the inverse z-transforms
on the logarithm of the transfer function [11]. The kth cepstral coefficient is given
as

ck =
2
k

p∑
i=1

e−πkBi cos(2πkFi), k > 0. (5)

The cepstral trajectories μφ(n, k) at time index n, and their first and second
order time derivatives, μ′

φ(n, k) and μ′′
φ(n, k), can be written as functions of the

spectral peak trajectories given by,

μφ(n, k) =
2
k

p∑
i=1

ψφ,i(n, k) (6)

μ′
φ(n, k) = −2π

p∑
i=1

[ψφ,i(n, k)B′
i(n) + 2ζφ,i(n, k)F ′

i (n)] (7)

μ′′
φ(n, k) = 2π

p∑
i=1

{
ψφ,i(n, k)

[
πk(B′

i(n))2 − 4πk(F ′
i (n))2 − B′′

i (n)
]

+ζφ,i(n, k) [4πkF ′
i (n)B′

i(n) − 2F ′′
i (n)]} (8)
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where

ψφ,i(n, k) = e−πkBi(n)cos(2πkFi(n)), (9)
ζφ,i(n, k) = e−πkBi(n)sin(2πkFi(n)), (10)

and X ′
i(n) and X ′′

i (n) are the first and second derivatives of function X against
n. In equations 7 and 8, the mean trajectories of the dynamic features are gen-
erated from the functions of the spectral peak trajectories. This guarantees its
consistency with the static trajectory.

The cepstral trajectories depend on the segment length. Denote
O = [o(1), . . . , o(N)] to be a length N sequence of 3D-dimensional feature vec-
tor o(n) = [o(n)T , Δo(n)T , Δ2o(n)T ]T , that includes the static D-dimensional
cepstral vector and their first and second order derivatives. These features are
assumed to be generated by a set of time-varying mean trajectories μφ(n) of
model φ with a zero-mean residue eφ(n) [1], with variance Σφ such that

μφ(n) = [μφ(n, 1) . . . μφ(n, D), μ′
φ(n, 1) . . . μ′

φ(n, D), μ′′
φ(n, 1) . . . μ′′

φ(n, D)]T (11)

o(n) = μφ(n) + eφ(n) for 1≤n≤N . (12)

Using Equation 12, the log likelihood can be written as,

L(O|λφ) = log P (O; ωφ, βφ, Σφ) = −1
2

N∑
n=1

[−3D log(2π) + log(|Σφ|)

+(o(n) − μφ(n))T Σ−1
φ (o(n) − μφ(n))] (13)

Noted that, once the parameters of the spectral peak trajectories are trained,
the mean trajectory μφ only depends on the segment length so that all likelihood
computation can be carried out in cepstral domain. In this sense, the spectral
peak trajectories are “hidden” and only the cepstral representation are used.

2.1 Sub-phonetic Modeling Units

In traditional segment models, a single segment is usually used to model each
phonetic unit [12]. This has several advantages. It reduces the number of segment
boundaries needed to be searched during recognition and ensures the continuity
and smoothness of the trajectory within each phonetic unit. In addition, it allows
joint modeling of all the observations within each phonetic unit.

However, this may not be flexible enough to capture temporal or acoustic
variations. For example, co-articulatory effect may affect the spectral character-
istic in the boundary of phonetic units. Compared to the HMM, each phonetic
unit is usually modeled by at least three separate states which can be considered
as the left boundary region affected by left context, the stationary region and
right boundary region affected by the right context. With single trajectory per
segment, variations caused by different left contexts can only be represented by
adding new trajectories for the whole phonetic unit even though the stationary
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and right boundary regions are more or less the same. This also can be problem-
atic for parameter sharing, such as in context-dependent modeling. Furthermore,
the time-normalization used in these segments in effect applies a uniform sam-
pling of the trajectory across each unit. With phonetic units, it does not allow
duration variations of the different boundary regions relative to each other. That
is, an instance of a longer phonetic unit would extend both the boundary regions
and the stationary regions to the same extent, even though it may be more likely
that the speaker has elongated the stationary region.

To address these issues, sub-phonetic units can be used. By dividing each
phoneme into different independent sub-phonetic units represented by differ-
ent trajectories, more flexibility in capturing the co-articulatory effect and for
parameter sharing is added while some within segment correlation are still cap-
tured. In this paper, three sub-phonetic segments are used to represent each
phoneme.

2.2 Example of Data Fitting

How well does HSPTM fit the data in cepstral domain? To illustrate the differ-
ences in speech trajectory fitting in the cepstral domain, HMMs and HSPTMs
were trained with a single instance of the vowel “ae”. For HMM, a 3-state, left-
to-right topology was used with single Gaussian per state. Similarly, HSPTM
used three sub-phonetic units with six spectral peak trajectories represented by
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Fig. 1. Mean trajectories of the first cepstral coefficient of HMM and HSPTM of
the vowel ’ae’. (a)-(c)second-order polynomial function, (d)-(f)forth-order polynomial
function.
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quadratic polynomials for both the center frequency and bandwidth. To sim-
plify the comparison, the HSPTM used the HMM state alignment. The mean
trajectories of the first cepstral coefficient (c1) and its time-derivatives are shown
separately in Figure 1. The dotted lines represent the coefficients actual cepstral
observations, the solid lines with dots show the HMM mean trajectories and the
solid lines represent the HSPTM fitted mean trajectory.

It can be seen from Figure 1 that the HMM trajectories are piece-wise station-
ary such that they are unable to accurately fit both static and time-derivative
observations. For the HSPTM, while the cepstral trajectories were derived from
the spectral peak trajectories in the time-frequency domain, the cepstral trajec-
tories can represent more accurately the temporal relationship of both the static
and dynamic coefficients simultaneously with smaller fitting error compared with
HMMs. This is particularly prominent in the third state.

One may notice that the HSPTM is also not representing the time-derivative
coefficients in first state as shown in Figure 1(b) and 1(c). Given that this is
a consistent model in that the static and derivative cepstral trajectories were
jointly derived from a single set of spectral peak trajectories, an accurate rep-
resentation of the static trajectory may limit the accuracy of the derivative
trajectories. This also suggests that the spectral peak trajectories are not suffi-
ciently accurate with quadratic polynomials. To verify this conjecture, HSPTMs
with forth order polynomials were trained and the resulting cepstral trajectories
are shown in Figure 1(d)-(f). It can be seen that the fit in the first sub-phonetic
units is significantly improved and the trajectories in the third state are nearly
perfectly on top of observed data.

Similar phenomena are also observed for other cepstral coefficients. It is also in-
teresting to notice that the trajectories for the second and the fourth order polyno-
mial are similar in the center region which suggests that higher order polynomials
should be used only when the changes of the coefficients are large, or during more
transient phonetic units. The modeling flexibility depends on the number of sub-
phonetic units and the polynomial order. Since both approaches would increase
the model complexity, and a balance between them would be important.

2.3 Number of Parameters

How many parameters are in one HSPTM sub-phonetic segment as compared
to an HMM state? Since both are assumed to be Gaussian distributed in the
cepstral domain, they use the same number of parameters for the convariance
matrix. For the mean trajectory, this depends on the number of hidden spectral
peak tracks and the polynomial order. For K spectral-peak tracks with R-th
order polynomial, the number of parameter is simply 2K × (R + 1) because
two polynomials are needed with one for the center frequency and one for the
bandwidth and they have the same polynomial order. Note that the number
of HSPTM parameters for the mean trajectory is independent of the number
of time derivatives, nor the number of cepstral coefficients used. However, we
can see in Figure 1 as well as in the next section that the accuracy of the
spectral peaks are measured by the fit in the cepstral domain. Thus, the number
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of cepstral coefficient used would indirectly affects the accuracy of the hidden
spectral peaks.

Consider the widely used 39 dimensional feature vectors, with the 12 cepstral
coefficients plus energy, and their first and second derivatives. Suppose six hidden
spectral peaks, represented by quadratic polynomial for both center frequency
and bandwidth while the frame energy is represented as a flat trajectory. The
total number of HSPTM parameters would be 2 × 6 × 3 = 36 for the hidden
spectral peaks plus 3 for the frame energy resulting in 39 parameters. This is
exactly the same as the HMM.

3 Model Parameters Estimation

The HSPTM parameters include the variances Σ’s, and the polynomial coeffi-
cients ω(i, j)’s and β(i, j)’s. It can be seen that in Equations 6-8, every point
in the both static and time-derivative cepstral trajectories depends on all the
polynomial coefficients through the terms in Equations 9 and 10. However, the
non-linearity in these function creates a difficulty in the model estimation and no
closed form solution of the maximum-likelihood parameter estimation problem
can be found. Instead, an iterative gradient descent method has to be used in
the estimation of the polynomial coefficients of frequency and bandwidth trajec-
tories. The variance are also estimated iteratively using the updated parameters
of the polynomial coefficients.

Denote the features R training tokens of model φ as {O1, O2, . . . , OR} and
the length of OR as Nr. Because the mean trajectories depend on the segment
length, the training token are grouped according to the length. The update
equations for ω(i, j) and β(i, j) are:

ω̂(i, j) = ω(i, j) − ε

R

r=1

∂L(Or|λφ)

∂ω(i, j)
= ω(i, j) − ε

max{Nr}

N=1 ∀r:Nr=N

∂L(Or|λφ)

∂ω(i, j)

= ω(i, j) − ε

max{Nr}

N=1 ∀r:Nr=N

Nr

n=1

∂μφ(n)T

∂ω(i, j)
Σ−1

φ (or(n) − μφ(n)) (14)

β̂(i, j) = β(i, j) − ε
R

r=1

∂L(Or|λφ)

∂β(i, j)
= β(i, j) − ε

max{Nr}

N=1 ∀r:Nr=N

∂L(Or|λφ)

∂β(i, j)

= β(i, j) − ε

max{Nr}

N=1 ∀r:Nr=N

Nr

n=1

∂μφ(n)T

∂β(i, j)
Σ−1

φ (or(n) − μφ(n)) (15)

where ε is the learning rate.
To find the derivatives of the mean trajectories against the parameters,

∂μφ(n)T

∂ω(i, j) and ∂μφ(n)T

∂β(i, j) , each dimension can be separately computed and expressed

as functions defined in Equations 9 and 10 and derivatives of Equations 3 and 4.

∂μφ(n, k)

∂ω(i, j)
= −4πζφ,i(n, k)(

∂Fi(n)

∂ω(i, j)
), (16)
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∂μφ(n, k)

∂β(i, j)
= −2πψφ,i(n, k)(

∂Bi(n)

∂β(i, j)
), (17)

∂μ′
φ(n, k)

∂ω(i, j)
= 2π ζφ,i(n, k) 2πkB′

i(n) ∂Fi(n)
∂ω(i,j) − 2

∂F ′
i (n)

∂ω(i,j)

+ ψφ,i(n, k) −4πkF ′
i (n) ∂Fi(n)

∂ω(i,j) , (18)

∂μ′
φ(n, k)

∂β(i, j)
= 2π ψφ,i(n, k) πkB′

i(n) ∂Bi(n)
∂β(i,j)

− ∂B′
i(n)

∂β(i,j)

+ ζφ,i(n, k) 2πkF ′
i (n) ∂Bi(n)

∂β(i,j)
, (19)

∂μ′′
φ(n, k)

∂ω(i, j)
= 2π ψφ,i(n, k) πk(8πkF ′

i (n)B′
i(n) − 4F ′′

i (n)) ∂Fi(n)
∂ω(i,j)

− 8πk(F ′
i (n))

∂F ′
i (n)

∂ω(i,j) + ζφ,i(n, k) πk(−2πk(B′
i(n))2 + 8πk(F ′

i (n))2

+2B′′
i (n)) ∂Fi(n)

∂ω(i,j) + 4πkB′
i(n)

∂F ′
i (n)

∂ω(i,j) − 2
∂F ′′

i (n)
∂ω(i,j) , (20)

∂μ′′
φ(n, k)

∂β(i, j)
= 2π ζφ,i(n, k) πk(−4πkF ′

i (n)B′
i(n) + 2F ′′

i (n)) ∂Bi(n)
∂β(i,j)

+ 4πkF ′
i (n)

∂B′
i(n)

∂β(i,j)
+ ψφ,i(n, k) πk(−πk(B′

i(n))2 + 4πk(F ′
i (n))2

+B′′
i (n)) ∂Bi(n)

∂β(i,j)
+ 2πk(B′

i(n)) ∂Bi(n)
∂β(i,j)

− ∂B′′
i (n)

∂β(i,j)
. (21)

Although the expressions are quite complicated, they are general to any or-
der of polynomial. Moreover, they are in terms of ψφ,i(n, k), ζφ,i(n, k) and the
derivatives of Fi(n) and Bi(n) and some of these terms can be cached to reduce
computation.

The re-estimation for the covariance using the updated polynomial coefficients
and is given by

Σ̂φ =

max{Nr}∑
N=1

∑
∀r:Nr=N

N∑
n=1

(o(n) − μφ(n)) (o(n) − μφ(n))T

max{Nr}∑
N=1

∑
∀r:Nr=N

N

(22)

One advantage of using the derivative coefficients is that they provide addi-
tional independent information for the estimation, so that the minimum number
of frames required to estimate the polynomial coefficient can be reduced. This
could be important when sub-phonetic units are used and the segment may
consist of only one or two frames.

It is well known that a single Gaussian may not be sufficient to capture the
statistical variations of the data in HMM and in segmental-based model. Thus,
a mixture model was widely used in HMM as well as polynomial trajectory
model [10]. Similar technique can also be applied to HSPTM to capture the
variation of speakers or speaking styles. Similar to other segmental models, mix-
ture hopping is not allowed in HSPTM. Thus, discontinuity of spectral peak
trajectories can only occur at the boundary of modeling units.
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From Equation 13, the likelihood of a segment over a K-mixture model is
given as

P (O|λφ) =
N∏

n=1

K∑
k=1

wφ,kN (o(n); μφ,k(n), Σφ,k)

where wφ,k is the mixture weight, μφ,k is the trajectory mean and Σφ,k is the
covariance for the kth mixture component of model φ. The update equation of
the mixture weight ŵφ,k is calculated by the model parameters of the previous
iteration as follows:

ŵφ,k =

max{Nr}

N=1
N

∀r:Nr=N

γφ,k(Or)

K

m=1

max{Nr}

N=1
N

∀r:Nr=N

γφ,m(Or)

(23)

where γφ,k is the mixture posterior given by

γφ,k(Or) =
wφ,kP (Or|λφ,k)

K
m=1 wφ,mP (Or|λφ,m)

(24)

Because the posterior probabilities γ’s are estimated on a per segment basis,
they are weighted by the segment duration N .

4 Experiments

Vowel classification experiments were conducted in TIMIT database to evaluate
the effectiveness of HSPTM. The experimental setup was similar to those re-
ported by Gish and Fukada [13,12] in which classification of 16 vowels sounds,
including 13 monothongs and 3 diphthongs was considered. The only difference is
that only the ’sx’ and ’si’ utterances were used for training and evaluation in our
experiments with the ’sa’ sentences excluded. This is motivated by the fact that
the ’sa’ sentences appears in both training and testing such that their phonetic
contexts are always observed. Thus, they may be slightly easier to classify. Some
of our preliminary results have also shown that including the ’sa’ sentences can
increase classification accuracy slightly. Without the ’sa’ sentences, our training
and testing sets consisted of 31864 and 11606 tokens respectively.

The speech was recorded at a sampling rate of 16kHz in the TIMIT corpus.
The frontend features were generated using the HTK [14] and included 12 PLP
cepstral features (c1 through c12), the frame energy and their first and second
order time derivatives. As is typically with TIMIT experiments, an analysis
windows of 25ms with 5ms shifts were used. Cepstral mean normalization was
also applied although not straightly necessary because of the consistent recording
in the TIMIT corpus.

3-state, left-to-right topology was used to represent each vowels under HMM.
Similarly, 3 sub-phonetic units were used in HSPTM. The frame energy was as-
sumed to be conditionally independent and stationary within a modeling unit.
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That is, it is represented by a constant within each HSPTM segment. However, be-
cause mixture hopping is not allowed in HSPTM, this is still different from HMM.
For both HMM and HSPTM, residue covariance is assumed to be diagonal.

Two different HSPTM experiments were performed. One used HMM state
alignment while the other optimizes the sub-phonetic segment boundaries. This
can be achieved either by searching around HMM state alignment for larger
tasks or by exhaustive search for smaller tasks.

Table 1. Vowel Classification Rate

Model Number of mixtures
1 2

HMM 55.02% 56.32%
HSPTM (without alignment training) 55.41% 56.39%
HSPTM (with alignment training) 56.33% 59.11%

Table 1 shows the vowel classification performance of HSPTM and HMM.
The second and third rows tabulate the performance of HSPTM using the HMM
state alignment and optimized alignment respectively. Comparing the first and
second rows shows that HSPTM is only slightly better than HMMs with the
gain decreases in two-mixture experiment.

Comparing the second and third rows, optimizing the segment alignment
actually significantly improved performance for both one- and two-mixture exper-
iments. Because HSPTM is co-optimized for both static and time-derivative coef-
ficients, the sub-phonetic HSPTM may define a different sub-phonetic unit from
an HMM state. The results in the third row show the improved performance of
HSPTM for generating the cepstral trajectories over using HMMs. The gain can
come from the combination of using a consistent model as well as the use of seg-
ments which has been shown to outperform HMMs in vowel classification tasks.

5 Conclusion

In this paper, we explored the consistence between the static and derivative fea-
tures. We proposed a consistent model by modifying the hidden spectral peak
trajectory model (HSPTM) such that both the static and time-derivative cep-
stral trajectories can be derived from a single set of hidden spectral peak tracks.
To improve the model’s flexibility in capturing acoustic variations, we also in-
troduced the sub-phonetic HSPTM with mixtures in which multiple segments
are used to represent each phonetic unit and each segment can be a mixture of
trajectories. In vowel classification experiments on the TIMIT corpus, we showed
that the consistent HSPTM out-performed the traditional HMM.

From the experiments, we observed that optimal “state” alignments are im-
portant and one of the our future work is to develop efficient HSPTM alignment
algorithms.
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Abstract. This paper proposes a Vector Autoregressive (VAR) model
as a new technique for missing feature reconstruction in ASR. We model
the spectral features using multiple VAR models. A VAR model predicts
missing features as a linear function of a block of feature frames. We also
propose two schemes for VAR training and testing. The experiments
on AURORA-2 database have validated the modeling methodology and
shown that the proposed schemes are especially effective for low SNR
speech signals. The best setting has achieved a recognition accuracy of
88.2% at -5dB SNR on subway noise task when oracle data mask is used.

Keywords: robust speech recognition, missing feature theory, vector
autoregressive model.

1 Introduction

The speech signal is a slowly time-varying signal. The slow time-varying nature is
reflected by highly correlated spectral frames, in other words, speech frames are
highly predictive. However, current modeling of speech spectral vectors, such
as hidden Markov model (HMM) and Gaussian mixture model (GMM) [1][2]
usually assume that the spectral vectors of neighboring frames are independent
in order to achieve mathematical simplicity. The HMM framework captures the
relationship between neighboring frames weakly using the transition probabili-
ties, while GMM completely discards this relationship. It is believed that if the
inter-frame statistics are captured and harnessed properly, the performance of
both spectral vector reconstruction and speech recognition will be improved.

Noise robustness is an important issue for the implementation of automatical
speech recognition (ASR) systems in the real world. Many algorithms have been
proposed to improve the recognition accuracies under noisy environments by en-
hancing the input signals or features. E.g. Wiener filtering, spectral subtraction,
cepstral mean normalization, and missing feature theory (MFT) [1] which has
become more popular in recent years.

MFT-based techniques usually compensate the corrupted spectral vectors in
two steps: the first step is to determine which components of the spectrogram-like
time-space representation of the speech (usually in log Mel filterbank domain,
hereafter called spectrogram for simplicity) are missing, and the second step is to

Q. Huo et al.(Eds.): ISCSLP 2006, LNAI 4274, pp. 315–324, 2006.
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either reconstruct the missing features for recognition [1,2,3,6] or discard them
during the recognition process [3]. Current MFT-based techniques [3,6] usually
assume that the neighboring speech frames are independent. E.g., in Cooke’s [3]
state-based imputation method, the statistics of a log Mel filterbank domain
HMM model are used to estimate the missing features. Since the HMM is used,
the independence assumption of the spectral features is applied. Although Van
Hamme [6] improved the above method by estimating the cepstral coefficients
directly from the log Mel filterbank coefficients through a nonnegative least
square approach, the independence assumption remained. The above two MFT
approaches reconstruct the missing features during the decoding process.

In another MFT approach, instead of reconstructing missing features during
decoding, the spectral features are first reconstructed prior to MFCC feature
generation [2]. Raj proposed two methods for this approach, the cluster-based
and correlation-based reconstruction methods. The cluster-based method as-
sumes the log Mel filterbank coefficient vectors (hereafter called spectral vec-
tors) are from a single independent, identically distributed (IID) process, and
uses a GMM to model its distribution. It then reconstructs the missing features
using the statistics of the trained GMM and an iterative maximum a posteriori
(MAP) estimation method. Hence, the cluster based approach does not utilize
inter-frame information. In the second method, the correlation-based method,
inter-frame statistics are utilized to reconstruct the missing features. The cor-
relation method assumes that the spectral vectors are generated from a single
wide-sense stationary multivariate process, and the spectrogram of every ut-
terance is a realization of the process. It first captures the cross-covariances
statistics of the spectral features during training and estimates the missing fea-
ture using the MAP method. Although inter-frame statistics are utilized, we
argue that the full potential of the time information in the spectrogram is not
harnessed. One reason is that the speech signal is very dynamic, and a single
wide-sense stationary process is insufficient to model the speech spectrogram.

In this paper, we aim to improve the estimation of the missing features giv-
ing oracle data mask. We proposed to use the VAR models [4] to model the
inter-frame relationship of the speech spectral vectors in a parametric way. The
speech spectral vectors are assumed to be from multiple stationary multivariate
processes, and for each process, one VAR model is used to capture the inter-frame
relationship. Based on these VAR models, two missing feature theory-based fea-
ture compensation schemes are proposed. The paper is organized as follows.
Section 2 introduces the proposed VAR modeling of spectral vector. Section 3
describes the proposed feature compensation schemes. Section 4 introduces the
experimental setup and results. Finally,we conclude in section 5.

2 VAR Modeling of Spectral Vectors

To capture the inter-frame relationship of the speech data in filterbank domain,
we propose to model each filterbank channel as an autoregressive (AR) model.
The AR model can be used to predict the value of the missing features from either
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its past neighbors (causal), or future values (anti-causal) in the same filterbank.
Furthermore, to capture the inter-filterbank relationship of the speech data, we
propose to use the vector-valued extension of the AR model, the VAR model,
to model the speech data in filterbank domain. This is because the VAR model
utilizes the inter-filterbank relationship to produce more accurate prediction. In
the following paragraphs, we will introduce the details of the VAR model for
speech data and the Least Square solution for the model parameters.

Let s(n) be the nth frame of the speech signal, and x(n) ∈ RD is its corre-
sponding log Mel domain spectral vector, where D is the number of Mel win-
dows. We use the VAR models to capture the inter-frame relationship between
the spectral vectors such that the current frame feature can be predicted by its
past (forward prediction) or future vectors (backward prediction) as illustrated
in Fig. 1. The elements of x(n) are predicted as a linear combination of all the
elements of either the past vectors or the future vectors plus a prediction error
that is white noise. The mathematical derivation of forward prediction and back-
ward prediction are similar, hence only the derivation of the forward prediction
model is discussed. The jth element of x(n) can be predicted as [4].

xj(n) = f(x(n − 1),x(n − 2), ...,x(n − P ))

= −
P∑

i=1

wT
i,jx(n − i) + uj(n) (1)

where wi,j , for i = 1, ..., P are the D × 1 weight vectors, uj(n) is a white noise
or innovation process, P is the order of the model, and (·)T denotes the matrix
transpose. Let Wi = [wi,1, ...,wi,D], x(n) = [x1(n), ..., xD(n)]T and u(n) =
[u1(n), ..., uD(n)]T , where [·] denotes the matrix or vector concatenation, Eq (1)
can be rewritten as:

x(n) = −
P∑

i=1

WT
i x(n − i) + u(n) (2)

where Wi is the D×D weight matrix for the ith order, u(n) is the D dimensional
white noise.

Here we describe how to find the Least Square solution of Wi [4]. Let x(n− i)
for i = 1, ..., P be concatenated to form a super vector o(n), i.e. o(n) = [x(n −
1)T , ...,x(n − P )T ]T , and let Wi be concatenated to form B = [−WT

1 , ..., −WT
P ].

Then Eq (2) can be rewritten as

x(n) = Bo(n) + u(n) (3)

To estimate the weight matrix B, we form training samples r(n) as the con-
catenation of the desired vector x(n) and the super input vector o(n), i.e.,
r(n) = [x(n)T ,o(n)T ]T . Suppose we have a collection of M training samples,
denote the input vector o(n) of all the samples as O = [o(1), ...,o(M)], and the
corresponding desired vectors x(n) as X = [x(1), ...,x(M)]. The Least Square
solution can be found by the following equation:

B̂ = XOT (OOT )−1 = XO+ (4)
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Fig. 1. Illustration of forward and backward prediction

where B̂ is the estimate of B and O+ is the pseudoinverse of O. The weight
matrix B̂ is used to predict the spectral vectors during reconstruction phase,
using the formula

x̂(n) = B̂o(n) (5)

where x̂(n) is the estimate of x(n).
Given a collection of training samples, we have described how to construct a

VAR model. However, we know that speech signal is not a stationary process.
We can not expect to use one VAR model for spectral feature prediction in many
different phonetic contexts. Note that speech is composed of a finite number of
phonemes. Studies have shown that speech signals of the same phoneme share
similar spectral pattern. One solution to vector autoregressive modeling for a
ASR task is to have multiple VAR models according to the short-term spectral
characteristics. Each VAR is modeled by a collection of homogeneous spectral
training samples.

3 Feature Compensation Schemes

This section describes the detailed implementations of the proposed VAR based
missing feature reconstruction schemes. We propose two schemes, one uses clean
training data, and the other uses noisy training data corrupted by white noise.
We present details only for the forward prediction model as the procedure for
backward prediction model are similar except the direction of prediction.

3.1 Scheme I: Training on Clean Speech Data

Training. The objective of the training process is to cluster the training samples
and estimate the parameters of the VAR models for every cluster. The procedure
for clean VAR model training is summarized as follows (see Fig. 2.A):



Vector Autoregressive Model for Missing Feature Reconstruction 319

1. Collect all the training samples r(n) = [x(n)T ,o(n)T ]T where n denotes the
nth frame in the the training set.

2. Use K-means algorithm to cluster all r(n) into K clusters, called spectral
clusters. Estimate the mean vector and covariance matrix of the Gaussian
models N (r, μk, Σk) for each cluster k = 1, ..., K.

3. Label each sample with a cluster id k = 1, ..., K. For each cluster, collect all
the input vectors o(n) and their corresponding desired vectors x(n), then
estimate the weight matrix Bk of cluster k using Eq (4).

Testing. The procedure of estimating missing features is as follows (Fig. 2B):

1. For each noisy vector x(n), identify the set of reliable and unreliable features.
We use the oracle mask to do so in this paper. For each of the unreliable
features, go through step 2-4;

2. Estimate the spectral vector x(n) using the VAR models, we first form a
vector r(n) = [x(n)T , x̂(n−1)T , ..., x̂(n−P )T ]T , where the first vector is the
noisy vector x(n) and {x̂(n − j)}P

j=1 are the reconstructed past vectors.
3. Find the a posteriori probability for every Gaussian model N (r, μk, Σk) for

k = 1, ..., K given vector r(n) in the same manner as in the cluster-based
method reported in [2].

p(r(n); k) = N (r(n), μk, Σk), k = 1, ..., K (6)

p(k|r(n)) = p(r(n); k)/
C∑

l=1

p(r(n); l) (7)

where p(r(n); k) is the likelihood of r(n) on the kth Gaussian model and
p(k|r(n)) is the a posteriori probability.

4. Form super input vector o(n) = [x̂(n−1)T , ..., x̂(n−P )T ]T . Find the model-
dependent prediction x̃k(n) of x(n) using

x̃k(n) = Bko(n), k = 1, ..., K (8)

5. Reconstruct the feature vector x(n) by

x̂j(n) =

⎧⎨⎩min{xj(n) ,
∑K

k=1 p(k|r(n))x̃kj(n) },
for unreliable features;

xj(n), for reliable features.
(9)

where the reliable features keeps original values while the unreliable features
are replaced by the weighted sum bounded to the corresponding noisy values,
and x̃kj(n) is the jth element of x̃k(n). Instead of using a hard decision in
model selection, we form the estimate for a missing feature using a linear
combination of its estimates from all models, where the weights are the a
posteriori probabilities p(k|r(n)) of models.

In the experiments, we found that good performance is achieved by using
both the forward and backward model to reconstruct the final vector by simply
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Estimate the

Gaussian models

Estimate VAR

models
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Clustered data

Gaussian models

VAR models

A. Training

B. Testing

Noisy vector
x(n)

Fig. 2. Scheme I: Training on clean data and testing on noisy data

averaging the two predictions. In this way, both information from past vectors
and future vectors are fully utilized.

Using clean data to train the spectral clusters and their corresponding VAR
models gives rise to two types of mismatches. First, the spectral clusters use
probabilistic mixture to model the distribution of the clean training data. As
a result, the derived spectral clusters do not describe well distribution of noisy
speech data in run-time, leading to inaccurate estimate of cluster a posteriori
probability p(k|r(n)). The estimate of p(k|r(n)) has direct impact on the quality
of reconstructed missing feature. Second, VAR model relies on a sequence of
spectral frames to predict a new frame. If the VAR model is trained on clean
data, by taking corrupted data in run-time, the VAR model’s performance would
be unexpected. To address the two mismatches in Scheme I. We propose Scheme
II that trains the system using data corrupted by white noise.

3.2 Scheme II: Training on Noisy Speech Data

In this scheme, noisy data are used to train the system as illustrated in Figure
3A. Two approaches are studied, the first uses the noisy data directly to train
the system, while the second approach preprocesses the data prior to system
training. The training procedure is similar to that of the clean training with two
differences. First, the noisy data are used for the spectral clustering; second, the
weight matrices Bi are trained by minimizing the prediction error using noisy
input vectors to predict the clean desired vector. When reconstructing missing
features, the calculation of the a posteriori probabilities of VAR models is based
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Fig. 3. Scheme II: Training on clean and noisy data, testing on noisy data, with and
without preprocessing

on the noisy spectral vectors. The prediction is also based on the noisy spectral
vectors of neighboring frames. Therefore, the accuracy of the calculation of the
a posteriori probability is improved and the mismatch in feature prediction is
minimized.

Although the noisy training scheme reduces the mismatches that exists for
clean training scheme, there are some inherent technical constraints for this
scheme. First, the statistics of the noisy signal changes with signal to noise ratio
(SNR). Hence models trained on data of one SNR level are not adequate to
reconstruct the noisy speech at another SNR level. Second, for very poor SNR
cases (< 5dB), we found that the accuracy of the a posteriori probability is low
which results in poor reconstruction of features.

To alleviate these problems, the preprocessing module is incorporated into
the noisy training and testing processes when the switch chooses preprocessed
data x′(n) (see Fig. 3A&B). The objective of the preprocessing module is to
condition the noisy speech signal prior to training or testing. Specifically, it aims
at reducing the mismatch caused by SNR difference and producing more reliable
features. The latter is important, as we assume that for the VAR prediction to
be effective, enough reliable features need to be present in the input vectors. By
making more reliable features, the performance of the VAR prediction will be
improved. Many feature compensation and speech enhancement methods may
be used for preprocessing, such as Wiener filter and spectral subtraction [5]. In
our experiments, the cluster-based feature compensation method [2] is used for
preprocessing.
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4 Experimental and Results

4.1 Experiments Setup

The AURORA-2 database [7] was used to evaluate the performance of the pro-
posed feature compensation schemes. The training and testing of the recognition
engine follow the scripts provided by the database, except that the c0 is used,
rather than log energy. Due to space limits, we only report results on subway
noise of test set A and restaurant noise of test set B. As our objective is to
examine the performance of the proposed schemes to reconstruct the missing
features, we used the oracle binary data mask for our experiments. The optimal
SNR threshold is found to be -5dB by experiments [1].

For our two proposed schemes, our experimental results showed that increas-
ing number of clusters improves performance and C = 50 cluster is sufficient
to model the different classes of speech segments for the AURORA-2 database.
We also found P = 3 to be a suitable VAR order for the experiments. Hence,
these two parameters are used throughout in our experiments as discussed in
the following sections.

4.2 Experimental Results Using Oracle Data Mask

The following six results were obtained for the AURORA-2 Test Set A subway
noise as illustrated in Fig 4.

Fig. 4. Recognition results on subway noise of Test Set A
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a) AURORA-2 baseline model using clean training.
b) Proposed scheme II without preprocessing.
c) Van Hamme’s reported results from [6] using oracle mask.
d) Raj’s [1,2] cluster based MFT method with 20 clusters using oracle mask.
e) Proposed scheme I.
f) Proposed scheme II with preprocessing.

The results showed that our proposed noisy training Scheme II with pre-
processing (line-f) gives the best performance with absolute accuracy 88.2% at
SNR = -5dB. Compare this result to line-b (noisy training scheme II without
preprocessing), the dramatic improvement highlights the importance of the pre-
processing steps that conditions the input vectors for the VAR models. Note
that the preprocessing step applied for line-f is actually that of Raj’s cluster-
ing [1,2] as in line-d. As line-f is significantly better than line-d, this shows that
the VAR model further utilizes the inter-frame relationship to improve the recon-
struction performance. It implies that the VAR model and Raj’s clustering uses
complementary information, i.e. the the cluster-based preprocessing module only
exploit the intra-frame relationship while the VAR exploits the inter-frame ones.
Our experimental results have showed that better result are obtained when these
two kinds of information are used together properly. The results of our proposed
clean training Scheme I (line-e) indicates the performance of the VAR-alone
scheme. It produces similar performance as Raj’s cluster-based method (line-d).

Fig. 5. Recognition results on restaurant noise of Test Set B
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This shows that the inter-frame information is as effective as the intra-frame
information on the task of missing feature reconstruction.

The results for the restaurant noise of Test Set B shows similar relative perfor-
mance as that of subway noise (Fig. 5). Here line-a is the AURORA-2 baseline;
line-b is for Scheme II without preprocessing; line-c is for Scheme I; line-d is
Raj’s cluster based MFT reconstruction; and line-e is for Scheme II with pre-
processing.

5 Conclusion

In this paper, we proposed two novel feature compensation schemes using the
Vector Autoregressive modeling of spectral vectors. The VAR models are trained
on both clean and noisy data respectively. It is found that the models trained on
noisy data with the use of preprocessing module provides the best recognition
accuracies. The improvement can be credited to the use of both the interframe
and intraframe information during feature compensation.

Future research may be conducted to improve the prediction accuracy using
nonlinear prediction and use other types of preprocessing techniques. In addition,
we will also examine the use of GMM for the spectral clustering. Although
our experimental results showed its effectiveness, it is an empirical method and
better method for clustering spectral vectors may be used to improve the overall
performance. The estimation of VAR model parameters can also be more robust
by using advanced model identification methods [4].
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Auditory Contrast Spectrum for Robust Speech 
Recognition 
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Abstract. Traditional speech representations are based on power spectrum which 
is obtained by energy integration from many frequency bands. Such 
representations are sensitive to noise since noise energy distributed in a wide 
frequency band may deteriorate speech representations. Inspired by the contrast 
sensitive mechanism in auditory neural processing, in this paper, we propose an 
auditory contrast spectrum extraction algorithm which is a relative representation 
of auditory temporal and frequency spectrum. In this algorithm, speech is first 
processed using a temporal contrast processing which enhances speech temporal 
modulation envelopes in each auditory filter band and suppresses steady low 
contrast envelopes. The temporal contrast enhanced speech is then integrated to 
form speech spectrum which is named as temporal contrast spectrum. The 
temporal contrast spectrum is then analyzed in spectral scale spaces. Since 
speech and noise spectral profiles are different, we apply a lateral inhibition 
function to choose a spectral profile subspace in which noise component is 
reduced more while speech component is not deteriorated. We project the 
temporal contrast spectrum to the optimal scale space in which cepstral feature is 
extracted. We apply this cepstral feature for robust speech recognition 
experiments on AURORA-2J corpus. The recognition results show that there is 
61.12% improvement of relative performance for clean training and 27.45% 
improvement of relative performance for multi-condition training.  

Keywords: Auditory model, adaptation, contrast spectrum, speech recognition. 

1   Introduction 

Traditional speech representations are based on power spectrum, such as MFCC, PLP, 
etc.[1], before doing nonlinear compression and de-correlation, speech power or 
amplitude spectrum is usually resulted by integration from some frequency channels 
using filter bands. Since all frequency components are taken into consideration, these 
kinds of representations are sensitive to noise distortion because noise energy 
distributed in some frequency bands may deteriorate speech representations. For 
speech recognition, we only need the speech information which is kept from noise. For 
extracting such information, we must investigate two aspects; one aspect is from the 
difference of statistic properties between noise and speech, another aspect is from 
auditory neural processing, i.e. how does the auditory system deal with the difference.  
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Usually, the statistic properties of speech are changed more rapidly than those of 
most of the noises caused by environments, even for a non-stationary noise. So the 
dynamic changes of statistic characters can be used to discriminate speech from noise. 
In addition, speech is produced by speech organs with certain resonance properties, 
thus the spectral profiles show regular structures, such as harmonic structure (for 
voiced speech), formant structure, etc.[2]. These spectral profiles should be 
distinguished from those of other acoustic sounds produced by physical entities, such 
as car, train, etc. Enhancing the dynamic changes and regular spectral structures of 
speech should be helpful for robust speech representations. From auditory neural 
processing aspect, the extraction of the dynamic changes and enhancing of speech 
spectral structures mechanisms do exist [3][4][5][7]. These mechanisms can be 
regarded as temporal and frequency contrast processing of speech. However, there is no 
a unifying model to deal with the contrast processing for robust speech representations. 
Some models treat the contrast processing implicitly even without considering the 
different characteristics of speech and noise. In this paper, we propose an algorithm 
based on the auditory contrast processing mechanisms which realizes the temporal and 
frequency contrast processing of acoustic signals explicitly. During the design of the 
algorithm, we take the differences of speech and noise characteristics into 
consideration, and directly adapt the algorithm for robust speech feature extraction. The 
left of this paper is organized as follows. In section 2, we briefly introduce the temporal 
and frequency contrast processing in auditory system, and design an algorithm to 
realize the contrast processing functions. In section 3, we adapt the proposed algorithm 
for robust speech feature extraction and test the robustness on speech recognition task. 
In last section, we give some discussions and conclusions.   

2   Auditory Contrast Processing  

Contrast sensitivity mechanism is common in biology neural processing for different 
stimulations. In computational auditory model, the contrast processing function for 
acoustic stimulations also has its neural basis [5][6][7]. Most of the computational 
auditory models for speech feature extraction usually use a static input/output (I/O) or 
input/firing (I-F) response curve to describe the relationship between the stimulation 
and the response of an auditory neuron. The feature extracted based on this static 
response curve represent the stimulation intensity. However, auditory neurons can 
adapt to a temporal varying stimulation continuously which shows context dependent 
responses. In this adaptation response, neurons distribute more firing sparks to the high 
temporal contrast parts of stimulations while allocate only a few firing spikes for steady 
stimulations or low contrast parts of stimulations. It is proved that this kind of 
adaptation is important for improving the neurons’ information transfer efficiency, 
reducing the information redundancy [6]. In our application, considering the different 
statistic changes of speech and noise, we want to use this mechanism to enhance the 
high temporal contrast parts of acoustic signals for speech feature representation, thus 
the representation is a temporal contrast representation rather than an absolute intensity 
representation.  
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2.1   Auditory Temporal Contrast Processing 

For combining the temporal contrast processing of neurons with our auditory speech 
feature extraction model, in this paper, we choose an adaptive compression loop model. 
This model was originally used to quantify psychoacoustic experiments, and later was 
also applied for robust speech recognition [7]. The model is composed of five 
adaptation loops as shown in Fig.1.  

In Fig.1, the ( )a t is the input acoustic signal (from one auditory neural fiber), ( )y t  

is the output of the adaptation model. 
iR ,

iC , 1,2,...,5i = are the resistor and capacitor 

with a time constant 
iτ , 1,2,...,5i =  respectively. This model can detect the temporal 

dynamic changes of acoustic stimulations while suppress the slow and high varying 
parts (based on the perception of speech intelligibility, the temporal modulation 
frequency below 1Hz is regarded as slow dynamic changes while the temporal 
frequency above 20Hz is regarded as high varying parts). 

                 ÷  ÷  ÷ ÷

ground ground ground 

1τ  2τ

 

5τ

( )a t  ( )y t

1R

1C

2R 5R

2C 5C

 

Fig. 1. Nonlinear adaptation model (modified based on [7]) 

The processing effect of the adaptation model is shown in Fig.2, the upper panel is 
the original temporal envelope and the lower panel for contrast envelope processed by 
one auditory frequency channel with center frequency 1k Hz. One can see from Fig.2 
that the temporal contrast processing detects the relative changes of speech stimulations 
rather than detecting the intensity of acoustic stimulations. Since usually noise signals 
are more stationary compared to speech signals, the local contrast processing can serve 
as a suppressor of noise signals.  
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Fig. 2. Temporal contrast processing by the temporal adaptation model. Original temporal 
envelope (top), temporal contrast envelope (bottom). 
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2.2   Auditory Frequency Contrast Processing 

In auditory processing, the topological structure of the frequency is kept well while 
being transferred to auditory cortex [3][5]. There are some interactions between 
neighboring frequency channels. One of the most important interactions is the lateral 
inhibition mechanism. The function of the lateral inhibition is to enhance spectral 
contrast [5]. Most of the applications of the lateral inhibition models do not consider the 
difference of spectral profiles between speech and noise signals. In our analysis, we 
apply the lateral inhibition mechanism by considering the difference of spectral profiles 
between speech and noise signals.  

For a simple analytic analysis purpose, in this paper, we choose a normalized second 
order derivative of Gaussian function which fulfils the lateral inhibition effect well. The 
Gaussian function with a variance parameter c and its normalized form are represented 
as: 

( )
2

2

1
, exp

22

x
g x c

cc π
= − , ( ) ( )

( )
2

2

,
, exp

0, 2

g x c x
f x c

g c c
= = −               (1) 

The lateral inhibition function which can be regarded as a scale function is gotten as: 

( ) ( )2 2 2

2 2 2 2

, 1 1
, 1 exp

2

f x c x x
x c

x c c c
ϕ

∂
= − = − −

∂
                      (2) 

The function is applied on a spectral profile as: 

( ) ( ) ( ), ,y c x cω ω ϕ ω= ∗                                           (3) 

where ∗  is the convolution operator, ( )x ω is the original auditory spectral profile, 
and ( , )y cω is the auditory scale spectral profile analyzed using a scale function 

( , )cϕ ω with scale parameter c .  
The scale function (2) with two scale parameters and corresponding frequency 

response (spatial frequency) is shown in the left and right panels of Fig.3 respectively. 
From Fig.3, one can see that if a large scale parameter of the scale function is used for 
spectral profile processing, the spectral peaks with wide bandwidths in spectral structure 
will be emphasized, while for a small scale parameter, spectral peaks with narrow 
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Fig. 3. Scale analysis, impulse response of the scale functions (left) and normalized spatial 
frequency response (right) with scale parameters 2(dashed curve) and 4(solid curve)  
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bandwidths will be emphasized. Thus the band-pass filtering characteristic of the scale 
function makes the processing enhance the spectral contrast in some spatial scales.  

For a noisy speech spectral profile, the noise effect is different in each spectral scale 
space. For measuring the noise effect on speech spectral profile in different scale 
spaces, we analyze the noise distortion on auditory contrast spectral profiles using 
speech sentences from AURORA-2J speech corpus [9]. We use a normalized L2 
distance between clean and noisy spectral profiles in scale spaces to measure the noise 
distortion on speech (the normalized L2 distance is calculated as the Euclidian distance 
of the two compared spectral profiles which are normalized by maximum spectral 
profile values sentence by sentence). Fig. 4 shows the normalized L2 distance between 
a clean and noisy speech spectral profiles in different scale spaces for subway  
and restaurant noises under different SNR conditions. From Fig.4 one can see that the 
noise distortion increases with the decreasing of SNR levels. The distortion gets a 
minimum when the scale index approximating 3 in both noise types for almost  
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Fig. 4. Normalized L2 distance between clean and noisy spectral profiles in different scale spaces 
(subway and restaurant noise) 

all SNR conditions. That is to say, the optimal scale space seems to depend more on 
speech spectral profiles rather than on noise types. For finding a good spectral scale 
space, we define an objective function for one spectral profile which consists of two 
parts, one part is related with noise reduction, and another part is related with speech 
distortion as shown in formula (4). 

 ( ) ( ) ( ) ( ) ( )2 2
, , , ,c

noise reduction speech distortion

e c y c y c x y cω ω ω λ ω ω= − + −                       (4) 

where ( )x ω is the clean speech spectral profile, ( , )y cω  and ( , )ny cω are the clean 

and noisy speech scale spectral profiles, λ  is the weighting coefficient which balances 
the importance of noise reduction and speech distortion. Considering the different 
dynamic ranges of noise reduction and speech distortion, we normalize noise reduction 
and speech distortion components to the same ranges sentence by sentence. The 
weighting coefficient λ  is chosen as 1 in this paper to show the equal importance of 
noise reduction and speech distortion. By minimizing the objective function ( , )e cω , 

we can get an optimal scale parameter for the noisy speech spectral profile ( )nx ω : 
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( )( )arg min ,
c

c e cω∗ =                                                  (5) 

In real application, the scale parameter should be different for different noise under 
different SNR levels. But currently, we use an average scale parameter for all. For an 
initial experiment, we randomly choose ten clean speech sentences, and corresponding 
noisy speech sentences from test A, test B and test C at the SNR 0dB, 5dB, 10dB, 15dB 
and 20dB from AURORA-2J [9]. We added the objective function (5) for all the speech 
sentences under all SNR conditions to get a total objective function. Based on the total 
objective function, we got an average optimal scale parameter value as 3.42. 
Comparing the optimization result with the normalized L2 distances in scale space 
showed in Fig.4 , it is reasonable to assume that the scale parameter value 3.42 can be a 
good choice for the AURORA-2J speech data for all noisy conditions (although not an 
optimal value for each noise type respectively). We show an example of the auditory 
contrast spectrum in Fig.5 using the optimized scale parameter. From the figure, one 
can see that the noise effect is reduced more in auditory contrast spectrum 
representation than that of the auditory power spectrum representation.  
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Fig. 5. Comparison of auditory power spectrum (upper two panels) and auditory contrast 
spectrum (lower two panels) for clean speech (left two panels) and noisy speech (right two 
panels) (SNR=5dB, subway noise)  

3   Speech Recognition Based on Auditory Contrast Spectrum 

We test the performance of the contrast spectrum on robust speech recognition 
experiments. The AURORA-2J corpus is adopted. The feature vector and Hidden 
Markov Model (HMM) configurations are the same as used for standard comparisons [9].  

3.1   Auditory Contrast Spectral Feature Extraction  

For auditory contrast spectral feature extraction, we add two additional processing 
blocks to extract the temporal and frequency contrast feature of speech in a common 
auditory processing flowchart. The processing blocks are shown in Fig.6. The two 
dashed rectangle blocks are the added contrast processing blocks. The features extracted 
with and without the contrast processing blocks are denoted as: (a) AFC: Auditory 
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frequency power spectrum based cepstral feature extracted without the two contrast 
processing blocks. (b) FC-AFC: Frequency contrast AFC extracted with the frequency 
contrast processing block only. (c) TC-AFC: Temporal contrast AFC extracted with the 
temporal contrast processing block only. (d) FC-TC-AFC: Frequency and temporal 
contrast AFC extracted with both the two contrast processing blocks.  

The procedures for extracting FC-TC-AFC are described as: (1) Observed acoustic 
signals are band-pass filtered using N=60 gammatone band-pass filters which fulfill the 
function of basilar membrane. Then the output of each band-pass filter is half-wave 
rectified and low-pass filtered which serve as the functions of inner hair cells and 
auditory neural fibers. (2) The nonlinear adaptation model in Fig.1 is used for temporal 
contrast processing in each frequency band followed by a temporal integration which 
integrates 20ms of the temporal contrast signal to produce the temporal contrast 
spectrum (with 10ms frame shift). (c) The temporal contrast spectrum from all 
frequency channels is processed using a spectral profile scale analysis to extract the 
contrast spectrum followed by a DCT to get the cepstral feature for HMM.  
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Fig. 6. Auditory contrast spectrum feature extraction 

Based on the four feature representations, the recognition performance is shown in 
Fig.7 for test A, test B, test C and the overall performance. In Fig.7, the recognition 
performance of AFC is a little higher than that of MFCC which is used as a baseline for 
comparison in our experiments. From the figure, one can see that the temporal and 
frequency contrast processing do improve the robust performance of the speech 
recognition.  

 

Fig. 7. Speech recognition rate for four types of representations under clean training condition 



332 X. Lu and J. Dang 

3.2   Comparison with Other Noise Reduction and Feature Extraction Methods 

We compare the proposed contrast spectra based feature (FC-TC-AFC) with two robust 
features extracted using minimum statistic based spectral subtraction (SpecSub) [10] 
and optimally modified least square amplitude spectral estimation (OM_LSA) [11]. 
The recognition results are shown in Fig.8. Seeing from Fig.8, one can see that the 
auditory spectrum with contrast processing (FC-TC-AFC) representation is the most 
robust among the compared representations. 

3.3   Normalized Auditory Contrast Spectral Representation 

Usually the mean and variance normalization on the feature vectors make the 
representation more robust to noise. The mean normalization is done using: 

( ) ( ) ( ), , ,tv i t v i t E v i t= − , 1, 2,..., ; 1, 2,...,i m t n= =                  (6) 

where ( , )v i t is the original cepstral coefficient, ( , )v i t  is the mean normalized 
cepstral coefficient, i  is the cepstral order index, t  is time frame index. (.)tE  is the 
expectation operator on time dimension.  

 

Fig. 8. Speech recognition performance under clean training condition for the four compared 
representations 

The variance normalization is done using: 

( ) ( )
( )( )

,
,

,t

v i t
v i t

var v i t
= , 1,2,..., ; 1, 2,...,i m t n= =                    (7) 

where ( , )v i t is the variance normalized cepstral coefficient, (.)tvar  is the variance 

operation on time dimension. In this paper, the mean and variance normalization is 
done based on the mean and variance of cepstral coefficient for each sentence. For the 
normalized representations, a prefix N- is used to each original representation symbol, 
i.e., N-AFC, N-SpecSub, N-OM-LSA, N-FC-TC-AFC. Based on the normalized 
representations, the recognition performance for clean training is shown in Fig.9.  
Table 2 shows the relative recognition performance. One can see from figure 9 and 
table 2 that all the normalized representations improve the robust performance. But the 
improvements are different for different representations, and representations based on 
auditory model processing get higher improvements than the other two representations 
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do. Among all the compared representations, the performance of our proposed 
N-FC-TC-AFC representation is the best. For multi-conditional training [9], the 
relative performances of normalized representations are shown in table3. From tables 2 
and 3, one can see that although the N-SpecSub and N-OM-LSA improve the robust 
performance in clean training condition, they degrade the robust performance in 
multi-training condition. But the N-AFC and N-FC-TC-AFC both improve the robust 
performance in the two training conditions.  

 

Fig. 9. Recognition performance under clean training condition for normalized representations 

Table 2. Relative performance for clean training condition 

 Test A Test B Test C Overall 

N-OM-LSA 40.39% 43.63% 32.45% 40.26% 

N-SpecSub 41.28% 48.01% 24.31% 40.92% 

N-AFC 43.29% 47.19% 45.64% 45.35% 

N-FC-TC-AFC 59.58% 62.72% 60.83% 61.12% 

Table 3. Relative performance for multi-conditional training  

 Test A Test B Test C Overall 

N-OM-LSA -50.99% 15.70% 10.46% -1.42% 

N-SpecSub -61.20% 21.13% -16.29% -6.24% 

N-AFC -20.26% 30.53% 29.40% 18.07% 

N-FC-TC-AFC -7.22% 39.61% 35.22% 27.45% 

4   Discussions and Conclusion 

In this paper, we proposed an auditory contrast spectrum representation for speech 
recognition. The representation enhances the temporal and frequency contrast 
components, which is a relative and acoustic context-dependent representation of 
speech. The representation does not take the absolute physical speech spectral 



334 X. Lu and J. Dang 

information as a feature, but takes the relative temporal and frequency contrast 
information as a feature. Our experiments showed that the adding of the temporal and 
frequency contrast processing blocks improve the robustness of the speech recognition 
performance. For normalized contrast spectral representation, it got 61.12% 
improvement of relative performance for clean training, and 27.45% improvement of 
relative performance for multi-condition training. However, there are some problems 
needing to be investigated further. For the selection of the optimal scale parameter for 
spectral profile processing, we only used a small collection of speech sentences and 
mixed with some types of noise. We assumed that the optimal scale parameter is 
depended more on the speech spectral profiles rather than on noise types. This 
assumption is only kept for averagely flatten noise spectral types, however, may not 
always be kept for many other noise types. In addition, the scale parameter should be an 
adaptive value which can be adapted to different speech and noise situations. Another 
problem is how to choose the balance between noise reduction and speech distortion in 
a scale space for minimization. In future, we will investigate a more general scale 
analysis model for taking the discussed problems into consideration.  
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Abstract. This paper presents a novel signal trajectory based noise
compensation algorithm for robust speech recognition. Its performance
is evaluated on the Aurora 2 database. The algorithm consists of two
processing stages: 1) noise spectrum is estimated using trajectory auto-
segmentation and clustering, so that spectral subtraction can be
performed to roughly estimate the clean speech trajectories; 2) these tra-
jectories are regenerated using trajectory HMMs, where the constraint
between static and dynamic spectral information is imposed to refine the
noise subtracted trajectories both in “level” and “shape”. Experimental
results show that the recognition performance after spectral subtraction
is improved with or without trajectory regeneration, but the HMM re-
generated trajectories yields the best performance improvement. After
spectral subtraction, the average relative error rate reductions of clean
and multi-condition training are 23.21% and 5.58%, respectively. And
the proposed trajectory regeneration algorithm further improves them
to 42.59% and 15.80%.

1 Introduction

The performance of a speech recognizer trained in clean condition degrades dra-
matically in the presence of noise. This degradation is one of the major problems
that still remain unsolved in speech recognition. To deal with the noise robust-
ness problem, varieties of noise compensation techniques have been proposed.
Among them, spectral subtraction [1] is one of the most popular methods for
noise robust speech recognition.

Spectral subtraction makes an estimate of the noise spectrum, which is then
subtracted from the corrupted speech spectrum, to get an evaluation of the
underlying “clean” speech. Because the performance of spectral subtraction relies
mostly on the estimate of noise, the labeling of speech and non-speech regions
for noise tracking and estimate becomes a key problem. While former algorithms
usually use a Voice Activity Detector (VAD) to label the gaps of speech as noise,
recent researches of spectral subtraction aim to label the non-speech regions
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not simply along the time axis (the speech gaps), but also along the frequency
axis (the so called “harmonic tunneling”) [2, 3]. However, noise labeling and
estimation when only one single corrupted channel is available has always been
a difficult problem. This situation is mainly due to the non-stationary of noise
and poor Signal-to-Noise Ratio (SNR).

In order to alleviate this problem, we propose a trajectory auto-segmentation
and clustering scheme for speech/non-speech labeling. Under the assumption
that noise is more homogeneous but less strong than speech, sub-band energy
trajectory can be divided into successive and homogeneous segments, from which
the desired speech/non-speech labeling can be obtained by clustering the energy
means of those segments. Using the labeled non-speech samples, noise spectrum
can be estimated with both time and frequency resolution, and spectral sub-
traction can thus be performed to get a rough estimate of the clean speech
trajectories.

After spectral substraction, the noise subtracted trajectories only approximate
the static “level” of the clean speech, without considering its dynamic “shape”.
Conventional spectral subtraction methods finish here, and extract feature co-
efficients directly from these rough trajectories. As a result, the information we
observed from the noisy speech signal has not been fully exploited. In fact, there
is an explicit constraint between static and dynamic features of a trajectory.
As previous research [4] has shown that the dynamic feature is more robust
than static feature in noisy environment, it is then feasible to refine the noise
subtracted trajectory, by using the observed dynamic information of the original
speech. For doing this, we propose a trajectory regeneration scheme using trajec-
tory HMMs [5], to impose the relationship between static and dynamic features.
The static-dynamic constraint results in a better estimate of the clean speech
trajectory in our study, when compared with using spectral subtraction method
only.

The rest of this paper is organized as follows. Section 2 introduces the tra-
jectory auto-segmentation and clustering scheme for noise estimation and spec-
tral subtraction. Section 3 discusses the details of trajectory regeneration using
static-dynamic constraint. Algorithm implementation and experimental results
are reported in Section 4. And finally we draw our conclusions in Section 5.

2 Spectral Subtraction Using Trajectory
Auto-segmentation and Clustering

2.1 Trajectory Auto-segmentation and Clustering

We propose an auto-segmentation and clustering scheme to label speech and non-
speech regions along a trajectory, which is then used as the guidance for noise
estimate and spectral subtraction. This method is effectual mainly because of
the helpful nature of the noise corrupted trajectory. The solid line in Fig. 1(A)
illustrates a sub-band energy trajectory in 10dB SNR car noise (the dash line
for clean speech trajectory is also drawn for reference). We can see from the
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Fig. 1. Typical behavior of trajectory auto-segmentation and clustering in noisy envi-
ronment (sub-band energy trajectory of “O73643O” corrupted by car noise from the
Aurora 2 database, 10dB SNR)

figure that: 1) neighboring non-speech regions tend to be more homogeneous,
or less variable than speech along time; 2) the transition between speech and
non-speech usually leads to a sudden change on trajectory, and 3) noise mainly
corrupts background silence and unvoiced regions of speech, leaving most of the
higher volume, voiced regions less corrupted.

Based on these properties of the corrupted speech trajectory, we can first
divide a trajectory into certain number of homogeneous segments, and then
cluster them into two classes according to their segment energies. Because we
assume that the energy of a voiced speech segment is always higher than that of
the non-speech’s, it is quite straightforward to label the segments in the higher
energy cluster as speech, and the others as non-speech. Formally, the trajectory
auto-segmentation and clustering scheme can be described as follows:

Given an energy trajectory of T frames, first, we divided it into M successive
segments, say, Φ = φ1, φ2, . . . , φM , to make each segment as homogeneous as
possible. M is chosen to be proportional to the length of the utterance according
to a fixed ratio on the basis of experience (typically M = �T/5� or M = �T/10�).
We measure the homogeneity of a segment φm by the energy variance var[E(φm)]
within the segment. Consequently, the optimal trajectory segmentation Φopt can
be obtained by the following optimization that:

Φopt = argminΦ

M∑
m=1

var[E(φm)] / M (1)

It is efficient to optimize Eq. (1) using dynamic programming. The typical
behavior of auto-segmentation on a corrupted trajectory is shown in Fig. 1(B).
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As we can see from the figure, once there is a sudden change on the trajectory,
the algorithm will put a segment boundary to maintain homogeneity within
the segment. This property provides a way to separate speech from non-speech,
because neighboring high-energy segments can be identified and clustered as
speech. A simple k-means clustering with respect to the segment energies is
applied after auto-segmentation. These neighboring segments in the cluster with
a higher energy level are merged and labeled as speech, while the others are
labeled as non-speech. The final clustering result is shown in Fig. 1(C), in which
the clustered regions 2, 4, 6, 8, etc, have been labeled as speech.

Sub-band trajectory auto-segmentation and clustering labels speech/
non-speech regions along the time axis. Therefore, this method can be performed
on an appropriate number of trajectories from different sub-bands, in order to
obtain the speech/non-speech labeling with both time and frequency resolutions.
This is the basis for noise estimate and spectral subtraction in latter process.

2.2 Trajectory Spectral Subtraction

Spectral subtraction is carried out for noise suppression, on trajectories of each
frequency bin. Given a trajectory of frequency ω and its corresponding sub-
band speech/non-speech labeling, we use the samples which have been labeled
as non-speech to get a smooth estimate of the noise Ñ(ω, t):

Ñ(ω, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t+l∑

τ=t−l

X(ω, τ)δ(ω, τ) /
t+l∑

τ=t−l

δ(ω, τ), if
t+l∑

τ=t−l

δ(ω, τ) > 0

0 otherwise

(2)

where

δ(ω, τ) =
{

0 for speech
1 for non-speech (3)

and X(ω, t), 2l+1 are the noisy speech trajectory and the length of the smoothing
window, respectively.

By subtracting noise from noisy speech, the estimate of the clean speech
trajectory S̃(ω, t) with an over-estimation factor α(ω) can be formulated as:

S̃(ω, t) = max{X(ω, t) − α(ω)Ñ(ω, t), βX(ω, t)} (4)

in which β is the noise-masking floor factor.
In Eq. (4), α(ω) is a sub-band SNR-dependent over-estimation factor. The

basic idea of this factor is to subtract more noise in low SNR regions [1]. In
fact, when we use sub-band trajectory auto-segmentation and clustering, the
divergence between speech and non-speech clusters is directly related to the
SNR. Therefore, this divergence can be used instead of the SNR to determine
the over-estimation factor for spectral subtraction.

Let μs, μn, σ2
s and σ2

n be the energy means and variances of the trajectory’s
speech and non-speech clusters, respectively, and assume the energy distributions
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within each cluster are single Gaussians, we calculate the Kullback-Leibler (K-L)
divergence between speech and non-speech clusters for determining α(ω):

D = D(s ‖ n) =
∫

x

N (x | μs, σ
2
s ) log

N (x | μs, σ
2
s )

N (x | μn, σ2
n)

dx (5)

For each utterance with N sub-band trajectories of different frequencies, the
speech/non-speech divergence Dn, n = 1, . . . , N , can be computed. Let Dmin

and Dmax be the minimal and maximal of Dn, and suppose ω belongs to the
sub-band of the i−th trajectory, the over-estimation factor α(ω) is defined as:

α(ω) = 1.5 − 0.5 × (Di − Dmin)/(Dmax − Dmin) (6)

As we can see from Eq. (6), the frequency bins in the sub-bands with low
speech/non-speech divergences (which means poor SNR) get a higher over-
estimation factor than the ones in the sub-bands with high divergences (which
means high SNR). Each α(ω) is then used in Eq. (4) to complete the spectral
subtraction process.

3 Trajectory Regeneration Under Static-Dynamic
Constraint

After spectral subtraction, a rough estimate of the trajectories of each frequency
bin is obtained. These trajectories approximate the static “level” of the power
spectrum of the clean speech, and conventional spectral subtraction methods use
them directly to calculate feature coefficients for speech recognizer. However, as
we essentially subtract a smooth estimate of the static noise power from the
corrupted speech trajectories, the dynamic “shape” of these trajectories is in
fact neglected. In fact, there is a explicit constraint between static and dynamic
features. This relationship can be imposed to refine the roughly estimated tra-
jectories so that the modified trajectories would approximate the clean speech
trajectories both in “level” and “shape”.

For doing this, we propose a trajectory regeneration scheme using the idea
of trajectory HMM in speech synthesis [5]. A trajectory is first divided into
successive “states” using auto-segmentation, and then regenerated by solving
the weighted normal equation which impose the static-dynamic constraint. The
following two subsections will describe the details of the two steps.

3.1 Trajectory State Sequence by Using Auto-segmentation

The use of trajectory HMM relies on a sequence of HMM states, and each state
represents both the static and dynamic features of certain number of frames.
The first step of trajectory regeneration is to divide the trajectory into successive
segments, and regard each segment as a trajectory state. Auto-segmentation is
used again to find the optimal state boundary Φopt = φ1, φ2, . . . , φM of the
trajectory after spectral subtraction. Then, means and variances for both static
and dynamic coefficients of all states are computed. Because previous research
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[4] has shown that the dynamic feature is more robust than static feature in
noisy environment, we use the noise subtracted trajectory to compute the static
features of the states, while the observed noisy speech trajectory is used to
compute the dynamic features (state boundary φm is kept the same for both the
two cases). It can be formulated as:

μ
(s)
φm

= mean
t∈φm

[S̃(ω, t)] σ
2(s)
φm

= var
t∈φm

[S̃(ω, t)]

μ
(d)
φm

= mean
t∈φm

[ΔX(ω, t)] σ
2(d)
φm

= var
t∈φm

[ΔX(ω, t)]
(7)

in which ΔX(ω, t) is the first-order dynamic trajectory of the noisy speech, and
(s), (d) stand for the static and dynamic features, respectively. Note that in
Eq. (7), we only use the first-order delta trajectory as the dynamic feature for
simpleness. The use of delta-delta feature can be implemented similarly.

By using auto-segmentation, a trajectory of T frames can be aligned by its
state sequence q = {q1, . . . , qT }. For each state {qt | t ∈ φm}, the static and
dynamic feature can be written as:

μ
(s)
qt = μ

(s)
φm

σ
2(s)
qt = σ

2(s)
φm

μ
(d)
qt = μ

(d)
φm

σ
2(d)
qt = σ

2(d)
φm

(8)

Then the state sequence q and its static and dynamic features are used in the
next step for trajectory regeneration.

3.2 Trajectory Regeneration Using Trajectory HMM

Given the state sequence q = {q1, . . . , qT } of one trajectory, we regenerate the
state output parameter sequence O = [o�

1 , . . . , o�
T ]� in such a way that P (O |

q) is maximized with respect to O. When only static feature is considered,
maximizing P (O | q) is equivalent to generate a trajectory consisting of a piece-
wise constant sequence of the static means of q, so the dynamic information
is totally discarded. This situation is due to the independence assumption of
state output probabilities, therefore, the static-dynamic constraint of the state
parameters need to be imposed to avoid this problem.

Let ot be a vector consisted of the trajectory’s static feature o
(s)
t and its

first-order delta (dynamic) feature o
(d)
t , that is:

ot = [o(s)
t , o

(d)
t ]� (9)

In Eq. (9), o
(d)
t can be rewritten as the weighted sum of o

(s)
t in a delta window

of 2L + 1:

o
(d)
t =

L∑
τ=−L

ω(τ)o(s)
t+τ (10)

where ω(τ) is the weight coefficients given by:

ω(τ) =
τ

2
∑L

λ=1 λ2
(11)
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Therefore, by substituting Eq. (10) into Eq. (9), O = [o�
1 , . . . , o�

T ]� can be
rearrange in a matrix form so that:

O = Wc (12)

in which
c = [o(s)

1 , o
(s)
2 , . . . , o

(s)
T ]� (13)

W = [W1,W2, . . . ,WT ]� (14)

Wt = [ωt
(s), ωt

(d)] (15)
and

ωt
(s) = [ 0, . . . , 0︸ ︷︷ ︸ , 1, 0, . . . , 0︸ ︷︷ ︸ ]�

t−1 T−t

ωt
(d) = [ 0, . . . , 0︸ ︷︷ ︸ , ω(−L), . . . , ω(+L), 0, . . . , 0︸ ︷︷ ︸ ]�

t−L−1 T−t−L

(16)

Assuming that each state output probability can be characterized by a two-
dimensional single Gaussian distribution with diagonal covariance matrix, then,
P (O | q) can be written as:

P (O | q) =
T∏

t=1

N (ot | μqt
,Σqt) = N (O | μq,Σq) (17)

in which
μqt

= [μ(s)
qt , μ

(d)
qt ]�

Σqt = diag[σ2(s)
qt , σ

2(d)
qt ]

(18)

and
μq = [μ�

q1
, μ�

q2
, . . . , μ�

qT
]�

Σq = diag[Σq1 ,Σq2 , . . . ,ΣqT ]
(19)

Under the static-dynamic constraint given by Eq. (12), maximizing Eq. (17)
with respect to O is equivalent to that with respect to c. So by setting:

∂ log P (Wc | q)
∂c

= 0 (20)

we obtain:
W�Σ−1

q Wc = W�Σ−1
q μq (21)

As a result, by solving the weighted normal equation in Eq. (21), a new trajec-
tory in terms of its static feature sequence c = [o(s)

1 , o
(s)
2 , . . . , o

(s)
T ]� can be regen-

erated. The refined trajectory follows not only the clean speech “level” (which
is estimated by spectral subtraction), but also its dynamic “shape” (which is
observed from the noisy speech trajectory). This balance between static and
dynamic features in the maximum likelihood sense thus yields a better approxi-
mation of the clean speech trajectory.
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4 Experiments

4.1 Implementations

The corrupted speech data is processed in a time window of 25ms, shifted every
10ms. A pre-emphasis with a coefficient of 0.97 is performed. The speech samples
are then hamming windowed, and transformed with a 256-point FFT. Then, the
power spectrum of each frame is calculated for noise suppression.

The frequency range between 64Hz and Nyquist frequency (4kHz) is equally
divided into 23 half-overlapped sub-bands in Mel-frequency. Sub-band energy is
then calculated and 23 sub-band energy trajectories are formed. Auto-segmenta-
tion and clustering are used to divide each trajectory into segments and classify
them speech or non-speech. Meanwhile, the K-L divergence between speech and
non-speech clusters is calculated. This divergence is then used to determine the
factor α(ω) in Eq. (6).

Spectral subtraction is applied to the trajectories of every frequency bin. Be-
cause each frequency bin usually belongs to two of the 23 sub-bands (as every
two neighboring sub-bands are half-overlapped), an average between the two
corresponding sub-bands is needed when their speech/non-speech labeling are
different. Following this way, noise power is estimated by calculating a weighted
average, using the non-speech samples in a 500ms window. It is then subtracted
from the corrupted trajectory using Eq. (4).

After spectral subtraction, we get one roughly modified trajectory for each
frequency bin. Auto-segmentation is used again for the second time, to divide
each trajectory into successive segments. Means and variances of both static
and dynamic features of the segments are computed, and trajectory states are
formed. After that, Eq. (21) is solved for trajectory regeneration, and the con-
straint between static and dynamic features is naturally imposed. Due to the
special structure of W�Σ−1

q W, Eq. (21) can be solved effectively by Cholesky
decomposition.

In the last step, acoustic coefficients for the recognizer are calculated from
the regenerated trajectories. The final output of the algorithm is 12 mel-scaled
cepstral coefficients plus log energy, along with their delta and acceleration coef-
ficients. As a result, a 39-dimensional feature vector, i.e., MFCC E D A, is used
as the input to the speech recognizer.

4.2 Experimental Setup

The recognition experiments were carried out on the Aurora 2 database us-
ing HTK [6]. Both training and testing were performed with ETSI provided
scripts [7]. Fig. 2 illustrates the models and noise compensation methods we built
and compared in our experiments: (A) the baseline feature extraction method
without noise compensation (ETSI FE v2.0); (B) spectral subtraction without
trajectory regeneration, and (C) spectral subtraction followed by trajectory re-
generation. Because we mainly focus on evaluating our algorithm for the perfor-
mance of estimating clean speech trajectory, no feature normalization methods
nor any other special treatment (e.g., VAD) was performed.
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Fig. 2. Comparation of noise compensation methods: (A) baseline without compensa-
tion, (B) spectral substration, and (C) trajectory regeneration

4.3 Experimental Results

The experimental results are given in Fig. 3 and Table. 1. For all the three
testing sets and all the SNRs between 20dB to 0dB, a consistent recognition
error reduction can be observed for both methods. These results show that the
noise compensation improves recognition performance with or without trajectory
regeneration.

For spectral subtraction based methods, the best recognition improvement is
often achieved when the mismatch between training and testing conditions is
very high. In our experiments, both methods achieve a better performance im-
provement in clean training than multi-condition training. Spectral subtraction
without trajectory regeneration relatively improves the performance by 23.21%
for clean training, and only 5.58% for multi-condition training.

When comparing with using spectral subtraction only, spectral subtraction
along with trajectory regeneration exhibits the best recognition performance.
Word error rate is relatively reduced by 42.59% for clean training, and 15.80% for
multi-condition training after trajectory regeneration. This result shows that the
trajectory refinement by imposing the static-dynamic constraint leads to a better
estimate of the clean speech trajectory.The average absolute performance achieved
by the proposed trajectory regeneration method for clean and multi-condition
training is 82.81%, which relatively improves the baseline system by 29.19%.
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Fig. 3. Average word accuracy against SNR for the baseline, spectral subtraction and
trajectory regeneration
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Table 1. Recognition performance summaries

Absolute performance

Methods Training Mode Set A Set B Set C Overall

Clean Only 61.34 55.74 66.14 60.06

Multi-condition 87.81 86.27 83.77 86.39Baseline
Average 74.58 71.01 74.96 73.23

Clean Only 70.01 66.93 72.76 69.33

Multi-condition 88.63 87.12 84.21 87.15Spectral Subtraction
Average 79.32 77.03 78.49 78.24

Clean Only 78.58 75.29 77.64 77.07

Multi-condition 89.72 88.26 86.75 88.54Trajectory Regeneration
Average 84.15 81.78 82.20 82.81

Performance relative to the baseline

Methods Training Mode Set A Set B Set C Overall

Clean Only 22.43% 25.28% 19.55% 23.21%

Multi-condition 6.73% 6.19% 2.71% 5.58%Spectral Subtraction
Average 14.58% 15.74% 11.13% 14.40%

Clean Only 44.59% 44.17% 33.96% 42.59%

Multi-condition 15.67% 14.49% 18.36% 15.80%Trajectory Regeneration
Average 30.13% 29.33% 26.16% 29.19%

5 Conclusions

In this paper we evaluate our noise compensation front-end algorithm based
on signal trajectory processing. The proposed algorithm consists of two stages,
which at first subtract estimated noise power from the corrupted speech trajec-
tory, and then regenerate the trajectory using an explicit static-dynamic con-
straint. Our experiments indicate that a reliable noise estimate can be obtained
by using trajectory auto-segmentation and clustering. And it is feasible to refine
the noise subtracted trajectory, by considering its dynamic feature. Spectral sub-
traction along with trajectory regeneration achieves the best recognition perfor-
mance in our experiments on the Aurora 2 database. This result also reconfirms
that the dynamic feature is more robust than static feature in noisy environ-
ment. How to exploit the constraint and balance between static and dynamic
features of a trajectory for improved recognition performance will be our future
work.
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Abstract. The performance of current HMM-based automatic speech
recognition (ASR) systems degrade significantly in real-world applica-
tions where there exist mismatches between training and testing condi-
tions caused by factors such as mismatched signal capturing and
transmission channels and additive environmental noises. Among many
approaches proposed previously to cope with the above robust ASR
problem, two notable HMM compensation approaches are the so-called
Parallel Model Combination (PMC) and Vector Taylor Series (VTS)
approaches, respectively. In this paper, we introduce a new HMM com-
pensation approach using a technique called Unscented Transformation
(UT). As a first step, we have studied three implementations of the
UT approach with different computational complexities for noisy speech
recognition, and evaluated their performance on Aurora2 connected dig-
its database. The UT approaches achieve significant improvements in
recognition accuracy compared to log-normal-approximation-based PMC
and first-order-approximation-based VTS approaches.

1 Introduction

Most of current ASR systems use MFCCs (Mel-Frequency Cepstral Coefficients)
and their derivatives as speech features, and a set of Gaussian mixture continu-
ous density HMMs (CDHMMs) for modeling basic speech units. It is well known
that the performance of such an ASR system trained with clean speech will de-
grade significantly when the testing speech is distorted by additive noises. How
to achieve the noise robustness in the above scenario has been an important
research topic in ASR field. Among many approaches proposed previously to
cope with the above robust ASR problem, two notable HMM compensation ap-
proaches are the so-called Parallel Model Combination (PMC) (e.g., [2]) and
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Vector Taylor Series (VTS) (e.g., [7,8,6,1]) approaches, respectively. For both
approaches, the following simplified assumptions are made: 1) The speech and
noise signals are independent, and additive in the time domain; 2) The alignment
between a speech frame and the corresponding Gaussian component of CDHMM
used to train the speech models from the clean speech data is not altered by the
addition of noise; 3) The Gaussian PDF (probability density function) remains
appropriate for modeling the feature vectors of noisy speech aligned to the corre-
sponding component. Having made the above assumptions, the problem of HMM
compensation is simplified as a problem of how to calculate the mean vector and
covariance matrix, {μy, Σy}, for each Gaussian component of the noisy speech
from the corresponding statistics {μx, Σx} for clean speech and {μn, Σn} for
noise, respectively.

Even after the above simplification, the expressions for estimating the cor-
rupted speech model parameters do not have closed-form solutions. Various ap-
proximations have previously been proposed to solve this problem. For PMC
approach, numerical integration and data-driven PMC are two techniques that
provide an accurate approximation but is computationally expensive, while the
so-called log-normal and log-add approximations are less accurate but computa-
tionally more efficient [2]. For VTS approach [7,8], a truncated (typically up to
the first-order) Taylor series expansion is used to approximate the nonlinear dis-
tortion function that relates feature vectors of noisy speech to the ones of clean
speech and noise. In this paper, we propose a new approximation approach to
address the above problem by using a technique called Unscented Transforma-
tion (UT) [5] developed originally in the field of automatic control for improving
the Extended Kalman Filtering (EKF) technique based on the first-order VTS
approximation of the relevant nonlinear functions. We will demonstrate that
this new approach offers a better performance than that of both PMC and VTS
approaches.

The rest of the paper is organized as follows. In Section 2, we introduce the
basic concept of UT and show how we can use this tool to formulate three
different solutions to HMM compensation for noisy speech recognition. Then,
two important implementation issues are discussed in Section 3. We will compare
the accuracy of different approximation methods via simulation experiments
in Section 4. The experimental results on Aurora2 database are reported and
analyzed in Section 5. Finally, we conclude the paper in Section 6.

2 HMM Compensation Using Unscented Transformation

2.1 Some Notations and the Basic Formulation of UT

In this study, only additive noise is considered and the effect of channel distortion
is ignored. Therefore, the distortion function between clean and noisy speech in
log-spectral domain can be expressed as:

Ylog = f(Xlog,Nlog) = log
(
exp(Xlog) + exp(Nlog)

)
, (1)
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where Y, X and N are random feature vectors for noisy speech, clean speech
and additive noise, respectively; and the superscript log indicates that the above
feature vectors are extracted in the log-spectral domain. During HMM compen-
sation, we need to estimate the mean vector μcep

y and covariance matrix Σcep
y

for each Gaussian component defined as

μcep
y = E {Ycep} , Σcep

y = E {
(Ycep − μcep

y )(Ycep − μcep
y )T

}
, (2)

where the expectations are taken over the PDF of the noisy speech random fea-
ture vector Ycep, the superscript cep indicates that the relevant items are in
cepstral domain, and (·)T denotes the transpose of a vector or a matrix here-
inafter. For convenience, estimation will be performed first in the log-spectral
domain and then be transformed back to the cepstral domain. We then have

μcep
y = LCμlog

y ; Σcep
y = LCΣlog

y CT LT (3)

with

μlog
y = E

{
log(exp(Xlog) + exp(Nlog))

}
(4)

Σlog
y = E

{(
log(exp(Xlog) + exp(Nlog)) − μlog

y

)
·(

log(exp(Xlog) + exp(Nlog)) − μlog
y

)T}
, (5)

where C is the matrix for DCT transformation, and L is the matrix for cep-
stral lifting operation, whose exact definition can be found in, e.g. [9]. Given the
PDF parameters, μcep

x and Σcep
x , for clean speech in cepstral domain, the cor-

responding PDF parameters in log-spectral domain can be obtained as follows:

μlog
x = C−1L−1μcep

x , Σlog
x = C−1L−1Σcep

x (L−1)T (C−1)T . (6)

Similar operations can be used to derive PDF parameters μlog
n and Σlog

n for
noise in the log-spectral domain from the PDF in the cepstral domain that is
assumed to follow a normal distribution with a mean vector μcep

n and covariance
matrix Σcep

n . In the following, we will formulate our problem in the log-spectral
domain, therefore the superscript log will be omitted if no confusion will be
caused according to the context of relevant discussions.

Now, let’s explain what is the unscented transformation (UT) [5]. Suppose a
random vector X has a known mean μx and covariance Σx. A second random
vector Y is related to X via a nonlinear function Y = f(X). The UT was
developed as an effective method to calculate the mean μy and covariance Σy

for Y, and works as follows: First, a set of points (the so-called sigma points)
are chosen such that their sample mean and covariance equal to the μx and Σx,
respectively. A weight is also specified for each sigma point. Then, the nonlinear
function f(·) is applied to each sigma point, in turn, to yield a set of transformed
points. Finally, the mean and covariance of Y is estimated as the weighted
average and the weighted outer product of the transformed points, respectively.
Readers are referred to [5] for more details of UT formulation.
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In the following three subsections, we show how we can use the UT technique
to formulate three different solutions to HMM compensation for noisy speech
recognition.

2.2 Method 1: UT with Augmented Random Vectors

Given X and N, we can form an augmented Ka-dimensional random vector,
Xa = [XT ,NT ]T , where Ka = Kx + Kn with Kx and Kn being the dimensions
of X and N respectively. In our case here, Kx = Kn = K. Consequently, the
nonlinear distortion function in Eq. (1) can be rewritten as a function of Xa:

Y = fa(Xa) = f(X,N). (7)

Let’s use μa and Σa to denote the mean vector and covariance matrix of Xa

respectively. Then we have

μa = [μx
T , μn

T ]T , Σa =
[

Σx 0K×K

0K×K Σn

]
. (8)

Given the above new notations, the following standard UT procedure can be
used to calculate μy and Σy for Y:

1. Create a set of sigma points S, S = {χa
j , W a

j ; j = 0, 1, ..., 4K}, which consists
of 4K + 1 Ka-dimensional vectors χa

j ’s and their associated weights W a
j ’s,

as follows:

χa
0 = μa, W a

0 =
κa

(2K + κa)
;

χa
i = μa +

(√
(2K + κa)Σa

)
i
, W a

i =
1

2(2K + κa)
;

χa
i+2K = μa −

(√
(2K + κa)Σa

)
i
, W a

i+2K =
1

2(2K + κa)
; (9)

where i = 1, . . . , 2K; κa is a control parameter whose effect is explained in
[5]; (

√
Σ)i is the ith column of the square root matrix Θ of Σ, if Σ = ΘΘT .

2. Transform each of the above sigma points by using the nonlinear function
fa(·) to generate the set of transformed sigma points:

γi = fa(χa
i ) . (10)

3. The mean of random vector Y is given by the weighted average of the trans-
formed sigma points

μy =
4K+1∑
i=0

W a
i γi , (11)

where
∑4K+1

i=0 W a
i = 1 by definition.



350 Y. Hu and Q. Huo

4. The covariance of random vector Y is given by the weighted outer product
of the transformed sigma points

Σy =
4K+1∑
i=0

W a
i {γi − μy} {γi − μy}T . (12)

For the augmented formulation given in Eq. (8), the formulas for generating
the sigma points in Step 1 of the above procedure can be derived and simplified
as follows:

χa
0 =

[μx

μn

]
,

χa
i =

[μx +
(√

(2K + κa)Σx

)
i

μn

]
,

χa
i+2K =

[μx −
(√

(2K + κa)Σx

)
i

μn

]
,

χa
i+3K =

[ μx

μn +
(√

(2K + κa)Σn

)
i

]
,

χa
i+4K =

[ μx

μn −
(√

(2K + κa)Σn

)
i

]
; (13)

where i = 1, . . . , K; and the corresponding weights are the same as in Eq. (9).
The computational costs of the UT are proportional to the number of sigma

points, which depends on the dimension of the random vector concerned. In the
above augmented formulation, the dimension of the augmented vector is double
of that of the original individual random vectors. Naturally one want to know
whether it is possible to come out a procedure that is computationally more
efficient, yet still able to take advantage of the capability offered by UT. In the
following subsection, we propose such a method.

2.3 Method 2: A Hybrid Approach Using UT and VTS
Approximations

Eq. (1) can be rewritten as

Y = log(exp(X) + exp(N)) = N + log(1 + exp(X − N)), (14)

where X and N are two independent K-dimensional random vectors with normal
PDFs, and 1 is a K-dimensional constant vector with all elements being 1. Let’s
define a new random vector V = X−N. Apparently, V has a normal PDF with
mean μv = μx − μn and covariance Σv = Σx + Σn. Let’s further define another
new random vector

Z = f(V) = log(1 + exp(V)). (15)
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Then, the mean and covariance of Y can be calculated as

μy = μn + μz , (16)
Σy = Σn + Σz + Cov(N,Z) + Cov(Z,N) . (17)

Again, μz and Σz can be calculated by using the standard UT procedure with
the set of sigma points computed from μv and Σv as follows:

χ0 = μx − μn, W0 =
κ

(K + κ)
;

χi = μx − μn +
(√

(K + κ)(Σx + Σn)
)

i
, Wi =

1
2(K + κ)

;

χi+K = μx − μn −
(√

(K + κ)(Σx + Σn)
)

i
, Wi+K =

1
2(K + κ)

; (18)

where i = 1, . . . , K. Note that only 2K + 1 sigma points are required here. This
represents a significant reduction of computations in comparison with the UT
procedure in the previous subsection that requires 4K + 1 sigma points with a
double dimension of relevant vectors. Given μn and μz, μy can be calculated by
using Eq. (16) accordingly.

In order to estimate Cov(N,Z) and Cov(Z,N), we approximate the nonlinear
function in Eq. (15) with a truncated first-order Taylor series expansion as

Z ≈ A(X − μx) − A(N − μn) + log(1 + exp(μx − μn)), (19)

where A is a diagonal matrix whose diagonal elements are given by

aii =
ηi

1 + ηi
(20)

with ηi = exp(μx[i])
exp(μn[i]) , where μx[i] is the i-th element of the mean vector of X

corresponding to the i-th filter bank output in log-spectral domain. Then, it can
be derived that

Cov(N,Z) ≈ Cov
(
N, A(X − μx) − A(N − μn)

)
= Cov

(
N, A(X − μx)

)
− Cov

(
N, A(N − μn)

)
= −Cov(N,N)AT = −ΣnAT , (21)

Cov(Z,N) ≈ −AΣn . (22)

Finally, Σy can be approximated as

Σy ≈ Σn + Σz − ΣnAT − AΣn . (23)

Therefore, the above method is referred to as a hybrid approach using UT and
VTS approximations.
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2.4 Method 3: UT Using Spherical Simplex Sigma Point Set

Actually, the above two UT-based methods can be made even more computa-
tionally efficient by using a reduced set of the so-called spherical simplex sigma
points proposed in [4]. In this study, we only apply the above technique to im-
prove the UT procedure in Method 2 described in the previous subsection. The
sigma points are created for the random vector V = X − N as follows:

1. Specify a value for W0 such that 0 ≤ W0 ≤ 1. Other weights are calculated
as Wi = (1 − W0)/(K + 1), for i = 1, . . . , K + 1.

2. Initialize vector sequence as:

χ1
0 = [0], χ1

1 =
[
− 1√

2W1

]
, χ1

2 =
[

1√
2W1

]
. (24)

3. Expand vector sequence for j = 2, . . . , K according to

χj
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
χj−1

0

0

]
for i = 0

[
χj−1

i

− 1√
j(j+1)Wi

]
for i = 1, . . . , j

[
0j−1

j√
j(j+1)Wi

]
for i = j + 1

(25)

where 0j−1 is a (j − 1)-dimensional vector whose elements are all zeros.
4. The set of sigma points, Ξ = {ξi; i = 0, . . . , K + 1} are finally generated as

follows:
ξi = μv +

√
ΣvχK

i = μx − μn +
√

Σx + ΣnχK
i . (26)

Consequently, only K + 2 sigma points are required. The remaining UT steps
are similar to Eqs. (10) ∼ (12).

3 Implementation Issues

3.1 Efficient Implementation for Calculating Square Root Matrix

Like in most of current ASR systems, we use a 39-dimensional feature vector in
this study, among them, 13 features are truncated MFCCs calculated from the
outputs of 23 filter banks in log-spectral domain. Therefore, an exact mapping
from the cepstral domain to the log-spectral domain is not possible. By following
the practice in [2], both the mean vector and diagonal covariance matrix are zero
padded up to the same dimension as the number of filter banks in the log-spectral
domain. When transforming the compensated mean and covariance matrix of
the noisy speech in the log-spectral domain back to the cepstral domain, the
relevant dimensions corresponding to higher order cepstral parameters will be
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truncated again and the covariance matrix in the cepstral domain is forced to be
diagonal. Therefore, all the covariance matrices are assumed to be diagonal in
the cepstral domain for clean speech, noise, and noisy speech. Consequently, the
square root matrix for the relevant covariance matrix, Σlog, in the log-spectral
domain can be easily calculated from the corresponding diagonal covariance
matrix, Σcep = diag{(σcep

ii )2}, in the cepstral domain by the following direct
method :

√
Σlog =

√
C−1L−1Σcep(L−1)T (C−1)T

= C−1L−1

⎡⎢⎢⎢⎢⎢⎢⎣

σcep
11 0 0

. . .
0 σcep

KcepKcep

. . .
0 0

⎤⎥⎥⎥⎥⎥⎥⎦
Klog×Klog

(27)

where Kcep = 13 is the number of static MFCC features in the cepstral domain,
and K log = 23 is the dimension of random vectors in the log-spectral domain.
The square root matrices in Eq. (13), Eq. (18), and Eq. (26) can all be calculated
efficiently by the above direct method. Another benefit is that the number of
unique sigma points will be a function of Kcep instead of K log, leading to a
great reduction of relevant computations.

3.2 Dealing with Dynamic Parameters

The proposed UT approaches can only be applied to compensating for the rele-
vant CDHMM parameters corresponding to static MFCC features. We have not
figured out a satisfactory way yet to deal with the compensation of the relevant
CDHMM parameters corresponding to dynamic features. We therefore borrow
a heuristic method described in [1] to compensate for only the CDHMM mean
parameters corresponding to the dynamic features as follows:

μΔy ≈ (I − A)μΔx, μΔ2y ≈ (I − A)μΔ2x ; (28)

where A is the same as in Eq. (20), μΔx and μΔ2x are the mean vectors for
“delta” and “delta-delta” features of clean speech, and μΔy and μΔ2y are their
counterparts for noisy speech.

4 Comparison of Approximation Methods by Simulation

In order to compare the accuracies of the different approximation methods pro-
posed in this paper as well as the ones in literature that include the log-normal
approximation in [2] and the first-order VTS approximation in [1,7,8], a series of
simulation experiments are conducted. For simplicity, we consider three random
variables: y, x, n, corresponding to the 1-dimensional case described in Eq. (1).
Suppose the means and standard deviations of x and n are known. We want to
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Fig. 1. A comparison of means and standard deviations of y in Eq. (1) estimated
by different methods: Monte Carlo simulation, log-normal approximation, first-order
VTS, augmented UT, and hybrid UT&VTS approximation (μn = 0dB, σn = 2dB,
σx = 10dB, and μx varies from −25dB to 25dB)

estimate the mean and standard deviation of y by using different approximation
methods, and compare their accuracies with that of using Monte Carlo simu-
lation. In Fig. 1, we compare the estimates (in dB) of the mean and standard
deviation of y obtained by the abovementioned approximation methods as a func-
tion of the μx (in dB), when σx = 10dB, μn = 0dB and σn = 2dB. It is observed
that the Augmented UT approach (i.e. Method 1 described in Section 2.2) offers
the most accurate estimations among the four approximation methods for both
the mean and standard deviation, which are actually very close to the results
of the Monte Carlo simulation. The hybrid UT&VTS approach (i.e. Method 2
described in Section 2.3) provides a good estimation for the mean and a better
estimation for the standard deviation than the first-order VTS method does.
Among the four approximation methods, log-normal approximation performs
the worst.

5 Experiments and Results

5.1 Experimental Setup

In order to verify the effectiveness of the proposed UT approaches and
compare them to the log-normal-approximation-based PMC [2] and the first-
order-approximation-based VTS approaches [1,7,8], a series of experiments are
performed for the task of speaker independent recognition of connected digit
strings on Aurora2 database. A full description of the Aurora2 database and a
test framework is given in [3].

Our CDHMM-based ASR system is trained from the “clean” speech data in
Aurora2 database and a 39-dimensional feature vector is used, which consists
of 13 MFCCs (including C0) plus their first and second order derivatives. The
speech data is processed in a time window of 25ms, shifted every 10ms. A pre-
emphasis with a coefficient of 0.97 is performed. The number of Mel-frequency
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Table 1. Performance (word accuracy in %) comparison of different HMM compen-
sation methods averaged over SNRs between 0 and 20 dB on three different test sets
of Aurora2 database (R.E.R. stands for the relative error rate reduction in % vs. the
baseline performance without HMM compensation)

Methods Set A Set B Set C Overall R.E.R.

Baseline 57.67 54.41 64.89 57.81 N/A

Log-Normal PMC 84.56 83.45 84.97 84.20 62.54

First-Order VTS 84.77 83.56 84.82 84.30 62.78

Augmented UT 86.01 85.02 86.83 85.78 66.29

Hybrid UT&VTS 85.82 84.82 86.32 85.52 65.67

Simplex UT 86.20 85.05 86.39 85.78 66.29

filter banks is 23. The delta and delta-delta features are extracted using linear
regression method as detailed in [9] with a setting of relevant parameters in HTK
notations as deltawindow = 3 and accwindow = 2.

Both training and recognition were performed by using the HTK [9] and the
standard scripts provided by ETSI [3]. The mixture number of each CDHMM
state is 3. The single Gaussian model of additive noise in each test sentence is
estimated from noise frames at the beginning and end of the sentence in cepstral
domain. Because we focus our study in this paper on HMM compensation for
additive noise only, no other compensation is performed to cope with other possi-
ble distortions. The relevant static parameters of CDHMMs are compensated by
using the log-normal-approximation-based PMC, the first-order-approximation-
based VTS, and our proposed UT approaches, but dynamic parameters are all
compensated by the same method described in Eq. (28). The relevant control
parameters in our UT approaches are set as κa = 0 in Eq. (9) and Eq. (13),
κ = 0 in Eq. (18), and W0 = 0 in the first step of the Method 3 in Section 2.4.

5.2 Experimental Results

Table 1 summarizes a performance (word accuracy in %) comparison of different
HMM compensation methods, where the performance is averaged over SNRs
between 0 and 20 dB on each of the three different test sets of Aurora2 database,
namely Set A, Set B and Set C. It is observed that all of our proposed UT-based
methods achieve a better performance in all the test sets than that of both the
PMC and VTS methods. There is no big performance difference among three
UT-based methods. This may suggest that the most computationally efficient
simplex UT based method can be used in practice for HMM compensation if the
computation time is a concern.

Table 2 provides a performance (word accuracy in %) comparison of different
HMM compensation methods averaged over three test sets of Aurora2 database
at each SNR (in dB). Again, it is observed that the UT methods perform better
than both the PMC and VTS methods at different SNRs.

Table 3 summarizes the relative error rate reductions (in %) of the augmented
UT method vs. the first-order VTS method under different combinations of SNR
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Table 2. Performance (word accuracy in %) comparison of different HMM compensa-
tion methods averaged over three test sets of Aurora2 database at each SNR

Methods 0 dB 5 dB 10 dB 15 dB 20 dB Overall

Baseline 14.19 33.19 62.50 84.64 94.55 57.81

Log-Normal PMC 59.19 79.61 90.02 94.85 97.31 84.20

First-Order VTS 61.21 80.14 89.66 93.98 96.51 84.30

Augmented UT 62.25 82.35 91.56 95.38 97.35 85.78

Hybrid UT&VTS 62.15 81.79 91.21 95.16 97.26 85.52

Simplex UT 62.69 82.40 91.38 95.22 97.20 85.78

Table 3. Summary of relative error rate reductions (in %) of the augmented UT
method vs. the first-order VTS method under different combinations of SNR and noise
type of the test Set A on Aurora2 database

Noise Conditions Subway Babble Car Exhibition Average

20 dB 29.46 23.10 0.00 4.15 14.18

15 dB 21.28 22.04 9.97 7.08 15.09

10 dB 24.03 17.10 8.27 9.75 14.79

5 dB 16.82 7.33 6.23 10.75 10.28

0 dB 8.26 1.74 -2.94 6.46 3.38

Average 14.55 7.83 1.31 7.93 8.15

and noise type of the test Set A on Aurora2 database. It is observed that the
performance difference between two methods in car noise environment is not as
big as in other noise environments. A similar observation is also made for train
station noise environment in test Set B not shown here. After a detailed analysis
of the noise distribution statistics in each noise environment, we noticed that
there are big differences of the noise variances. For example, at SNR = 10dB,
the average of the standard deviations in all dimensions of noise Gaussian models
in the log-spectral domain are 0.126, 0.140, 0.082, 0.092 for four types of noises
in the test Set A, namely Subway, Babble, Car, Exhibition, respectively. It seems
that when the noise variances are small, the negative effects by ignoring the
truncated higher-order terms in VTS expansion are smaller, therefore the VTS
method will perform relatively better in those cases. Overall, the UT method
performs much better than the VTS method.

6 Summary and Future Works

In this paper, we have introduced a new HMM compensation approach us-
ing a technique called Unscented Transformation (UT). As a first step, we
have studied three implementations of the UT approach with different com-
putational complexities for noisy speech recognition, and evaluated their perfor-
mance on Aurora2 connected digits database. It is demonstrated that the UT ap-
proaches achieve significant improvements in recognition accuracy compared to
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the log-normal-approximation-based PMC and first-order-approximation-based
VTS approaches.

Ongoing and future works include 1) to extend UT methods for HMM com-
pensation to cope with both convolutional and additive distortions, 2) to apply
UT-based techniques for feature compensation, 3) to develop UT-based tech-
niques for dealing with nonstationary distortions, 4) to evaluate the above tech-
niques on different tasks and databases. We will report those results elsewhere
when they become available.
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Abstract. Discriminatively trained HMMs are investigated in both
clean and noisy environments in this study. First, a recognition error
is defined at different levels including string, word, phone and acoustics.
A high resolution error measure in terms of minimum divergence (MD)
is specifically proposed and investigated along with other error mea-
sures. Using two speaker-independent continuous digit databases, Au-
rora2(English) and CNDigits (Mandarin Chinese), the recognition per-
formance of recognizers, which are trained in terms of different error
measures and using different training modes, is evaluated under different
noise and SNR conditions. Experimental results show that discrimina-
tively trained models performed better than the maximum likelihood
baseline systems. Specifically, for MD trained systems, relative error re-
ductions of 17.62% and 18.52% were obtained applying multi-training on
Aurora2 and CNDigits, respectively.

Keywords: Noise Robustness, Minimum Divergence, Minimum Word
Error, Discriminative Training.

1 Introduction

With the progress of Automatic Speech Recognition (ASR), noise robustness
of speech recognizers attract more and more attentions for practical recogni-
tion systems. Various noise robust technologies which can be grouped into three
classes. 1. Feature domain approaches, which aim at noise resistant features,
e.g., speech enhancement, feature compensation or transformation methods [1];
2. Model domain approaches, e.g., Hidden Markov Model (HMM) decompen-
sation [2], Parallel Model Combination (PMC) [3], which aim at modeling the
distortion of features in noisy environments directly; 3. Hybrid approaches.

In the past decade, discriminative training has been shown quite effective in
reducing word error rates of HMM based ASR systems in clean environment. In
the first stage, sentence level discriminative criteria, including Maximum Mu-
tual Information (MMI) [4,5], Minimum Classification Error (MCE) [6], were
proposed and proven effective. Recently, new criteria such as Minimum Word
Error (MWE) and Minimum Phone Error (MPE) [7], which are based on fine
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error analysis at word or phone level, have achieved further improvement in
recognition performance.

In [8,9,10], noise robustness investigation on sentence level discriminative cri-
teria such as MCE, Corrective Training (CT) is reported. Hence, we are mo-
tivated to give a more complete investigation of noise robustness for genaral
minimum error training.

From a unified viewpoint of error minimization, MCE, MWE and MPE are
only different in error definition. String based MCE is based upon minimizing
sentence error rate, while MWE is based on word error rate, which is more
consistent with the popular metric used in evaluating ASR systems. Hence, the
latter yields better word error rate, at least on the training set [7]. However,
MPE performs slightly but universally better than MWE on testing set [7]. The
success of MPE might be explained as follows: when refining acoustic models in
discriminative training, it makes more sense to define errors in a more granular
form of acoustic similarity. However, binary decision at phone label level is only
a rough approximation of acoustic similarity.

Therefore, we propose to use acoustic dissimilarity to measure errors. Be-
cause acoustic behavior of speech units are characterized by HMMs, by mea-
suring Kullback-Leibler Divergence (KLD) [11] between two given HMMs, we
can have a physically more meaningful assessment of their acoustic similarity.
Given sufficient training data, “ideal” ML models can be trained to represent
the underlying distributions and then can be used for calculating KLDs.

Adopting KLD for defining errors, the corresponding training criterion is re-
ferred as Minimum Divergence (MD) [12]. The criterion possesses the following
advantages: 1) It employs acoustic similarity for high-resolution error definition,
which is directly related with acoustic model refinement; 2) Label comparison
is no longer used, which alleviates the influence of chosen language model and
phone set and the resultant hard binary decisions caused by label matching.
Because of these advantages, MD is expected to be more flexible and robust.

In our work, MWE, which matches the evaluation metric, and MD, which
focus on refining acoustic dissimilarity, are compared. Other issues related to
robust discriminative training, including how to design the maximum likelihood
baseline, and how to treat with silence model is also discussed.

Experiments were performed on Aurora2 [13], which is a widely adopted
database for research on noise robustness, and CNDigits, a Chinese continuous
digit database. We tested the effectiveness of discriminative training on different
ML baseline and different noise environments.

The rest of paper is organized as follows. In section 2, issues on noise ro-
bustness of minimum error training will be discussed. In section 3, MD training
will be introduced. Experimental results are shown and discussed in section 4.
Finally in section 5, we give our conclusions.

2 Noise Robustness Analysis of Minimum Error Training

In this section, we will have a general discuss on the major issues we are facing
in robust discriminative training.
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2.1 Error Resolution of Minimum Error Training

In [7] and [12], various discriminative trainings in terms of their correspond-
ing optimization measures are unified under the framework of minimum error
training, where the objective function is an average of the recognition accura-
cies A(W ,W r) of all hypotheses weighted by the posterior probabilities. For
conciseness, we consider single utterance case:

F(θ) =
∑

W∈M
Pθ(W |O)A(W ,W r) (1)

where θ represents the set of the model parameters; O is a sequence of acoustic
observation vectors; W r is the reference word sequence; M is the hypotheses
space; Pθ(W |O) is the generalized posterior probability of the hypothesis W
given O , which can be formulated as:

Pθ(W |O) =
P κ

θ (O |W )P (W )∑
W ′∈M P κ

θ (O |W ′)P (W ′)
(2)

where κ is the acoustic scaling factor.
The gain function A(W ,W r) is an accuracy measure of W given its ref-

erence W r. In Table 1, comparison among several minimum error criteria are
tabulated. In MWE training, A(W ,W r) is word accuracy, which matches the
commonly used evaluation metric of speech recognition. However, MPE has been
shown to be more effective in reducing recognition errors because it provides a
more precise measurement of word errors at the phone level. We can argue this
point by advocating the final goal of discriminative training. In refining acoustic
models to obtain better performance, it makes more sense to measure acoustic
similarity between hypotheses instead of word accuracy. The symbol matching
does not relate acoustic similarity with recognition. The measured errors can
also be strongly affected by the phone set definition and language model selec-
tion. Therefore, acoustic similarity is proposed as a finer and more direct error
definition in MD training.

Here we aim to seeking how criteria with different error resolution performs in
the noisy environments. In our experiments,whole-wordmodel,which is commonly
used in digit tasks, is adopted. For the noisy robustness analysis, MWE which

Table 1. Comparison among criteria of minimum error training. ( PW : Phone sequence
corresponding to word sequence W ; LEV(,): Levenshtein distance between two symbol
strings; | · |: Number of symbols in a string. )

Criterion A(W ,W r) Objective

String based MCE δ(W = W r) Sentence accuracy

MWE |W r| − LEV(W ,W r) Word accuracy

MPE |PW r| − LEV(PW ,PW r) Phone accuracy

MD −D(W r ‖ W ) Acoustic similarity
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matches with the model type and evaluation metric of speech recognition, will
compared with MD, which possesses the highest error resolution as shown in
Table 1.

2.2 Different Training Modes

In noisy environments, various ML trained baseline can be designed. So the
effectiveness of minimum error training with different training modes will be
explored. In [13], two different sets of training, clean-training and multi-training,
are used. In clean-training mode, only clean speech is used for training. Hence,
when testing in noisy environments, there will be a mismatch. To alleviate this
mismatch, multi-training, in which training set is composed of noisy speech with
different SNRs, can be applied. But multi-training can only achieve a “global
SNR” match. To achieve a “local SNR” match, we propose a SNR-based training
mode. In our SNR-based training, each HMM set is trained using the speech
with a specific SNR. A big HMM set is composed of all the SNR-based HMM
sets. So there will be several SNR-based models for each digit. When testing,
we will adopt the multi-pronunciation dictionary to output the digital label.
SNR-based training can be considered as a high resolution acoustic modeling of
multi-training. Illustration of three training modes is shown in Fig. 1.

Fig. 1. Illustration of three training modes

2.3 Silence Model Update

Silence or background model can have a significant effect on word errors. Hence,
whether or not to update silence model in minimum error training can be critical
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under noisy conditions. In our research, we pay special attention to this issue for
reasonable guidelines.

3 Word Graph Based Minimum Divergence Training

3.1 Defining Errors by Acoustic Similarity

A word sequence is acoustically characterized by a sequence of HMMs. For au-
tomatically measuring acoustic similarity between W and W r, we adopt KLD
between the corresponding HMMs:

A(W ,W r) = −D(W r ‖ W ) (3)

The HMMs, when they are reasonably well trained in ML sense, can serve as
succinct descriptions of data.

3.2 KLD Between Two Word Sequences

Given two word sequences W r and W without their state segmentations, we
should use a state matching algorithm to measure the KLD between the corre-
sponding HMMs [14]. With state segmentations, the calculation can be further
decomposed down to the state level:

D(W r ‖ W ) = D(s1:T
r ‖s1:T )

=
∫

p(o1:T |s1:T
r ) log

p(o1:T |s1:T
r )

p(o1:T |s1:T )
do1:T (4)

where T is the number of frames; o1:T and s1:T
r are the observation sequence

and hidden state sequence, respectively.
By assuring all observations are independent, we obtain:

D(s1:T
r ‖s1:T ) =

T∑
t=1

D(st
r ‖st) (5)

which means we can calculate KLD state by state, and sum them up.
Conventionally, each state s is characterized by a Gaussian Mixture Model

(GMM): p(o |s) =
∑Ms

m=1 ωsmN (o; μsm ,Σsm ), so the comparison is reduced to
measuring KLD between two GMMs. Since there is no closed-form solution, we
need to resort to the computationally intensive Monte-Carlo simulations. The
unscented transform mechanism [15] has been proposed to approximate the KLD
measurement of two GMMs.

Let N (o ; μ,Σ) be a N -dimensional Gaussian distribution and h is an arbi-
trary IRN → IR function, unscented transform mechanism suggests approximat-
ing the expectation of h by:∫

N (o; μ,Σ)h(o)do ≈ 1
2N

2N∑
k=1

h(ok ) (6)
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where ok(1≤k≤2N) are the artificially chosen “sigma” points: ok=μ+
√

Nλkuk,
ok+N=μ−√Nλkuk(1≤k≤N), where λk,uk are the kth eigenvalue and eigenvector
of Σ , respectively. Geometrically, all these “sigma” points are on the principal
axes of Σ . Eq. 6 is precise if h is quadratic.

Based on Eq. 6, KLD between two Gaussian mixtures is approximated by:

D(sr ‖s)≈ 1
2N

M∑
m=1

ωm

2N∑
k=1

log
p(om,k |sr)
p(om,k |s) (7)

where om,k is the kth “sigma” point in the mth Gaussian kernel of p(om,k |sr).
By plugging it into Eq. 4, we obtain the KLD between two word sequences given
their state segmentations.

3.3 Gain Function Calculation

Usually, word graph is a compact representation of large hypotheses space in
speech recognition. Because the KLD between a hypothesised word sequence
and the reference can be decomposed down to the frame level, we have the
following word graph based representation of (1):

F(θ) =
∑

w∈M

∑
W∈M:w∈W

Pθ(W |O)A(w) (8)

where A(w) is the gain function of word arc w. Denote bw, ew the start frame
index and end frame index of w, we have:

A(w) = −
ew∑

t=bw

D(s t
w ‖s t

r ) (9)

where the st
w and st

r represent the certain state at time t on arc w and the
reference, respectively.

As mentioned in [7], we use Forward-Backward algorithm to update the word
graph and the Extended Baum-Welch algorithm to update the model parameters
in the training iterations.

4 Experiments

4.1 Experimental Setup

Experiments on both English (TIDigits and Aurora2) and Chinese (CNDigits)
continuous digit tasks were performed. The English vocabulary is made of the
11 digits, from ’one(1)’ to ’nine(9)’, plus ’oh(0)’ and ’zero(0)’. The Chinese vo-
cabulary is made of digits from ’ling(0)’ to ’jiu(9)’, plus ’yao(1)’. The baseline
configuration for three systems is listed in Table 2.
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For TIDigits Experiments, man, woman, boy and girl speakers, were used in
both training and testing.

The Aurora2 task consists of English digits in the presence of additive noise
and linear convolutional channel distortion. These distortions have been synthet-
ically introduced to clean TIDigits data. Three testing sets measure performance
against noise types similar to those seen in the training data (set A), different
from those seen in the training data (set B), and with an additional convolu-
tional channel (set C). The baseline performance and other details can be found
in [13].

The original clean database of CNDigits is collected by Microsoft Research
Asia. 8 types of noises, i.e. waiting room of a station, platform, shop, street,
bus, airport lounge, airport exit, outside, are used for noise addition. 8000 clean
utterances from 120 female and 200 male speakers for training set are split
into 20 subsets with 400 utterances in each subset. Each subset contains a few
utterances of all training speakers. The 20 subsets represent 4 different noise
scenarios at 5 different SNRs. The 4 noises are waiting room, street, bus and
airport lounge. The SNRs are 20dB, 15dB, 10dB, 5dB and the clean condition.
Two different test sets are defined. 3947 clean utterances from 56 female and
102 male speakers are split into 4 subsets with about 987 utterances in each. All
speakers are involved in each subset. One noise is added to each subset at SNRs
of 20dB, 15dB, 10dB, 5dB, 0dB, -5dB and the clean condition. In the first test
set, called test set WM(Well-Match), the four noises, the same as those used
in training set, are added to the 4 subset. The second test set, called test set
MM(Mis-Match), is created in exactly the same way, but using four different
noises , namely platform, shop, airport exit and outside. Our design of CNDigits
database is similar to Aurora2.

For mininum error training, the acoustic scaling factor κ was set to 1
33 . All

KLDs between any two states were precomputed to make the MD training more
efficient. For Aurora2 and CNDigits, we select the best results after 20 iterations
for each sub set of testing.

Table 2. Baseline configuration

System Feature Model # State # Gauss # string of # string of

Type /Digit /State training set testing set

TIDigits left-to-right 10 6 12549 12547

Aurora2 MFCC E D A whole-word model 16 3 8440*2 1001*70

CNDigits without skipping 10 3 8000 987*56

4.2 Experiments on TIDigits Database

As a preliminary of noise robustness analysis, we first give the results of MD
on the clean TIDigits database compared with MWE. As shown in Fig. 2,
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Fig. 2. Performance comparison on TIDigits

performance of MD achieves 57.8% relative error reduction compared with ML
baseline and also outperforms MWE in all iterations.

4.3 Experiments on Aurora2 Database

Silence Model Update. As shown in Table 3, we explore whether to update
silence model in minimum error training using different training modes. Because
it is unrelated with criteria, here we adopt MWE. when applying clean-training,
the performances on all test sets without updating silence model are consistently
better. But in multi-training, the conclusion is opposite. From the results, we
can conclude that increasing the discrimination of silence model will lead to
performance degradation in mismatched cases (clean-training) and performance
improvement in matched cases (multi-training). Obviously our SNR-based train-
ing belongs to the latter. In all our experiments, the treatment of silence model
will obey this conclusion.

Table 3. Word Accuracy (%) of MWE with or without silence model update in
different training modes on Aurora2

Training Mode Update Silence Model Set A Set B Set C Overall

Clean YES 61.85 56.94 66.26 60.77

Clean NO 64.74 61.69 67.95 64.16

Multi YES 89.15 89.16 84.66 88.26

Multi NO 88.91 88.55 84.43 87.87

Error Resolution of Minimum Error Training. As shown in Table 4, the
performances of MD and MWE are compared. Here multi-training is adopted
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because it’s believed that matching between training and testing can tap the
potential of minimum error training. For the overall performance on three test
sets, MD consistently outperforms MWE. From the viewpoint of SNRs, MD
outperforms MWE in most cases when SNR is below 15dB. Hence, we can con-
clude that although MWE matches with the model type and evaluation metric
of speech recognition, MD which possesses the highest error resolution outper-
forms it in low SNR. In other words, the performance can be improved in low
SNR by increasing the error resolution of criterion in minimum error training.

Table 4. Performance comparison on Aurora2 (MD vs. MWE)

Different Training Modes. Fig. 3 shows relative improvement over ML base-
line using MD training with different training modes. From this figure, some
conclusions can be obtained. First, Set B, whose noise scenarios are different
from training achieves the most obvious relative improvement in most cases. The
relative improvement of set A are comparable with set B in the clean-training
and multi-training but worse than set B in SNR-based training. The relative im-
provement of set C, due to the mismatch of noise scenario and channel, almost
the worst in all training modes. Second, the relative improvement performance
declines for decreasing SNR in clean-training. But in multi-training and SNR-
based training, the peak performance is in the range of 20dB to 15dB. Also in
the low SNRs, the performance of cleaning-training is worse than the other two
training modes on set A and set B.
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Fig. 3. Relative Improvement over ML baseline on Aurora2 using different training
modes in MD training

Table 5. Summary of performance on Aurora2 using different training modes in MD
training

Word Accuracy (%) Relative Improvement

Training Mode Set A Set B Set C Overall Set A Set B Set C Overall

Clean-Training 63.49 58.94 68.96 62.76 5.56% 7.21% 8.32% 6.76%

Multi-Training 90.20 89.22 85.10 88.79 19.60% 21.45% 8.17% 17.62%

SNR-based Training 91.27 89.27 86.70 89.56 10.00% 26.21% 1.14% 15.68%

The summary of performance is listed in Table 5. Word accuracy of our SNR-
based training outperforms multi-training on all test sets, especially set A and
set C. For the overall relative improvement, the best result of 17.62% is achieved
in multi-training.

4.4 CNDigits Database Experiments

On CNDigits database, we compare MD and MWE with ML applying multi-
training as a further verification of conclusions on Aurora2. Performances are
shown in Table 6. Totally MD achieves 18.52% relative improvement over ML
baseline. Although minimum error training on both English and Chinese is ef-
fective in noisy envrionments, there are still some differences. First, the most
obvious relative improvement on CNDigits occurs in clean condition which is
different from that on Aurora2. Second, more than 10% relative improvement is
still obtained at low SNRs (below 0dB) on CNDigits. Third, MD outperforms
MWE in all noisy conditions.
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Table 6. Performance comparison on Chinese digit database (CNDigits) using multi-
training

5 Conclusions

In this paper, the noise robustness of discriminative training is investigated. Dis-
criminatively trained models are tested on both English and Chinese continuous
digit databases in clean and noisy conditions. Most experiments adopt MD crite-
rion. First, silence model should only be updated when the training and testing
data are matched (Both are noisy data). Second, minimum error training is ef-
fective in noisy conditions for both clean-training and multi-training, even for
SNR-based training which produces higher resolution acoustic models. Third,
MD with higher error resolution than MWE is more robust in low SNR scenar-
ios. Even when testing on mismatched noise scenarios, minimum error training
is also noise robust as matched noise scenarios.

In future work, we will focus on seeking noise resistant features based on
minimum error training and improve performance further in noise conditions.
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Abstract. In this paper, the performance of the pitch detection algorithm in 
ETSI ES-202-212 XAFE standard is evaluated on a Mandarin digit string 
recognition task. Experimental results showed that the performance of the pitch 
detection algorithm degraded seriously when the SNR of speech signal was 
lower than 10dB. This makes the recognizer using pitch information perform 
inferior to the original recognizer without using pitch information in low SNR 
environments. A modification of the pitch detection algorithm is therefore 
proposed to improve the performance of pitch detection in low SNR 
environments. The recognition performance can be improved for most SNR 
levels by integrating the recognizers with and without using pitch information. 
Overall recognition rates of 82.1% and 86.8% were achieved for clean and 
multi-condition training cases. 

Keywords: distributed speech recognition, Extended Advanced Front-end, 
tonal language speech recognition. 

1   Introduction 

The 3GPP had approved the Distributed Speech Recognition Extended Advanced 
Front-end (DSR XAFE) developed by the European Telecommunications Standards 
Institute STQ-Aurora working group as the recommended codec for speech enabled 
services on mobile appliances. In ETSI ES-202-212 DSR standard [1], the extended 
advanced front-end of DSR was proposed, in which (1) the algorithm for extraction of 
additional parameters, viz., fundamental frequency F0 (pitch) and voicing class; (2) 
the algorithm for pitch tracking and smoothing at the back-end to minimize pitch 
errors [1]. The pitch information extracted from the XAFE DSR front-end allows not 
only for speech reconstruction but also improved the recognition performance of tonal 
languages. 

In the report of Aurora Group Meeting, April 2003 [2], some preliminary tonal 
language recognition evaluation results were given and shown that the pitch 
information can certainly improve the digit-string recognition performance of tonal 
languages such as Mandarin and Cantonese. In that report, only a clean Mandarin 
digit string speech database was used to evaluate the performance of tonal language 
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recognition. But, the performance of the tonal language speech recognizer under noisy 
environment is an important issue in the real life. The environment noises will not 
only introduce the pitch detection errors but, more seriously, also introduce the 
unvoiced/voiced classification errors to significantly degrade the performance of tonal 
language recognition. Although many advanced pitch detectors [3] were proposed 
recent years which can get better performance under low SNR environment. But due 
to the limited computation resource in DSR front end, a modification of the XAFE 
front end was proposed in order to improve the performance of tonal speech 
recognition in this paper. 

In this paper, the performance of XAFE is evaluated first in a Mandarin digit 
string recognition task to compare the results of using and without using the pitch 
information. Then, the quality of the syllable pitch contours found by XAFE is 
examined. A modification of XAFE is then proposed in order to improve the 
performance of the pitch detection algorithm in XAFE without seriously change the 
structure of XAFE. Lastly, the integration of both recognizers with and without using 
pitch information is done in order to improve the overall recognition performance. 

2   Mandarin Digit String Recognition Under DSR 

For evaluating the performance of DSR experimental frameworks under real 
environments, the Evaluations and Language resources Distribution Agency (ELDA) 
released a series of noisy speech databases such as: Aurora 2, Aurora SpeechDat-Car, 
and Aurora 4 [4]. And in [5], a Mandarin digit test set which was recorded by using 
an embedded PDA was used. Currently, there are still no noisy speech databases of 
Mandarin or other tonal languages available for evaluating the DSR performance for 
tonal languages. In this paper, we use a microphone-recorded Mandarin digit-string 
speech database to simulate the noisy speech database by adding the environment 
noises provided in Aurora 2. 

A Mandarin digit string speech database uttered by 50 male and 50 female 
speakers was used in the following experiments. Each speaker pronounced 10 
utterances of 1~9 digits. The speech of 90 speakers (45 male and 45 female) was used 
as the training set, and the other 10 speakers’ as the test set. The total numbers of 
training and test data were 5796 and 642 syllables. The database was recorded in 16 
KHz sampling rate, and then down-sampled into 8 KHz.  

First, the speech spectrum features were extracted and encoded/decoded by using 
DSR AFE front/back-end. A 38-dimensional spectrum feature vector used in the 
recognizer was extracted for each 30-ms frame with 10-ms frame shift. These features 
were 12 MFCC, 12 delta-MFCC, 12 delta-delta-MFCC, delta-log-energy and delta-
delta-log-energy. The cepstral mean normalization (CMN) technique was also used to 
remove the speaker effect. The Mandarin digit string recognizer then trained an 8-
state HMM model for each digit. Two more models containing 3 and 1 states were 
also built for silence and short pause, respectively. The number of mixtures used in 
each state was set to 8 in this study. The performance of the recognizer is shown in 
Table 1(a). The average recognition rate for each noise environment shown in the 
table was calculated only over 5 types of SNR from 0 to 20dB. The recognition 
results shown in Table 1(a) are worse than the counterparts of English digit string 



372 Y.-R. Wang et al. 

recognition for all lower SNR cases. This maybe resulted from the existence of two 
confusion pairs, (one-/yi1/, seven-/qi1/) and (six-/liu4/, nine-/jiu3/) in Mandarin digit 
string recognition. In each pair, the two digits differ only by their consonant initials 
which are more easily confusing in low-SNR environment. 

Then, the pitch information extracted from the XAFE was added to the recognizer 
aiming at improving its performance. In the DSR back-end, the pitch information 
extracted from XAFE front-end was smoothed using the pitch tracking and smoothing 
algorithm proposed in ETSI DSR standard. The pitch contour was first converted to 
the log-F0 contour. Then, the log pitch frequencies (log-F0) of unvoiced frames were 
interpolated by using exponential growth/decay functions of two nearest voiced 
frames [6], i.e., the log-F0 value in the nth unvoiced frame can be expressed as 

( ) ( ) ( )( ) ( )log [ ] log [ ] , log [ ] ,
0 0 0

n b e nf n MAX f b e f e eα α− − − −= ⋅ ⋅  (1) 

where b is the frame index of the last voiced frame and e is the frame index of the 
next voiced frame. The attenuation factor α was set to 0.95 in this study.  

Table 1(a). The recognition rate of Mandarin digit string using spectral features only 

Test A SNR 
(dB) Subway Babble Car Exhibition Average 
Clean 98.1 

20 94.9 93.3 97.0 94.7 95.0 
15 90.3 91.7 95.6 91.4 92.3 
10 84.4 87.5 93.8 84.7 87.6 
5 66.7 77.4 86.0 70.6 75.2 
0 41.1 52.0 60.4 42.1 48.9 
-5 16.4 20.1 19.9 15.4 18.0 

Average 75.5 80.4 86.6 76.7 79.8 
Test B SNR 

(dB) Restaurant Street Airport Train Average 
Clean 98.1 

20 90.0 95.5 90.5 95.3 92.8 
15 86.1 94.4 89.4 94.9 91.2 
10 80.7 87.4 86.6 90.3 86.3 
5 67.0 80.2 81.5 86.3 78.8 
0 48.6 48.3 57.2 65.4 54.9 
-5 21.7 24.0 31.3 38.6 28.9 

Average 74.5 81.2 81.0 86.4 80.8 
Average for 8 types of noises with SNR in 0-20 dB 80.3 

We then added log-F0, delta log-F0 and delta-delta log-F0 as additional 
recognition features. The dimension of feature vector increased to 41. 

Then, a modified Mandarin digit string recognizer using pitch information was 
built. The number of mixtures in each state was increased to 16. The performance of 
the recognizer is shown in Table 1(b). In clean condition, the performance  
of recognizer with using pitch information was improved, because the perplexity of 
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Mandarin digits decreased from 10 to 2.78 when the tones of syllables were given. 
But, the overall recognition rate for all conditions (8 types of environment noise and 5 
kinds of SNRs) was declined from 80.3% to 78.5%. This was owing to the serious 
performance degradations in low SNRs when the pitch information was used. 
Specifically, by comparing the recognition results shown in Tables 1(a) and (b), we 
find that the recognition rates of the recognizer using pitch information degraded 
significantly when the SNR of speech signal was lower than 5dB. This was especially 
true for the three environments of car, airport and station. 

Table 1(b). The recognition rate of Mandarin digit string using both spectral and pitch features 

Test A SNR 
(dB) Subway Babble Car Exhibition Average 
Clean 98.4

20 95.3 97.0 97.4 96.3 96.5
15 92.5 94.6 96.0 93.5 94.2
10 86.1 87.5 88.9 88.0 87.6
5 67.8 73.5 73.1 72.6 71.8
0 34.9 44.6 40.3 43.0 41.5
-5 14.5 14.2 16.7 13.2 14.7

Average 75.9 79.4 79.1 78.7 78.3
Test B SNR 

(dB) Restaurant Street Airport Train Average 
Clean 98.4

20 94.7 96.6 95.3 96.4 95.8
15 90.2 94.4 92.4 94.7 92.9
10 83.3 86.6 86.8 88.8 86.4
5 68.5 77.4 73.4 75.7 73.8
0 39.9 43.8 44.7 50.2 44.7
-5 17.9 19.0 17.8 29.6 21.1

Average 75.3 79.8 78.5 81.2 78.7
Average for 8 kinds of noises and 5 kinds of SNRs 78.5 

3   Modification of the XAFE Pitch Extraction Front-End 

To find the reason of performance degradation caused by adding the pitch information 
in low SNR speech recognition, we examined the pitch contours detected by the pitch 
detection algorithm of ETSI standard. Fig. 1 shows the detected pitch contours of two 
versions, clean and 0-dB SNR in car noise environment, of the same utterance. It can 
be found from the figure that lots of voiced speech frames were classified as unvoiced 
frames for the case of 0-dB SNR in car noise environment. Although the exponential 
growth/decay interpolation of pitch contour in unvoiced frames could compensate 
some U/V classification errors, its efficiency degraded seriously when too many 
voiced-to-unvoiced errors occurred. This led to the serious performance degradation 
for the digit string recognizer using the improper pitch information with detection 
errors. 
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Fig. 1. An example shown the pitch contours extracted by XAFE, clean and noisy, and the pitch 
contours extracted by the modified pitch extraction algorithm. The speech signal condition was 
car environment and SNR=0dB. 

By examining the ETSI pitch detection algorithm, we found that it is applied 
directly to the input speech. This may be the reason why it performs badly in low 
SNR environments. We therefore proposed to make a modification to the ETSI pitch 
detection algorithm by using the noise-reduced speech signal, which is of the output 
of the two-stage Wiener filters in the ETSI XAFE front-end, as its input. Figure 2 
shows the block diagram of the modified pitch detection algorithm. Since the Wiener 
filters will attenuate the power of the input speech signal, a gain compensation unit 
was used to rise the power of the Wiener-filtered speech signal to the level of the 
input signal. The pitch contour of the same 0dB utterance detected by the modified 
pitch detection algorithm is also shown in Figure 1. It can be found from the figure 
that the modified pitch detection algorithm performed better for the first and third 
pitch segments, but the second and fifth pitch segments were still missing. So the 
improvement is still not significant enough to cure all V/U classification errors. 

Some error analyses were done to evaluate the performances of the original and 
modified pitch detection algorithms operating on different noise environment with 
different SNR levels. Here, we took the pitch contours of the clean utterances detected 
by the original algorithm as the correct answers to compare. First the voiced/unvoiced 
classification errors were checked. Both the errors of detecting an unvoiced frame as 
voiced (U→V) and those of detecting a voiced frame as unvoiced (V→U) are shown 
in Table 2. It can be found from the table that the V→U error rate increased seriously 
as the SNR level decreased down below 10 dB. We also find that the modified 
algorithm performed slightly better for the cases with SNR level below 15 dB. The  
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Fig. 2. The modified pitch extraction algorithm in the XAFE front end 

Table 2. The comparism of XAFE pitch detection algorithm and the modified pitch detection 
algorithm 

ETSI XAFE Modified XAFE 

SNR U→V 
(%) 

V→U 
(%) 

V→V 
Pitch 
error 

U→V 
(%) 

V→U 
(%) 

V→V 
Pitch 
error 

20 3.64 8.71 0.008 2.68 8.74 0.010 
15 3.95 13.19 0.016 2.78 13.20 0.014 
10 4.19 22.03 0.037 3.15 21.41 0.033 
5 4.72 41.73 0.084 3.98 39.05 0.073 
0 4.51 69.65 0.136 4.21 63.96 0.113 
-5 4.94 88.82 0.219 5.72 84.18 0.176 

relative pitch errors, clean noisy clean0 0 / 0F F F− , calculated over all frames in which 

pitch was detected by both clean and noisy speeches were also shown in Table 2. 

3.1   Performance of Mandarin Digit String Recognition Using the Modified 
Pitch Detection Algorithm 

We then examined the performance of Mandarin digit string recognition using the 
pitch information extracted by the modified pitch detection algorithm. The 
recognition results were shown in Table 3. We find from the table that the overall 
recognition rate is 79.9%. By comparing the results shown in Tables 1 and 3, we find 
that the performance of the case using the modified pitch detection algorithm was 
slightly better than that of the case using the ETSI pitch detection algorithm, and was 
slightly worse than the case without using pitch information. By more closely 
examining the recognition rates in various noise environments, we find that the 
recognizer using the modified pitch detection algorithm performed better than the 
recognizer without using pitch information in high SNR, and worse in low SNR. This 
observation conducted to a proposal of combining the two recognizers. 
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Table 3. The recognition rate of Mandarin digit string using modified pitch detection algorithm 

Test A  SNR 
(dB) Subway Babble Car Exhibition Average 
Clean 98.4

20 95.3 97.7 97.7 96.0 96.7
15 93.3 93.9 96.4 93.6 94.3
10 86.9 89.1 92.2 88.8 89.3
5 71.0 75.2 77.7 75.4 74.8
0 44.1 47.8 51.9 47.7 47.9
-5 15.0 18.2 17.8 15.3 16.6

Average 78.1 80.7 83.2 80.3 80.6
Test B  SNR 

(dB) Restaurant Street Airport Train Average 
Clean 98.4

20 92.4 96.6 93.8 96.3 94.8
15 90.3 95.5 92.7 94.2 93.2
10 80.2 87.9 88.3 86.0 85.6
5 66.4 78.2 76.6 73.8 73.8
0 43.2 46.4 50.9 54.8 48.8
-5 20.3 20.9 18.9 33.6 23.4

Average 74.5 80.9 80.5 81.0 79.2
Average for 8 kinds of noises and 5 kinds of SNRs 79.9 

3.2   Integration of Mandarin Digit String Recognizers With and Without Using 
Pitch Information 

As discussed above, the two recognizers with and without using pitch information 
were complemented to each other in higher and lower SNR environments, 
respectively. We therefore tried to integrate them with the goal of improving the 
performance for all SNR. As shown in Figure 3, the log-likelihood scores of the two 
recognizers were weighted combined by 

' (1 )_ _S S Swith pitch without pitchω ω= ⋅ + − ⋅ . (2) 

Here, we let the weighting factor ω depend on the SNR d and be expressed by 

1
( )

1 exp( )
    =2.5 =19d

d
ω

γ θ
γ θ=

+ − +
. (3) 

An estimate of SNR can be found in the pitch detection algorithm of ETSI XAFE 
(Eq. (5.113) in [1]), thus we need the XAFE front-end to send the SNR information to 
the back end. 

Table 4 shows the recognition results of the integrated recognition scheme. An 
overall recognition rate of 82.1% was achieved. As comparing with the recognizer 
without using pitch information, 1.8% recognition rate improvement was achieved. In 
most conditions its recognition rate tended to that of the better of the two constituent 
recognizers. In some cases, it performed even better than both recognizers. 
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Fig. 3. Integration the recognizers with/without pitch information 

Table 4. The recognition rate of Mandarin digit string using integration scheme 

Test A  SNR 
(dB) Subway Babble Car Exhibition Average 
Clean 98.4

20 96.0 97.5 97.8 96.3 96.9
15 93.2 94.7 96.4 93.6 94.5
10 87.7 90.2 93.8 89.9 90.4
5 71.3 78.7 84.4 73.8 77.1
0 43.6 52.8 60.1 45.2 50.4
-5 15.1 20.4 19.0 15.0 17.4

Average 78.4 82.8 86.5 79.8 81.9
Test B  SNR 

(dB) Restaurant Street Airport Train Average 
Clean 98.4

20 92.5 96.9 93.5 96.6 94.9
15 91.6 95.5 92.7 95.0 93.7
10 83.0 88.0 89.6 88.5 87.3
5 69.0 83.0 81.5 83.5 79.3
0 50.8 48.9 57.0 65.7 55.6
-5 22.1 23.8 29.6 37.5 28.3

Average 77.4 82.5 82.9 85.9 82.2
Average for 8 kinds of noises and 5 kinds of SNRs 82.1 

A summary of the recognition rates of all above-discussed recognition schemes 
under different SNRs is given in Table 5. It can be seen from the table that the 
performance of the proposed integrated recognition scheme was not too far away from 
the upper bound, 83.8%, achieved by using the pitch contours of clean speech. 

Finally, the recognition results for multi-condition training condition were also 
calculated and shown in Table 6. Due to the size of training data, each utterance 
appeared twice in the training data with different noise environments or conditions. 
The overall recognition rate of the integrated system was 86.8%. As comparing with 
the recognizer without using pitch information, 10% recognition error reduction was 
achieved. 
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Table 5. Summary of recognition results of different recognizers 

SNR(dB) 20 15 10 5 0 Ave. 
No-pitch 93.9 91.8 87.0 77.0 51.9 80.3 

With Pitch (original 
XAFE) 

96.2 93.6 87.0 72.8 43.1 78.5 

With Pitch 
 (modified XAFE) 

95.8 93.8 87.5 74.3 48.4 79.9 

Integration 95.9 94.1 88.9 78.2 53.0 82.1 

Table 6. Summary of recognition results of different recognizers for the case of multi-condition 
training 

SNR(dB) 20 15 10 5 0  Ave. 
A  96.8  95.9  92.3  83.3  57.7  85.2 

No-pitch 
B  95.0  94.5  91.2  85.0  64.1  86.0 
A  97.7  96.6  93.9  83.1  55.9  85.5 With Pitch 

(modified XAFE) B  96.5  96.0  92.5  83.0  59.0  85.4 
A  97.9  96.9  94.2  84.3  58.1  86.3 

Integration 
B  96.6  96.4  93.0  85.9  64.2  87.2 

4   Conclusions 

In this paper, the performance of Mandarin digit string recognition using ETSI XAFE 
front-end was carefully examined. And, due to the serious performance degeneration 
of pitch detector, the recognition rates of the recognizer using pitch information will 
degrade significantly when the SNR of the signal was lower than 5dB. A modification 
of the pitch detection algorithm of the XAFE standard was proposed to improve the 
performance of pitch detection in low SNR environments. A recognition scheme of 
integrating the two recognizers with and without using pitch information was also 
proposed to improve the recognition performance for most SNR levels. Overall 
recognition rates of 82.1% and 86.8% were achieved for clean and multi-condition 
training cases. 
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Abstract. Recently, we revisited the fast adaptation method called ref-
erence speaker weighting (RSW), and suggested a few modifications. We
then showed that the algorithmically simplest technique actually outper-
formed conventional adaptation techniques like MAP and MLLR for 5-
or 10-second supervised adaptation on the Wall Street Journal 5K task.
In this paper, we would like to further investigate the performance of
RSW in unsupervised adaptation mode, which is the more natural way
of doing adaptation in practice. Moreover, various analyses were carried
out on the reference speakers computed by the method.

1 Introduction

In practice, most automatic speech recognition systems come with a speaker-
independent (SI) acoustic model that is expected to work sufficiently well with
most users in general. However, the recognition performance can be further im-
proved for a particular user if the SI model is fine-tuned to the speaking char-
acteristics of the user through an appropriate speaker adaptation procedure. In
particular, fast unsupervised speaker adaptation method that requires only a
few seconds of adaptation speech from the users without knowing its content
in advance is more desirable, and in some cases (e.g. phone enquiries), is the
only feasible adaptation solution. Two similar fast speaker adaptation methods
were proposed at about the same time: reference speaker weighting (RSW) [1,2] in
1997 and eigenvoice (EV) [3,4] in 1998. Both methods have their root in speaker-
clustering-based methods [5]. In both methods, a speaker model is vectorized and
a new speaker-adapted (SA) model is required to be a linear combination of a
set of reference vectors. In eigenvoice, an orthogonal eigenspace is derived from
a set of training speakers by principal component analysis, and the eigenvectors,
now called eigenvoices, are used as the reference vectors. On the other hand,
RSW simply selects a subset of training speakers as the references.

In [6], we revisited RSW with further simplifications. We also suggested to
select the reference speakers by their likelihoods on the adaptation speech.
Supervised adaptation using 5- and 10-second of speech on the Wall Street
Journal (WSJ0) 5K-vocabulary task showed that the algorithmically simplest
RSW method actually outperformed conventional adaptation methods like the

Q. Huo et al.(Eds.): ISCSLP 2006, LNAI 4274, pp. 380–389, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Bayesian-based maximum a posteriori (MAP) adaptation [7], and the transfor-
mation-based maximum likelihood linear regression (MLLR) adaptation [8] as
well as eigenvoice and eigen-MLLR [9]. Here, we would like to further our in-
vestigation on RSW by carrying out unsupervised adaptation which is the more
natural way of doing adaptation in practice, as well as performing various anal-
yses on the reference speakers computed by the method.

This paper is organized as follows. We first review the theory of reference
speaker weighting (RSW) in the next Section. Unsupervised RSW adaptation
was then evaluated on the Wall Street Journal corpus WSJ0 in Section 3. The
experiments are followed by various analyses in Section 4. Finally, in Section 5,
we present some concluding remarks.

2 Reference Speaker Weighting (RSW)

In this section, we will review the theory of reference speaker weighting in its sim-
plest form. It is basically the same as that in [2] except with a few modifications
that we have outlined in [6].

Let’s consider a speech corpus consisting of N training speakers with diverse
speaking or voicing characteristics. A speaker-independent (SI) model is first es-
timated from the whole corpus. The SI model is a hidden Markov model (HMM),
and its state probability density functions are modeled by mixtures of Gaussians.
Let’s further assume that there are a total of R Gaussians in the SI HMM. Then,
a speaker-dependent (SD) model is created for each of the N training speakers by
MLLR transformation [8] of the SI model, so that all SD models have the same
topology. To perform RSW adaptation, each SD model is represented by what
is called a speaker supervector that is composed by splicing all its R Gaussian
mean vectors together.

In RSW adaptation, a subset of M reference speakers Ω(s) is chosen among
the N training speaker with M ≤ N for the adaptation of a new speaker s
as depicted in Fig. 1. (Notice that the set of reference speakers, in general, is
different for each new speaker.) Let Y = {y1,y2, . . . ,yM} be the set of reference
speaker supervectors. Then the RSW estimate of the new speaker’s supervector
is

s ≈ s(rsw) =
M∑

m=1

wmym = Yw , (1)

and for the mean vector of the rth Gaussian,

s(rsw)
r =

M∑
m=1

wmymr = Yrw . (2)

where w = [w1, w2, . . . , wM ]′ is the combination weight vector.
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Fig. 1. Concept of reference speaker weighting

2.1 Maximum-Likelihood Estimation of Weights

Given the adaptation data O = {ot, t = 1, . . . , T}, one may estimate w by
maximizing the following Q(w) function:

Q(w) = −
R∑

r=1

T∑
t=1

γt(r)(ot − s(rsw)
r (w))′C−1

r (ot − s(rsw)
r (w))

where γt(r) is the posterior probability of observing ot in the rth Gaussian, and
Cr is the covariance matrix of the rth Gaussian. The optimal weight vector may
be found by simple calculus as follows:

∂Q
∂w = 2

R∑
r=1

T∑
t=1

γt(r)Y′
rC

−1
r (ot − Yrw) = 0

⇒ w =

[
R∑

r=1

(
T∑

t=1

γt(r)

)
Y′

rC
−1
r Yr

]−1 [ R∑
r=1

Y′
rC

−1
r

(
T∑

t=1

γt(r)ot

)]
. (3)

Thus, the weights w may be obtained by solving a system of M linear equa-
tions. The solution requires finding the inverse of an M × M matrix and has a
computational complexity of O(M3). Notice also that unlike Hazen’s formulation
in [2], no constraints are imposed on the combination weights.
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2.2 Maximum-Likelihood Reference Speakers

In [6], we showed that good RSW adaptation performance could be achieved by se-
lecting those training speakers that gave the highest likelihoods of the adaptation
speech from a test speaker as his/her reference speakers. We call these reference
speakers the maximum-likelihood (ML) reference speakers. We continue to use
ML reference speakers for RSW adaptation evaluation in this paper.

3 Experimental Evaluation

Unsupervised fast speaker adaptation was carried out on the Wall Street Journal
WSJ0 [10] 5K-vocabulary task using our modified reference speaker weighting
(RSW) method.

Table 1. Duration statistics (in seconds) of the test utterances of each WSJ0 test
speaker

Speaker ID #Utterances min max mean std dev

440 40 4.32 12.76 8.23 6.83

441 42 2.82 10.94 6.89 4.14

442 42 2.42 11.85 7.24 4.62

443 40 3.34 14.19 8.01 5.49

444 41 2.36 11.13 7.88 4.49

445 42 2.55 10.70 5.81 4.18

446 40 2.99 12.28 7.14 5.19

447 43 2.06 11.55 7.33 5.78

3.1 WSJ0 Corpus and the Evaluation Procedure

The standard SI-84 training set was used for training the speaker-independent
(SI) model and gender-dependent (GD) models. It consists of 83 speakers (41
male speakers and 42 female speakers) and 7138 utterances for a total of about
14 hours of training speech. The standard nov’92 5K non-verbalized test set was
used for evaluation. It consists of 8 speakers (5 male and 3 female speakers), each
with about 40 utterances. The detailed duration statistics of the test utterances
of each speaker is given in Table 1.

During unsupervised adaptation, the content of each test utterance was not as-
sumed to be known in advance. All adaptation methods under investigation were
run with 3 EM iterations. During each iteration, the current speaker-adapted
(SA) model was used to decode the adaptation utterance and to provide the
Gaussian mixture posterior probabilities, then the adaptation method was car-
ried out to get a new SA model. At the first iteration, the SI model was used
for decoding instead. The last SA model was used to decode the same utterance
again to produce the final recognition output. Results from all speakers and all
utterances are pooled together and their average results are reported. Finally, a
bigram language model of perplexity 147 was employed in this recognition task.



384 T.-C. Lai and B. Mak

3.2 Acoustic Modeling

The traditional 39-dimensional MFCC vectors were extracted at every 10ms
over a window of 25ms. The speaker-independent (SI) model consists of 15,449
cross-word triphones based on 39 base phonemes. Each triphone was modeled
as a continuous density HMM (CDHMM) which is strictly left-to-right and has
three states with a Gaussian mixture density of 16 components per state; there
are 3,131 tied states in total. The SI model has a word recognition accuracy of
92.60% on the test data1. GD models were then created by MAP adaptation
from the SI model using gender-specific training data, and they give a word
recognition accuracy of 92.92%.

Furthermore, 83 speaker-dependent (SD) models were created by MLLR adap-
tation using a regression class tree of 32 classes for RSW adaptation methods.

3.3 Effect of the Number of Reference Speakers

We first investigate how many ML reference speakers are sufficient for RSW
adaptation. Unsupervised RSW adaptation using only a single utterance at a
time was performed with 3 EM iterations. We started with 10 ML reference
speakers and then doubled the number until all 83 training speakers were used.
The results are plotted in Fig. 2. The figure shows that although using all train-
ing speakers as reference speakers gives good results, the best adaptation per-
formance actually is obtained with 40 reference speakers, though the difference
is small. It also shows that RSW performance saturates fast after about half of
training speakers are used as reference speakers.

3.4 Comparative Study

RSW adaptation was compared with the following models and common adapta-
tion methods:

SI: the SI model.
GD: the gender-dependent models.
MAP: the SA model found by MAP adaptation [7].
MLLR: the SA model found by MLLR adaptation [8].

For the evaluation using GD models, the test speaker’s gender was assumed
known and the GD model of the corresponding gender was applied to his/her
utterances; thus, there is no error from gender detection2. For each adaptation
method, we tried our best effort to get the best performance. MAP and MLLR
were performed using HTK. For MAP, scaling factors in the range of 3–15 were
attempted,butnoneof themgaveany improvement;MLLRmadeuseofa regression
tree of 32 regression classes (though itwas foundactually inmost cases, only a single
global transform was employed) and block-diagonal transforms (with 3 blocks)

1 The accuracy of the SI model is better than what we had reported in [6] because
better values of grammar factor and insertion penalty are used.

2 As will be explained in Section 4.2, the gender of speaker 442 is actually female.



Unsupervised Speaker Adaptation Using Reference Speaker Weighting 385

92.4

92.6

92.8

93.0

93.2

93.4

93.6

93.8

94.0

94.2

 10  20  30  40  50  60  70  80

W
or

d 
R

ec
og

ni
tio

n 
A

cc
ur

ac
y 

(%
)

Number of Maximum-Likelihood Reference Speakers

SI model
RSW

Fig. 2. Effect of the number of ML reference speakers on RSW

Table 2. Comparing RSW with the SI and GD models, MAP and MLLR adaptation
on WSJ0. Results are word accuracies in %. (WERR is word error rate reduction in
%, and M is the number of reference speakers.)

Model/Method Word Accuracy WERR

SI 92.60 —
GD 92.98 5.14

MAP 92.60 0.0
MLLR (3 blocks) 93.24 8.65

RSW (M=10) 93.07 6.35
RSW (M=20) 93.18 7.84
RSW (M=40) 93.69 14.7
RSW (M=83) 93.61 13.6

as there were no improvement from using full-MLLR transforms; finally, RSW
adaptation using 10, 20, 40, and 83 ML reference speakers was attempted for the
comparison. Again, each time, only a single utterance was used for unsupervised
adaptation and 3 EM iterations were run. The results are summarized in Table 2.

From Table 2, we are again surprised that the algorithmically simplest RSW
technique actually gives the best fast adaptation performance.

3.5 Saturation Effect of RSW

A more detailed look at the adaptation performance of MLLR and RSW (using
40 ML reference speakers) across the three EM iterations is shown in Fig. 3.



386 T.-C. Lai and B. Mak

It can be seen that MLLR does not improve much after the first iteration and
RSW saturates after the second iteration.
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Fig. 3. Saturation effect of MLLR and RSW adaptation on WSJ0

4 Analysis

In this section, we would like to analyze the maximum-likelihood (ML) reference
speakers found for each test speaker from each test utterance.

4.1 Consistency of ML Reference Speakers

Since each test speaker has about 40 test utterances for adaptation, it will be
interesting to see how likely that the same ML reference speakers are selected
for each test utterance of the same test speaker. To do that, during unsupervised
RSW adaptation using M reference speakers, the M ML reference speakers of
each test utterance were recorded. Then all the ML reference speakers over all
test utterances of the same test speaker are sorted according to their frequen-
cies. Finally the total frequency of the M most frequent reference speakers are
found and the percentage of their contribution over all the reference speakers is
computed. The percentage is used as a measure of how consistent are the ML
reference speakers found by using any utterance of a test speaker. The reference
speaker consistency percentages for each test speaker is summarized in Table 3.

From Table 3, we can see that the consistency is quite high. We may con-
clude that (1) finding reference speakers by maximizing the likelihood of a test
speaker’s adaptation speech is effective, and (2) one may find the ML reference
speakers using any utterance of a test speaker.
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Table 3. Consistency percentage of ML reference speakers found for each WSJ0 test
speaker. (M is the number of reference speakers.)

Speaker ID M = 10 M = 20 M = 40

440 0.830 0.854 0.908

441 0.790 0.820 0.903

442 0.860 0.863 0.903

443 0.853 0.848 0.978

444 0.868 0.870 0.915

445 0.919 0.920 0.899

446 0.815 0.794 0.887

447 0.865 0.887 0.916

Overall 0.850 0.857 0.913

4.2 Consistency of ML Reference Speakers’ Gender

Since gender is generally considered as a major factor affecting one’s voicing
characteristics, it is interesting to see if one’s reference speakers have the same
gender as oneself. Here is our analysis procedure: from the RSW unsupervised
adaptation using M reference speakers of each of the N test utterances of a test
speaker, there are totally MN reference speakers; among those MN reference
speakers, count how many of them have the same gender as the test speaker’s,
and compute their ratio which we call the gender consistency percentage. Table 4
lists out the gender consistency percentages of all the 8 test speakers.

We find that when 10 reference speakers are employed by RSW adaptation,
half of the 8 test speakers have a gender consistency percentage close to 100%.
The consistency percentage is particular bad for the test speaker labeled as 442.
However, after we listened to speaker 442’s utterances, we believe that there is
an error in the gender label and the speaker is actually a female. The last row of
Table 4 is obtained by correcting speaker 442’s gender to female. On the other

Table 4. Consistency pencentage of the gender of ML reference speakers found for
each WSJ0 test speaker. (M is the number of reference speakers.)

Speaker ID Gender M = 10 M = 20 M = 40

440 male 0.958 0.920 0.773

441 female 0.993 0.956 0.830

442 male 0.260 0.365 0.368

443 male 1.000 1.000 0.899

444 female 0.998 0.968 0.812

445 female 0.902 0.893 0.758

446 male 0.803 0.708 0.613

447 male 0.991 0.986 0.833

Overall — 0.862 0.849 0.735

442 as female — 0.923 0.883 0.769
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hand, as expected, the gender consistency percentage drops as more reference
speakers are employed in RSW adaptation. The high percentages suggest that (1)
the common use of gender-dependent models for speech recognition is sensible,
and (2) our approach of finding ML reference speakers may be modified to a
gender detection method.

5 Conclusions

In this paper, we show that reference speaker weighting is effective for fast
speaker adaptation in unsupervised mode as well as in supervised mode (the
latter had been investigated in [6]). Its performance is better than MAP and
MLLR on WSJ0 when only one utterance is available for unsupervised adapta-
tion. It is also a very simple algorithm. It is also found that it is not necessary to
use all training speakers as reference speakers and for this particular task, using
half of training speakers actually gives slightly better adaptation results. Anal-
yses on the reference speakers found using ML criterion show that the chosen
reference speakers are very consistent across utterances from the same speaker
in terms of their identity or gender.
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Abstract. In this paper, we propose a model-based hierarchical clustering 
algorithm that automatically builds a regression class tree for the well-known 
speaker adaptation technique - Maximum Likelihood Linear Regression 
(MLLR). When building a regression class tree, the mean vectors of the 
Gaussian components of the model set of a speaker independent CDHMM-
based speech recognition system are collected as the input data for clustering. 
The proposed algorithm comprises two stages. First, the input data (i.e., all the 
Gaussian mean vectors of the CDHMMs) is iteratively partitioned by a divisive 
hierarchical clustering strategy, and the Bayesian Information Criterion (BIC) is 
applied to determine the number of clusters (i.e., the base classes of the 
regression class tree). Then, the regression class tree is built by iteratively 
merging these base clusters using an agglomerative hierarchical clustering 
strategy, which also uses BIC as the merging criterion. We evaluated the 
proposed regression class tree construction algorithm on a Mandarin Chinese 
continuous speech recognition task. Compared to the regression class tree 
implementation in HTK, the proposed algorithm is more effective in building 
the regression class tree and can determine the number of regression classes 
automatically.  

Keywords: speaker adaptation, MLLR, regression class tree. 

1   Introduction 

MLLR [1] is well known for its ability to perform rapid and robust speaker adaptation 
with a small amount of adaptation data. Extensive research efforts have been made to 
improve MLLR [8, 13] as well as to develop new methods that extend the 
conventional MLLR framework [2-7]. 

In the MLLR proposed by Leggetter and Woodland [1], adaptation of speaker 
independent (SI) model parameters (e.g., the mean parameters of a CDHMM-based 
speech recognition system) is carried out via a set of linear transformations, where 
each regression (transformation) matrix is responsible for the adaptation of one 
regression class (subset of the model parameters). To enhance flexibility and 
robustness, the authors proposed using of a regression class tree to group the 
parameters of the model set into regression classes. The purpose is to dynamically 
determine the sharing of regression matrices for the parameters according to the 
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amount and type of adaptation data available [8]. The regression class tree is a critical 
component in the MLLR framework as well as in other linear transformation based 
approaches, e.g., [3].     

The issue of regression class tree construction for MLLR can be viewed as a data 
clustering problem of the parameters. For example, HTK [9] applies a centroid 
splitting algorithm to construct a regression class tree, in which the number of base 
clusters (classes) must be determined empirically. In this study, we developed a 
model-based hierarchical clustering algorithm, which not only provides a better 
clustering result for the model parameters, but also determines the number of clusters 
(i.e., base classes of the regression class tree) automatically. The proposed regression 
class tree construction algorithm is a two-stage process. In the first stage, the input 
data is iteratively partitioned in a top-down fashion using a divisive hierarchical 
clustering strategy, and the Bayesian Information Criterion (BIC) [10] is applied to 
determine the number of clusters. In the second stage, these clusters are iteratively 
merged in a bottom-up fashion to build the regression class tree. To evaluate the 
performance, the proposed regression class tree implementation was compared with 
that of HTK. The experimental results show that the proposed algorithm is effective 
in building a regression class tree automatically and in determining the number of 
regression classes for MLLR.  

The rest of this paper is organized as follows. First, MLLR and the concept of 
regression class tree are reviewed in Section 2. Then, the proposed algorithm for 
regression class tree construction is introduced in Section 3. The experimental results 
are presented in Section 4, followed by our conclusions in Section 5.  

2   MLLR and Regression Class Tree  

In MLLR, to adapt the SI Gaussian mean vectors for example, the mean vectors are 
clustered into C regression classes, and each regression class c is associated with an 
n×(n+1) regression matrix cW , where n is the dimensionality of the feature vector. 

Let the mean vector m = [ m(1),…, m(n)]T of Gaussian component m be one of the Tc  
mean vectors in the regression class c; then, the adapted mean vector can be derived 
as 

, ,...,2,1;,...,1,ˆ CcTm ccmcmcm ==+== bAW                         (1) 

where m=[1, m(1),…, m(n)]T is the (n+1)-dimensional augmented mean vector. 

cA and 
cb  are an n×n matrix and an n-dimensional vector, respectively, such that 

cW  = 

[
cb cA ]. 

cb is used as a bias vector. 
cA  can be diagonal, block-diagonal, or full. 

Ccc ,...,1}{ =W  is estimated by maximizing the likelihood of the adaptation data for the 

adapted parameters using EM algorithm.  
To facilitate flexibility and robustness, MLLR usually makes use of a regression 

class tree. All the Gaussian components are arranged into a tree, which is basically a 
binary tree, such that close components in the acoustic space are grouped in the same 
node (regression class). The lower level of the tree indicates that the components are 
more close. In the hierarchy of the tree, each parent node contains all the components 
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of its two child nodes, and all the leaf nodes are termed as base classes. During the 
adaptation process, the feature vectors used for adaptation are aligned to the 
corresponding Gaussian components, and the occupation counts are accumulated for 
each of the base classes. The regression class tree can be traversed in either a top-
down or a bottom-up fashion to only generate transformations for those nodes that 
have sufficient adaptation data. Fig. 1 shows an example of a regression class tree. 
The numbers in italics associated with the tree nodes are the number of adaptation 
feature vectors aligned to them. If the threshold for the sufficiency of the adaptation 
data is set as 300, only the transformations for regression nodes 2, 3, and 4 will be 
constructed. The transformation of node 2 will take charge of the adaptation of 
Gaussian components in node 5, and the transformation of noe 3 will take charge of 
nodes 6 and 7. 

 

 

 

 

 

Fig. 1. An example of a regression class tree 

3   Model-Based Hierarchical Clustering for Automatic Regression  
Class Tree Construction 

In this section, before describing the proposed regression class tree construction 
algorithm in detail, we briefly introduce BIC, which provides the splitting and 
merging criteria for the proposed algorithm. 

3.1   Model Selection and BIC 

Given a data set X={x1, x2,…, xn} and a set of candidate models M={M1, M2,…, Mk}, 
the model selection problem is to choose the model that best fits the distribution of X. 
BIC is a model selection criterion and the BIC value of model Mi is   

,log)(#
2

1
)ˆ|(log),( nMXpXMBIC iii −Θ=                              (2) 

where )ˆ|( iXp Θ is the maximum likelihood of X for model Mi, and #(Mi) is the 

number of parameters of Mi. The model with the highest BIC value is selected. The 
BIC-based approach is also known as a penalized likelihood approach, which gives a 
larger penalty to more complex models.  
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3.2   The Proposed Regression Class Tree Construction Algorithm 

The proposed regression class tree construction algorithm is a two-stage process. In 
the first stage, the input data X is viewed as a single cluster initially, after which the 
clusters are divided into finer clusters iteratively by using BIC as the validity criterion 
for splitting until there is no cluster should be split. Then, in the second stage, similar 
to agglomerative hierarchical clustering, these clusters are iteratively merged in a 
bottom-up fashion to build the resultant dendrogram. The details of the proposed 
clustering algorithm are given in Algorithm 1, which we call TDBU (Top-Down & 
Bottom-Up). There are two major issues with respect to the proposed clustering 
algorithm: 

 
(I1) In the Top-Down (TD) stage, which cluster should be split into a pair of sub-
clusters and how should it be split? 
(I2) In the Bottom-Up (BU) stage, what is the appropriate distance measure of two 
clusters and how should they be merged? 

 
On Issue (I1)  
At each splitting iteration, each cluster Ci with BIC21(Ci)=BIC(GMM2, Ci) - 
BIC(GMM1, Ci) larger than 0 is split into two sub-clusters, where GMMk  represents a 
Gaussian mixture model with k mixture components. According to BIC theory, the 
larger the value of BIC21(Ci), the better GMM2 will fit Ci, and thus the more 
confidence there will be that Ci is composed of at least two Gaussian clusters. As to 
the splitting of cluster Ci, after the training of GMM2, each sample belonging to Ci is 
distributed to the Gaussian component that has the largest posterior probability for the 
sample. In other words, suppose 1 and 2 are the two components of GMM2, for each 
x in Ci, then x is distributed to cluster j  if  j=arg maxr p( r|x). 

 
On issue (I2)   
At each merging iteration in the second stage, the two most similar (close) clusters are 
merged into a single cluster. Given two clusters, Ci and Cj, let C ={ Ci , Cj }. Then, 

BIC21(C ) is used to represent the dissimilarity (or distance) between Ci and Cj. The 
smaller the BIC21(C ) value the more confident we are in describing the distribution 
of C  as one Gaussian cluster.  
 

In the proposed TDBU algorithm, the TD stage alone can construct a regression 
class tree. However, the regression class tree constructed by the following BU stage is 
believed to be better than that constructed by the TD stage alone. The TD stage can 
capture the real clusters in X approximately, but may not construct an optimal 
dendrogram for the real clusters because of the uncertainties of the splitting processes 
and the suboptimal hierarchy construction of the clusters.  We consider that the major 
contribution of the TD stage is to automatically determine the number of clusters in X 
and to provide a decent clustering result for the BU stage to start with. After the TD 
stage, the BU stage can construct a better hierarchy for these clusters, since it 
proceeds as the conventional (non-model-based) hierarchical agglomerative 
clustering. Fig. 2 illustrates the clustering process of the TDBU algorithm with a 
simple example. We can clearly see the differences between the dendrograms 
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constructed by the TD stage alone and by the complete TDBU process. The memory 
complexity of the BU stage for storing the distance matrix is O(m2), where m is the 
number of clusters produced by the TD stage, compared to O(n2) for the conventional 
hierarchical agglomerative clustering approach, where n is the number of input 
samples. Obviously, O(m2) is smaller than O(n2).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 1. The proposed model-based hierarchical clustering algorithm for MLLR 
regression class tree construction 

4   Experiments 

4.1   Experimental Setup 

The proposed approach was evaluated on the TCC300 continuous Mandarin Chinese 
microphone speech database [12], which contains data of 150 female and 150 male 
speakers. The speech data of 260 speakers, a total of 23.16 hours was used to train the 
SI acoustic model, while the speech data of eight speakers (four female and four 
male), not included in the 260 training speakers was used for model adaptation and 
testing. The sampling rate of the speech was 16 kHz. Twelve MFCCs and log-energy, 
along with their first and second order time derivatives, were combined to form a 39- 
dimensional feature vector. Utterance-based Cepstral mean subtraction (CMS) was 
applied to the training and test speech to remove the channel effect. 
 

Algorithm: TDBU 
Input: Data set  X={x1, x2,…, xn}.  
Output: A dendrogram of the input data set X. 
Begin 

Top-Down (TD) stage: 
1. Start with one single cluster (the root node of the TD 

dendrogram). 
2. Repeat: 

Split cluster (leaf node) Ci with BIC21(Ci)>0 into 
two new clusters (leaf nodes). 

Until there is no cluster (leaf node) whose BIC21 
value is larger than 0.                   

Bottom-Up (BU) stage:  
1. Start with the resultant clusters C1, C2,…, Cm in the 

TD stage (the leaf nodes of TD dendrogram). 
2. Repeat:  

Merge the two closest clusters (nodes) into a single 
cluster (parent node) at the next level of the BU 
dendrogram. 

Until only one cluster (root node) left. 
3. Output the BU dendrogram. 

End 
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Fig. 2. An example of the TDBU clustering process. The resultant clusters at iteration 5 of the 
TD stage are fed to the BU stage as the initial condition. The dendrogram constructed in the BU 
stage is the output of TDBU.   

Considering the monosyllabic structure of the Chinese language in which each 
syllable can be decomposed into an INITIAL/FINAL format, the acoustic units used 
in our speech recognizer are intra-syllable right-context-dependent INITIAL/FINAL, 
including 112 context-dependent INITIALs and 38 context-independent FINALs [11]. 
Each INITIAL is represented by a CDHMM with three states, while each FINAL is  
 

(a) TD stage 

(b) BU stage 
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represented with four states. The number of Gaussian components for each state is 32. 
For each test speaker, about 125 seconds of speech data was used for model 
adaptation, while 400 seconds was used for speech recognition evaluation. In the 
adaptation experiments, the 125-second adaptation speech for each test speaker was 
averagely chopped into 25 five-second utterances. The recognizer performed only free 
syllable decoding without any grammar constraints. Syllable accuracy was used as the 
evaluation metric. All adaptation experiments were conducted in a supervised manner 
and only mean vectors of Gaussian components in the SI model were adapted. The 
speaker independent recognition accuracy was 66.20%, averaged over the eight test 
speakers. The performance of the built-in approach in HTK [9] was used as the 
baseline result. The speaker adaptation experiments on the proposed approach were 
also performed with HTK. 

4.2   Experimental Results 

Fig. 3 shows the adaptation performance of various regression class trees constructed 
by the built-in HTK approach and the proposed algorithm - TDBU. The number of 
base classes predefined for HTK ranged from 4 (denoted as HTK4) to 200 (denoted as 
HTK200). Full-covariance Gaussians were used to compute the BIC value in the 
TDBU approach, and the number of base classes automatically determined by TDBU 
was 34. For each test speaker, the 25 five-second utterances were used for adaptation 
in order. For example, if the number of utterances is five, the adaptation was 
performed on the first five utterances. 

Several conclusions can be drawn from Fig. 3: (1) When the amount of adaptation 
data is small (less than 10 utterances), there is no significant difference between the 
performance of all the approaches tested due to the very limited adaptation data. (2) If 
more adaptation data (more than 10 utterances) is available, the performance can be 
improved with more complex regression class trees (more base classes). 34 seems to 
be an appropriate number of base classes since the performance of HTK34, HTK64, 
and HTK200 is almost the same and are superior to the results obtained with fewer 
base classes. (3) It is clear that TDBU34 outperforms HTK34, HTK64, and HTK200. 
The experiment results show that the TDBU approach is not only more effective than 
the regression class tree implementation method in HTK, but can also find an 
appropriate number of base classes automatically during the regression class tree 
construction process. This is an advantage when we need to take account of the 
memory requirement of the regression class tree when designing an embedded speech 
recognition system for a device with limited memory. 

As mentioned in Section 3, the TD stage (i.e., the first stage of TDBU) can be used 
alone to construct the regression class tree. Fig. 4 depicts the performance curves of 
TD34, TDBU34 and HTK34, from which we can infer that performing the BU stage 
after the TD stage definitely constructs a better hierarchy for the regression classes 
than that constructed using the TD stage alone. The experiment results also show that, 
in general, the TD34 regression class tree outperforms the HTK34 regression class 
tree. 
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Fig. 3. Adaptation performance obtained with various regression class trees constructed by 
HTK and TDBU. The number of base classes determined by TDBU is 34. 

 

Fig. 4. Adaptation performance of HTK34, TD34 and TDBU34 
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5   Conclusion 

This paper presents a model-based hierarchical clustering algorithm for MLLR 
regression class tree construction. The experiment results shows that the regression 
class tree constructed by our approach is more effective than that constructed by 
HTK. In addition, our approach can automatically decide an appropriate number of 
regression classes, which used to be decided empirically. 
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Abstract. This paper presents a novel framework for HMM-based automatic 
phonetic segmentation that improves the accuracy of placing phone boundaries. 
In the framework, both training and segmentation approaches are proposed 
according to the minimum boundary error (MBE) criterion, which tries to 
minimize the expected boundary errors over a set of possible phonetic 
alignments. This framework is inspired by the recently proposed minimum 
phone error (MPE) training approach and the minimum Bayes risk decoding 
algorithm for automatic speech recognition. To evaluate the proposed MBE 
framework, we conduct automatic phonetic segmentation experiments on the 
TIMIT acoustic-phonetic continuous speech corpus. MBE segmentation with 
MBE-trained models can identify 80.53% of human-labeled phone boundaries 
within a tolerance of 10 ms, compared to 71.10% identified by conventional 
ML segmentation with ML-trained models. Moreover, by using the MBE 
framework, only 7.15% of automatically labeled phone boundaries have errors 
larger than 20 ms.  

Keywords: automatic phonetic segmentation, minimum boundary error, 
discriminative training, minimum Bayes risk. 

1   Introduction 

Many areas of speech technology exploit automatic learning methodologies that rely 
on large well-labeled corpora. Phoneme level transcription is especially important for 
fundamental speech research. In recent years, increased attention has been paid to 
data-driven, concatenation-based TTS synthesis because its output is more natural and 
has a high degree of fluency. Both the development of concatenative acoustic unit 
inventories and the statistical training of data-driven prosodic models require a speech 
database that is precisely segmented. In the past, the speech synthesis has relied on 
manually segmented corpora; however, such corpora are extremely hard to obtain, 
since labeling by hand is time consuming and costly. In speech recognition tasks, 
though the use of Hidden Markov Models (HMMs) has made finding precise phonetic 
boundaries unnecessary, it is believed that speech recognition would benefit from 
more precise segmentation in training and recognition. 

To reduce the manual effort and accelerate the labeling process, many attempts have 
been made to utilize automatic phonetic segmentation approaches to provide initial 
phonetic segmentation for subsequent manual segmentation and verification, e.g., 
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dynamic time warping (DTW) [1], methods that utilize specific features and algorithms 
[2], HMM-based Viterbi forced alignment [3], and two-stage approaches [4]. 

The most popular method of automatic phonetic segmentation is to adapt an 
HMM-based phonetic recognizer to align a phonetic transcription with a speech 
utterance. Empirically, phone boundaries obtained in this way should contain few 
serious errors, since HMMs generally capture the acoustic properties of phones; 
however, small errors are inevitable because HMMs are not sensitive enough to detect 
changes between adjacent phones [4]. To improve the discriminability of HMMs for 
automatic phonetic segmentation, we proposed using a discriminative criterion, called 
the minimum boundary error (MBE), for model training in our previous work [5]. In 
this paper, the MBE criterion is extended to the segmentation stage, i.e., we propose 
an MBE forced alignment to replace the conventional maximum likelihood (ML) 
forced alignment. The superiority of the MBE framework over the conventional ML 
framework for automatic phonetic segmentation is verified by experiments conducted 
on the TIMIT acoustic-phonetic continuous speech corpus. 

The remainder of this paper is organized as follows. Section 2 reviews the 
methodology of the MBE discriminative training approach. In Section 3, we present 
the proposed MBE segmentation approach and discuss its relation to the minimum 
Bayes risk (MBR) criterion. The experiment results are detailed in Section 4. Finally, 
in Section 5, we present our conclusions and suggest some future research directions. 

2   Minimum Boundary Error Training 

Let { }ROO ,..,1=O  be a set of training observation sequences. The objective function 

for MBE training can then be defined as:  
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where r  is a set of possible phonetic alignments for the training observation 

utterance rO ; r
iS  is one of the hypothesized alignments in r ; )| rr

i OSP(  is the 

posterior probability of alignment r
iS , given the training observation sequence rO ; 

and ),( r
c

r
i SSER  denotes the “boundary error” of r

iS  compared with the manually 

labeled phonetic alignment r
cS . For each training observation sequence rO , MBEF  

gives the weighted average boundary error of all hypothesized alignments. For 

simplicity, we assume the prior probability of alignment r
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Fig. 1. An illustration of the phonetic lattice for the speech utterance: “Where were they?” The 
lattice can be generated by performing a beam search using some pruning techniques 

where α  is a scaling factor that prevents the denominator (∈ Λrr
kS

r
k

r SOp )|  being 

dominated by only a few alignments. Accordingly, the optimal parameter set *Λ  can 
be estimated by minimizing the objective function defined in Eq.(2) as follows: 
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The boundary error ),( r
c

r
i SSER  of the hypothesized alignment r

iS  can be 

calculated as the sum of the boundary errors of the individual phones in r
iS , i.e., 
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where rN  is the number of total phones in rO ; i
nq  and c

nq  are the n-th phone in r
iS  

and r
cS , respectively; and )(⋅er  is a phone boundary error function defined as, 
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where i
ns  and i

ne  are the hypothesized start time and end time of phone i
nq , 

respectively; and c
ns  and c

ne  correspond to the manually labeled start time and end 

time, respectively. Since r  contains a large number of hypothesized phonetic 
alignments, it is impractical to sum the boundary errors directly without first pruning 
some of the alignments. For efficiency, it is suggested that a reduced hypothesis 
space, such as an N-best list [6] or a lattice (or graph) [7], should be used. However, 
an N-best list often contains too much redundant information, e.g., two hypothesized 
alignments can be very similar. In contrast, as illustrated in Fig. 1, a phonetic lattice is 
more effective because it only stores alternative phone arcs on different segments of 
time marks and can easily generate a large number of distinct hypothesized phone 
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alignments. Although it cannot be guaranteed that the phonetic alignments generated 
from a phonetic lattice will have higher probabilities than those not presented, we 
believe that the approximation will not affect the segmentation performance 

significantly. In this paper, we let r
Lat  denote the set of possible phonetic 

alignments in the lattice for the training observation utterance rO . 

2.1   Objective Function Optimization and Update Formulae  

Eq.(3) is a complex problem to solve, because there is no closed-form solution. In this 
paper, we adopt the Expectation Maximization (EM) algorithm to solve it. Since the 
EM algorithm maximizes the objective function, we reverse the sign of the objective 
function defined in Eq. (3) and re-formulate the optimization problem as, 
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However, the EM algorithm can not be applied directly, because the objective 
function comprises rational functions [8]. The extended EM algorithm, which utilizes 
a weak-sense auxiliary function [9] and has been applied in the minimum phone error 
(MPE) discriminative training approach [10] for ASR, can be adapted to solve Eq.(6). 
The re-estimation formulae for the mean vector mμ  and the diagonal covariance 

matrix mΣ  of a given Gaussian mixture m thus derived can be expressed, 

respectively, as: 

m
MBE
m

mm
MBE
m

m
D

DO

+
+

=
γ

μθμ )( , (7) 

and 

[ ] T
mm

m
MBE
m

T
mmmm

MBE
m

m
D

DO μμ
γ

μμθ
−

+
+Σ+

=Σ
)( 2

. (8) 

In Eqs. (7) and (8), mD  is a per-mixture level control constant that ensures all the 

variance updates are positive; mμ  and mΣ  are the current mean vector and covariance 

matrix, respectively; and )(OMBE
mθ , )( 2OMBE

mθ , and MBE
mγ are statistics defined, 

respectively, as: 
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and 
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In Eqs. (9), (10), and (11), )(tr
qmγ  is the occupation probability of mixture m on q, 

)(tor  is the observation vector at time t, and 
MBEr

qγ  is computed by 
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where r
qγ  is the occupation probability of phone arc q, also referred to as its posterior 

probability; r
avgη  is the weighted average boundary error of all the hypothesized 

alignments in the lattice; and r
qη  is the weighted average boundary error of the 

hypothesized alignments in the lattice that contain arc q. Note that the term r
q

r
avg ηη −  

reflects the difference between the weighted average boundary error of all the 

alignments in the lattice and that of the alignments containing arc q . When r
avgη  

equals r
qη , phone arc q makes no contribution to MBE training. However, when r

avgη  

is larger than r
qη , i.e., phone arc q generates fewer errors than the average, then q 

makes a positive contribution. Conversely, if r
avgη  is smaller than r

qη , q makes a 

negative contribution. The discriminative ability of the MBE training approach is thus 

demonstrated. r
qγ , r

avgη , and r
qη  are computed by 

=
∈ Λ

∈∈ Λ

r
k

i
r

i

S kr

SqS irr
q

SOp

SOp

Lat

Lat

α

α

γ
)|(

)|(, , (13) 

=
∈ Λ

∈ Λ

r
k

r
i

S kr

S iirr
avg

SOp

SERSOp

Lat

Lat

α

α

η
)|(

)()|(
, (14) 

and 

=
∈∈ Λ

∈∈ Λ

k
r

k

i
r

i

SqS kr

SqS iirr
q

SOp

SERSOp

,

,

)|(

)()|(

Lat

Lat

α

α

η , (15) 

respectively, where Λ  is the current set of parameters. The above three quantities can 
be calculated efficiently by applying dynamic programming to the lattice. 

2.2   I-Smoothing Update  

To improve the generality of MBE training, the I-smoothing technique [10] is 
employed to provide better parameter estimates. This technique can be regarded as 
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interpolating the MBE and ML auxiliary functions according to the amount of data 
available for each Gaussian mixture. The updates for the mean vector mμ  and the 

diagonal covariance matrix mΣ  thus become: 
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respectively, where mτ  is also a per-mixture level control constant; and ML
mγ , 

)(OML
mθ , and )( 2OML

mθ  are computed by 
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respectively. In Eqs. (18), (19), and (20), rT  is the frame number of rO , and )(t
MLr

mγ  
is the maximum likelihood occupation probability of the Gaussian mixture m. 

3   Minimum Boundary Error Segmentation 

The proposed MBE forced alignment approach is a promising realization of the 
Minimum Bayes-Risk (MBR) classifier for the automatic phonetic segmentation task. 
The latter can be considered as taking an action, ( )OSα , to identify a certain 

alignment, S , from all the various phonetic alignments of a given utterance O. Let 
function ),( cSSL  be the loss incurred when the action ( )OSα  is taken, given that the 

true (or reference) alignment is cS . During the classification stage, we do not know 

the true alignment in advance, i.e., any arbitrary alignment jS  could be true. Suppose 

the distribution )|( OSP j  is known, then the conditional risk of taking the action 

( )OSα  is given by: 
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)|(),()|( OSPSSLOR jj
S

S
j

=α . (21) 

The MBR classifier is designed to select the action whose conditional risk, 
)|( OR Sα , is minimal, i.e., the best alignment based on the MBR criterion can be 

found by 
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When the symmetrical zero-one function, 
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is selected as the loss function, and it is assumed that the prior probability of 
alignment jS  is uniformly distributed, the MBR classifier is equivalent to the 

conventional forced-alignment method, which picks the alignment with the maximal 
likelihood, i.e., 
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It is clear from Eq. (23) that the zero-one loss function assigns no loss when 

jSS = , but assigns a uniform loss of one to the alignments jSS ≠  no matter how 

different they are from jS . Thus, such a loss function causes all incorrectly 

hypothesized alignments to be regarded as having the same segmentation risk, which 
is obviously inconsistent with our preference for alignments with fewer errors in an 
automatic segmentation task.  

In our approach, the loss function is replaced by the boundary error function, 
defined in Eq.(4), to match the goal of minimizing the boundary error. Consequently, 
the MBR forced alignment approach becomes the MBE forced alignment approach, 
defined as: 
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where N is the number of phones in utterance O ; and nq  and j
nq  are the n-th phone 

in the alignments S  and jS , respectively.  
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To simplify the implementation, we restrict the hypothesized space  to Lat , 

the set of alignments constructed from the phone lattice shown in Fig. 1, which can be 
generated by a conventional beam search. Accordingly, Eq. (25) can be re-formulated 
as: 
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Let the cut nC  be the set of phone arcs of the n-th phone in the utterance. For 

example, in Fig. 1, there are four phone arcs for the second phone, “w”, in 2C  and six 

phone arcs for the third phone, “eh”, in 3C . From the figure, it is obvious that each 

alignment in Lat  will pass a single phone arc in each cut nC , n=1,2,…,N. 

According to this observation, Eq. (26) can be rewritten as: 
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where mnq ,  is the m-th phone arc in nC . Because { } )|(
,| OSP jSqS jmnj ∈∈ Lat

 in Eq. 

(27) is equivalent to the posterior probability of mnq ,  given the utterance O, denoted 

as 
mnq ,

γ  hereafter, the probability can be easily calculated by applying a forward-

backward algorithm to the lattice. As a result, Eq. (27) can be rewritten as: 
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In this way, MBE forced alignment can be efficiently conducted on the phone 
lattice by performing Viterbi search. 

4   Experiments 

4.1   Experiment Setup  

TIMIT (The DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus) [11], a 
well-known read speech corpus with manual acoustic phonetic labeling, has been 
widely used to evaluate automatic speech recognition and phonetic segmentation 
techniques. TIMIT contains a total of 6,300 sentences spoken by 630 speakers from 
eight major dialect regions in the United States; each speaker utters 10 sentences. The 
TIMIT suggested training and testing sets contain 462 and 168 speakers, respectively. 
We discard utterances with phones shorter than 10 ms. The resulting training set 
contains 4,546 sentences, with a total length of 3.87 hours, while the test set contains 
1,646 sentences, with a total length of 1.41 hours. 
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The acoustic models consist of 50 context-independent phone models, each 
represented by a 3-state continuous density HMM (CDHMM) with a left-to-right 
topology. 

Each frame of the speech data is represented by a 39-dimensional feature vector 
comprised of 12 MFCCs and log energy, plus their first and second differences. The 
frame width is 20 ms and the frame shift is 5 ms. Utterance-based cepstral variance 
normalization (CVN) is applied to all the training and test speech utterances. 

4.2   Experiment Results 

The acoustic models were first trained on the training utterances according to human-
labeled phonetic transcriptions and boundaries by the Baum-Welch algorithm using 
the ML criterion. Then, the MBE discriminative training approach was applied to 
further manipulate the models. The scaling factor α  in Eq.(2) was empirically set to 
0.1 and the I-smoothing control constant mτ  in Eqs.(16) and (17) was set to 20 for all 

mixtures. The results are shown in Fig. 2. In the figure, the line with triangles 
indicates the expected FER (frame error rate) calculated at each iteration of the 
training process. Clearly, the descending trend satisfies the training criterion. The line 
with diamonds and the line with rectangles represent the FER results of the training 
(inside test) and test sets, respectively. We observe that the ML-trained acoustic 
models (at the 0th iteration) yield an FER of 10.31% and 11.77% for the training set 
and test set respectively. In contrast, after 10 iterations, the MBE-trained acoustic 
models yield an FER of 6.88% and 9.25%, respectively. The MBE discriminative 
training approach achieves a relative FER reduction of 33.27% on the training set and 
21.41% on the test set. The results clearly demonstrate that the MBE discriminative 
training approach performs very well and can enhance the performance of the 
acoustic models initially trained by the ML criterion. 

Table 1 shows the percentage of phone boundaries correctly placed within different 
tolerances with respect to their associated manually-labeled phone boundaries. The 
experiment was conducted on the test set. From rows 2 and 3 of Table 1, we observe 
that the MBE-trained models significantly outperform the ML-trained models. 
Clearly, the MBE training is particularly effective in correcting boundary errors in the 
proximity of manually labeled positions. Comparing the results in rows 2 and 4, we 
also observe that MBE segmentation outperforms ML segmentation, though the 
improvement is not as significant as that of the MBE-trained models over the ML-
trained models. This is because, MBE segmentation, like conventional ML 
segmentation, is still deficient in the knowledge of true posterior distribution, even 
though the MBE criterion accords with the objective of minimizing boundary errors 
very well. The 5th row of Table 1 shows the results obtained when the complete MBE 
framework, including MBE training and MBE segmentation, was applied. We 
observe that these results are superior to those achieved when either the MBE training 
or the MBE segmentation was applied alone. The last row of Table 1 shows the 
absolute improvements achieved by the MBE framework over the conventional ML 
framework. The proposed MBE framework can identify 80.53% of human-labeled 
phone boundaries within a tolerance of 10 ms, compared to 71.10% identified by the 
conventional ML framework. Moreover, by using the MBE framework, only 7.15% 
of automatically labeled phone boundaries have errors larger than 20 ms. 
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Fig. 2. The phonetic segmentation results (FER) for the models trained according to ML and 
MBE criteria, respectively 

Table 1. The percentage of phone boundaries correctly placed within different tolerances with 
respect to their associated manually labeled phone boundaries 

Criterion %Correct marks (distance  tolerance) 

Training Segmentation

Mean 
Boundary 
Distance 5ms 10ms 15ms 20ms 25ms 30ms 

ML ML 9.83 ms 46.69 71.10 83.14 88.94 92.32 94.52 

ML+MBE ML 7.82 ms 58.48 79.75 88.16 92.11 94.49 96.11 

ML MBE 8.95 ms 49.86 74.25 85.38 90.61 93.75 95.67 

ML+MBE MBE 7.49 ms 58.73 80.53 88.97 92.85 95.16 96.64 

absolute improvement 
(ML+MBE,MBE) vs. (ML, ML) 

2.34 ms 12.04 9.43 5.83 3.91 2.84 2.12 

5   Conclusions and Future Work 

In this paper, we have explored the use of the minimum boundary error (MBE) 
criterion in the discriminative training of acoustic models as well as minimum risk 
segmentation for automatic phonetic segmentation. The underlying characteristics of 
the MBE training and segmentation framework have been investigated, and its 
superiority over conventional ML training and segmentation has been verified by 
experiments. Naturally, the more accurate phonetic segmentation obtained by the 
MBE framework is very useful for subsequent manual verification or further 
boundary refinement using other techniques. It is worth mentioning that the MBE 
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training method is not difficult to implement; in particular, minimum phone error 
training has been included in HTK. 

In HMM-based automatic phonetic segmentation and speech recognition tasks, 
duration control is an important issue that must be addressed. We tried to apply the 
MBE criterion in duration model training, but there was no significant improvement 
found in our preliminary work. However, the issue warrants further study. On the 
other hand, well-labeled phonetic training corpora are very scarce. Therefore, the 
unsupervised MBE training approach is also under investigated. Moreover, in our 
current implementation, the phone boundary error function, defined in Eq.(5), is 
calculated in the time frame unit for efficiency. However, more accurate segmentation 
may be achieved by calculating boundary errors in actual time sample marks. In 
addition, we are applying the MBE training and segmentation framework to facilitate 
the phonetic labeling of a subset of speech utterances in MATBN (Mandarin across 
Taiwan − Broadcast News) database [12]. 
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Abstract. This paper describes the technical and system building advances in 
the automatic transcription of Mandarin broadcast speech made at IBM in the 
first year of the DARPA GALE program.  In particular, we discuss the applica-
tion of minimum phone error (MPE) discriminative training and a new topic-
adaptive language modeling technique.  We present results on both the RT04 
evaluation data and two larger community-defined test sets designed to cover 
both the broadcast news and the broadcast conversation domain.  It is shown 
that with the described advances, the new transcription system achieves a 
26.3% relative reduction in character error rate over our previous best-
performing system, and is competitive with published numbers on these data-
sets.  The results are further analyzed to give a comprehensive account of the 
relationship between the errors and the properties of the test data. 

Keywords: discriminative training, topic-adaptive language model, mandarin, 
broadcast news, broadcast conversation. 

1   Introduction 

This paper describes Mandarin speech recognition technology developed at IBM for 
the U.S. Defense Advanced Research Projects Agency (DARPA) Global Autonomous 
Language Exploitation (GALE) program.  The overall goal of this program is to ex-
tract information from publicly available broadcast sources in multiple languages, and 
to make it accessible to monolingual English speakers.  In order to accomplish this, 
the program has several major components: speech recognition, machine translation, 
and question answering (formally termed distillation).  

In the IBM approach implemented in 2006, broadcasts are sequentially processed 
with these technologies: first, speech recognition is used to create a textual representa-
tion of the source language speech; second, machine translation is used to convert this 
to an English language representation; and thirdly, question answering technology is 
used to answer queries like “Tell me the mutual acquaintances of [person] and [per-
son]” or “Tell me [person]’s relationship to [organization].”  While IBM has devel-
oped systems for GALE’s two target languages, Arabic and Mandarin, and has  
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participated in all three activities, this paper focuses solely on the Mandarin language 
automatic speech recognition (ASR) component. 

The GALE program focuses on two types of broadcast audio: broadcast news – 
which was a focus of attention in the previous DARPA Effective Affordable Reusable 
Speech-to-text (EARS) and HUB-4 programs – and broadcast conversations.  The 
study of broadcast conversations is relatively new to the speech recognition commu-
nity, and the material is more challenging than broadcast news shows.  Whereas 
broadcast news material usually includes a large amount of carefully enunciated 
speech from anchor speakers and trained reporters, broadcast conversations are more 
unplanned and spontaneous in nature, with the associated problems of spontaneous 
speech: pronunciation variability, rate-of-speech variability, mistakes, corrections, 
and other disfluencies.  Further, in Chinese ASR, we are faced with the problem of an 
ambiguous segmentation of characters into words – a problem not seen in languages 
such as English or Arabic. 

This paper will describe our Mandarin recognition work from the system-building 
perspective, and present a detailed error analysis.  The main contributions of the paper 
are: (a) the presentation and validation of effective Mandarin system architecture, (b) 
an adaptive language modeling technique, and (c) a careful error analysis. 

The error analysis in particular indicates that: (1) Style of speech, broadcasting 
network and gender are the most important attributes and can vary character error 
rate (CER) from 5.7% to 31.5%; (2) Telephone speech, and speech plus noise or 
music cause an absolute degradation of 2-3% each; (3) Rate-of-speech (characters per 
second) is an important attribute and can degrade CER up to 60%; and (4) Short 
speakers are bad speakers – speakers who talk less than 30 seconds per show have a 
77% relative higher CER.  We note that this is not due to a lack of adaptation data, as 
we find low error rates for small amounts of speech sampled from “long” speakers. 

Also of interest and somewhat unexpected are our gains from discriminative train-
ing, which we observe to be relatively large compared to those we see in English and 
Arabic. 

The remainder of this paper is organized as follows.  In Section 2, we present our 
system architecture.  This architecture amalgamates techniques used previously in 
English [  1], as well as extending it with a novel adaptive language modeling tech-
nique.  In Section 3, we describe the specifics of our Mandarin system, including the 
training data and system size.  Section 4 presents experimental results on broadcast 
news and broadcast conversation test sets.  In Section 5, we present our error analysis, 
followed by conclusions in Section 6. 

2   System Architecture 

The IBM GALE Mandarin broadcast speech transcription system is composed of 
three main stages, speech segmentation/speaker clustering, speaker independent (SI) 
decoding, and speaker adapted (SA) decoding.  A system diagram is shown in Fig. 1.  
In this section, we describe the various components of the system. 
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Fig. 1. The IBM Mandarin broadcast speech transcription system consists of speech detec-
tion/segmentation, speaker clustering, speaker independent decoding, and speaker adapted 
decoding.  In speaker adapted decoding, both feature and model space adaptations are applied.  
Models and transforms discriminatively that are trained using minimum phone error training 
provide further refinement in acoustic modeling. 

2.1  Front-End Processing 

The basic features used for segmentation and recognition are perceptual linear pre-
diction (PLP) features.  Feature mean normalization is applied as follows: in segmen-
tation and speaker clustering, the mean of the entire session is computed and sub-
tracted; for SI decoding, speaker-level mean normalization is performed based on the 
speaker clustering output; and at SA stage, the features are mean and variance nor-
malized for each speaker.  Consecutive feature frames are spliced and then projected 
back to a lower dimensional space using linear discriminant analysis (LDA), which is 
followed by a maximum likelihood linear transform (MLLT) [  2] step to further con-
dition the feature space for diagonal covariance Gaussian densities. 

2.2   Segmentation and Clustering 

The segmentation step uses an HMM-based classifier.  The speech and non-speech 
segments are each modeled by a five-state, left-to-right HMM with no skip states.  
The output distributions are tied across all states within the HMM, and are specified 
by a mixture of Gaussian densities with diagonal covariance matrices. 
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After segmentation, the frames classified as non-speech are discarded, and the re-
maining segments are put through the clustering procedure to give speaker hypothe-
ses.  The clustering algorithm models each segment with a single Gaussian density 
and clusters them into a pre-specified number of clusters using K-means. 

Note that in the broadcast scenario, it is common to observe recurring speakers in 
different recording sessions, e.g., the anchors of a news program.  Therefore, it is 
possible to create speaker clusters beyond the immediate broadcast session.  Never-
theless, in the scope of this paper, we shall restrict the speaker clustering procedure to 
a per session basis. 

2.3   SI Models 

The system uses a tone-specific phone set with 162 phonemes.  Phones are repre-
sented as three-state, left-to-right HMMs.  With the exception of silence and noise, 
the HMM states are context-dependent conditioned on quinphone context covering 
both past and future words.  The context-dependent states are clustered into equiva-
lence classes using a decision tree. 

Emission distributions of the states are modeled using mixtures of diagonal-
covariance Gaussian densities.  The allocation of mixture component to a given state 
is a function of the number of frames aligned to that state in the training data.  Maxi-
mum likelihood (ML) training is initialized with state-level alignment of the training 
data given by an existing system.  A mixture-splitting algorithm iteratively grows the 
acoustic model from one component per state to its full size.  One iteration of Viterbi 
training on word graphs is applied at the end. 

2.4   SA Models 

The SA acoustic models share the same basic topology with the SI model.  For 
speaker adaptation, a model-space method, maximum likelihood linear regression 
(MLLR), and two feature-space methods, vocal tract length normalization (VTLN) [  
3] and feature-space MLLR (fMLLR) [  4], are used in the baseline system. 

An eight-level binary regression tree is used for MLLR, which is grown by succes-
sively splitting the nodes from the top using soft K-means algorithm.  The VTLN 
frequency warping consists of a pool of 21 piecewise linear functions, or warping 
factors. In decoding, a warping factor is chosen such that it maximizes the likelihood 
of the observations given a voice model built on static features with full covariance 
Gaussian densities. 

In addition to the speaker adaptation procedures, the improved Mandarin transcrip-
tion system also employs the discriminately trained minimum phone error (MPE) [  5] 
models and the recently developed feature-space MPE (fMPE) [  6] transform.  Ex-
periments show that these discriminative algorithms give a significant improvement 
to recognition performance.  The results are presented in Section 4. Here we briefly 
review the basic formulation. 

2.5   MPE/fMPE Formulation 

The objective function of MPE [  5] is an average of the transcription accuracies of all 
possible sentences s, weighted by the probability of s given the model: 
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 denotes the model parameters,  and  are scaling factors, and rΟ  the acoustics of 

the r’th utterance.  The function ),( rssΑ  is a “raw phone accuracy” of s given the 

reference sr, which equals the number of phones in the reference minus the number of 
phone errors made in sentence r. 

The objective function of fMPE is the same as that of MPE.  In fMPE [  6], the ob-
servation of each time frame xt is first converted to a high-dimensional feature vector 
ht by taking posteriors of Gaussians, which is then projected back to the original 
lower dimensional space using a global discriminatively trained transform.  The re-
sulting vector and the original observation are added to give the new feature vector yt: 

yt = xt + Mht                                                                                           (3) 

Thus, the fMPE training constitutes the learning of projection matrix M using the 
MPE objective function.  

Previous experiments have indicated that combing fMPE with model space dis-
criminative training can further improve recognition performance [  6].  In practice, 
we first obtain the fMPE transform using ML trained acoustic models, and then a new 
discriminately trained model is built upon the fMPE features using MPE. 

2.6   Language Modeling 

The language models (LM) considered in this work are interpolated back-off 4-gram 
models smoothed using modified Kneser-Ney smoothing [  7].  The interpolation 
weights are chosen to optimize the perplexity of a held-out data set. 

In addition to the basic language models, we also developed a topic-adaptive lan-
guage modeling technique using a multi-class support vector machines (SVM) -based 
topic classifier1.  The topics are organized as a manually constructed tree with 98 leaf 
nodes.  To train the classifier, more than 20,000 Chinese news articles covering a 
wide range of topics are collected and annotated.  The raw feature representing each 
training sample is a vector of terms given by our Mandarin text segmenter.  A SVM is 
then trained to map from these feature vectors to topics. To reduce nuisance features, 
words occurring in less than three documents are omitted.  The overall classification 
accuracy of the topic classifier as measured by the F1 measure is 0.8.  An on-topic LM 
is trained for each of the 98 classes.  

 
                                                           
1 The text classification tool is developed by Li Zhang at IBM China Research Lab. 
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Fig. 2. Topic adaptation is carried out through lattice rescoring with an LM interpolated from 
the universal LM and a topic-specific LM.  Topic classification is based on the 1-best word 
hypothesis given by the SA decoding output. 

In decoding, the basic universal LM is first used to generate a word lattice and the 
1-best hypothesis.  The 1-best hypothesis is subsequently used for topic classification.  
Note that the change of topic occurs frequently in broadcast materials.  Therefore, the 
classification is performed at the utterance level.  Base on the classification result, an 
on-topic LM is selected from the 98 pre-trained LMs and interpolated with the univer-
sal LM.  The resulting LM is used to rescore the lattices generated earlier to give the 
final recognition output.  The process is shown in Fig 2. 

3   System Building 

3.1   Training Data 

The majority of our acoustic modeling data was obtained from the Linguistic Data 
Consortium (http://www.ldc.upenn.edu), as was the bulk of our language modeling 
data.  The acoustic Modeling data is summarized in Table 1.  A relatively small 
amount consists of broadcasts of news shows transcribed internally at IBM, and la-
beled “Satellite Data” below. From the data sources listed 550 hours were used to 
train our acoustic models, based on data that aligned to the transcripts using a set of 
boot models. 

Table 1.  Acoustic modeling data (with full transcripts) 

Corpora BN (Hours) BC (Hours) 

LDC1998T24 (HUB4) 30.0 -- 
LDC2005E63  (GALE kickoff) -- 25.0 
LDC2006E23  (GALE Y1) 74.9 72.7 
LDC2005S11 (TDT4) 62.8 -- 
LDC2005E82 (Y1Q1) 50.2 7.58 
LDC2006E33 (Y1Q2) 136.6 76.1 
SATELLITE 50.0 -- 
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Our language model was built from all the acoustic transcripts, and additional text 
data that were used solely for language modeling purposes.  This data is listed in 
Table 2. 

Table 2.  Language modeling Data 

Copora Type Number of words 

LDC1995T13 Newswire 116M 
LDC2000T52 Newswire 10.1M 
LDC2003E03 News 1.4M 
LDC2004E41 Newswire 17.1M 
LDC2005T14 Newswire 245M 
LDC2001T52 BN 4.7M 
LDC2001T58 BN 3.1M 
LDC2005E82 
LDC2006E33 

Blog & Newsgroup 17.2M 

SRI Web 20060522 Web 183M (characters) 
SRI Web 20060608 Web 5M (characters) 

3.2   System Description 

The 16 KHz input signal is coded using 13-dememsional PLP features with a 25ms 
window and 10ms frame-shift.  Nine consecutive frames are spliced and projected to 
40 dimensions using LDA.  The SI acoustic model has 10K quinphone states modeled 
by 150K Gaussian densities.  The SA model uses a larger tree with 15K states and 
300K Gaussians. 

In addition to fully transcribed data, the training corpora also contain broadcast re-
cordings with only closed captioning text.  To take advantage of these data, lightly 
supervised training is applied.   

The method relies on an automatic way to select reliable segments from the avail-
able data.  First, we use the closed caption to build a biased LM.  Then, the biased 
LM in conjunction with the existing acoustic model is used to decode the correspond-
ing audio.  The decoded text is aligned with the closed caption, and a segment is dis-
carded unless it satisfies the following two criteria: (a) the longest successful align-
ment is more than three words; and (b) the decoding output ends on a silence word.  
The surviving data are deemed reliable and used for acoustic model training.  This 
method is similar to those presented in [  9] and [10]. 

It is observed that for broadcast news (BN) content, 55% of the closed caption data 
are eventually used in training, whereas for broadcast conversations (BC), only 21% 
survived the filtering process.  In total, lightly supervised training increases the train-
ing set by 143 hours. 

Our language model consists of an interpolation of eleven distinct models built 
from subsets of the training data.  Subsets are listed in Table 3.  A held-out set with 
31K words (61% BC, 39% BN) is used to determine the interpolation weights.  The 
resulting LM has 6.1M n-grams, and perplexities of 735, 536, and 980 on RT04, 
2006E10, and devo5bcm respectively. 
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Table 3.  Training subsets and statistics of the 11 LMs 

LM LDC catalog Number: [Sets Used] 
# of 

words
# of 

n-grams
RT04 

PPL
2006E10 

PPL
dev05bcm 

PPL
Data Category

1 2005T14:TDT2-4, 2004E41, 2000T52 326M 61.7M 1080 654.8 2773 newspaper

2 2005T14: 1991~1999 Taiwan data 180M 33.7M 1981 1407 3571 newspaper (Taiwan)

3 2005T14: 2000~2004 Taiwan data 41.6M 62.0M 1675 1237 3359 newspaper (Taiwan)

4 (IBM Chinese Web News Collection) 133M 55.9M 1129 808 2174 web news

5 1998S73_T24, 2005E61-63: BN data 5.93M 10.0M 1415 1237 3359 BC

6 
GALE Y1Q1Q2: BN, NTDTVWEB,  
RT-03 BN training text, Satellite 

4.25M 7.50M 1433 1219 1608 BN

7 95T13 124M 119M 1545 965.8 3479 newspaper

8 GALE Y1Q1, GALE Y1Q2 16.5M 17.1M 1563 1378 2293 weblog, newsgroup

9 FOUO_SRIWebText.20060522 69.8M 98.4M 987.3 704.5 1412 web text

10 GALE Y1Q1Q2: BC force alignment 1.92M 3.21M 2803 2466 1567 BC

11 GALE Y1Q1Q2: BN force alignment 2.52M 3.87M 1739 1339 2020 BN

4   Experimental Results 

Three test sets are used to evaluate the Mandarin broadcast transcription system.  The 
first is the evaluation set from the Rich Transcription’04 (RT04) evaluation’s Mandarin 
broadcast news task.  It contains 61 minutes of data drawn from four BN recordings.  
The second test set, denoted “dev05bcm”, contains five episodes of three BC pro-
grams.  The total duration of this set is 3.5 hours.  A third, 4.5-hour BN set “2006E10” 
is included to give more robust coverage of the BN content. The 2006E10 test set may 
be downloaded from the LDC, and includes RT04. The list of dev05bcm audio files 
was created at Cambridge University and distributed to GALE participants. 

Recognition experiments on the three test sets are carried out following the pipe-
line shown in Fig. 1 in section 2.  At the SA level, decoding using the ML acoustic 
model is done at after VTLN, after fMLLR, and after fMLLR to further understand 
the effect of each adaptation step on the Mandarin broadcast speech transpiration task.  
Except for VTLN decoding, the experiments are repeated using the MPE trained 
models and features.  The recognition results are summarised in Table 4. 

Table 4. Character error rates observed on the three test sets at different level of acoustic model 
refinement. The results indicate that discriminative training gives significant improvements in 
recognition performance. 

System Build Level RT04 dev05bcm 2006E10 
SI: -- 19.4 28.3 19.6 

VTLN 18.0 26.7 18.1 
+fMLLR 16.5 24.9 17.1 
+MLLR 15.7 24.3 16.7 

+fMPE+MPE+fMLLR 14.3 22.0 14.0 
SA: 

+MLLR 13.7 21.3 13.8 
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As expected, the results show that BC data (dev05bcm) pose a greater challenge 
than the two BN sets.  The results clearly confirm the effectiveness of the adaptive 
and discriminative acoustic modeling pipeline in the system.  Furthermore, the overall 
trend of the CER as observed in each column is consistent across all three sets.  In 
particular, we note that the MPE/fMPE algorithm gives a relatively large improve-
ment to recognition performance on top of speaker adaptation.  For instance, on 
2006E10, discriminative training further reduces the CER by 2.9% absolute to 13.8% 
from the best ML models.  Similarly, a 3.0% absolute reduction is achieved on the 
dev05bcm set.  As a comparison, the MPE/fMPE gain observed in our Arabic broad-
cast transcription system is 2.1% absolute on the RT04 Arabic set. 

To track the progress made in the GALE engagement, we compare the perform-
ance of the current system (06/2006) with our system at the end of 2005 (12/2005).  
The results are shown in Table 5.  On RT04, a relative reduction in CER of 26.3% is 
observed.  For reference, the best published numbers in the community on RT04 and 
dev05bcm are also listed [11]. 

Table 5. Comparing character error rates of the current system with the previous best-
performing system and the best published results on the same test sets [11] 

System ID RT04 dev05bcm 2006E10 
12/2005 22.5 39.6 22.8 SI:
06/2006 19.4 28.3 19.6 
12/2005 18.6 34.5 20.0 SA:
06/2006 13.7 21.3 13.8 

Best published number 14.7 25.2 -- 

Finally, the topic-adaptive language modelling technique is evaluated by rescoring 
the SA lattices with (1) the LM that is topic-adapted to a given test utterance, and (2) 
an LM interpolated from the universal LM and a fixed set of eight topic-dependent 
LMs.  On RT04, results show that the adaptive approach gives 0.4% absolute reduc-
tion in CER comparing with the non-adaptive counterpart. 

5   Error Characterization 

In this section, we aim to gain a better understanding of the Mandarin broadcast 
speech transcription task by analyzing the correlation between the error made by our 
system and the various attributes of the data.  Unfortunately, the three LDC test sets 
used earlier lack the rich annotation required by such a study.  Therefore, we use a 
dataset that has been carefully annotated at IBM for this part of the paper.  The data 
are collected from the same program sources as the LDC sets, and are selected to have 
a comparable content composition.  Six shows were recorded from the CCTV4 net-
work and 4 from the Dragon network.  The total duration of the dataset is 6 hours.  In 
order to have attribute-homogenous segments for analysis, we used manually marked 
speaker boundaries and speaker identities.   
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5.1   Method and Results 

Table 6 lists the attributes used for CER analysis.  We investigated five categorical 
attributes: gender, style, network, speech quality, and channel; and two numerical 
attributes: amount of speech per speaker and character rate.  Binary categorical attrib-
utes are represented by dummy 0/1 variables.  Speech quality which has 3 possible 
values is represented by three dummy binary variables. 

Because the attributes under investigation are clearly correlated, we use ordinary 
least squares (OLS) estimation for multiple regression.  In order to apply OLS we 
remove all redundant dummy variables, namely the indicator of clean-speech, and 
normalize all variables to have zero mean.  We calculate the partial regression coeffi-

cients by computing yxxxb ')'( 1−=  , where x is the matrix of the values of the 

independent variables (attributes), y is the vector of the values of the dependent vari-
able (CER), and b is the vector of partial regression coefficient. 

Table 6. Ordinary least squares for multiple regression (with respect to CER).  Dummy vari-
ables are listed in decreasing order of importance. 

We applied the estimated linear regression function for predicting the CER of 
speaker turns (5990 in the dataset) and for predicting CER of speakers (138 in the 
dataset).   For speaker turns, the regression predictor eliminated 19% of the variance 
compared to elimination of 33% of the variance by an optimal predictor assigning 
every speaker turn to the mean CER of the speaker.  For speaker CER prediction, 
53% of the variance is eliminated by the regression predictor.  

5.2   Discussion 

CER is highly dependent on the attributes we investigated.  Table 7 lists extreme 
cases for which the CER is very high (31.5%) or very low (5.1%).  The most impor-
tant attribute found is the style which accounts to a 13.1% (absolute) increase in CER 
for spontaneous speech. 

Table 7.  CER computed for test subsets using top 3 most important attributes.  CER standard 
deviation ( ) is computed using bootstrapping. 

Attribute Description : (Value) Regression Coeff. 
Style Planned:(0)  Spontaneous:(1) 13.1 

Network CCTV4:(0)  Dragon:(1) 7.3 
Gender Female:(0)  Male:(1) 3.2 

Channel Studio:(0) Telephone:(1) 2.7 
Speech + Noise No:(0)  Yes:(1)  2.5 
Speech + Music No:(0)  Yes:(1) 1.9 

Speech Rate char/sec:( |rate - 5.5|) 3.4 
Length Length:(length) 0.002  

Attributes CER  Predicted CER 
Planned, CCTV4, Female 5.7 0.5 6.3 

Spontaneous, Dragon, Male 31.5 3.2 30.1 
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The second most important attribute found is the broadcasting network which may 
be attributed to topical differences between networks.  Gender is also found signifi-
cant (3.2%).  Speech over a telephone channel suffers from a degradation of 2.7% but 
more data is needed for a reliable estimate.  Degraded speech (music, noise) suffers 
from a degradation of about 2%.   The speech rate is also an important factor – a deg-
radation of 6% in CER is observed for high-rate speech.   

Finally, the amount of data per tested speaker is not found to be significant in the 
regression.  However, this is mostly due to the assumption that CER is a linear func-
tion of length.  When using a binary dummy variable for length (short vs. long) we 
observe that for speakers with test data shorter than 30 seconds, we get a regression 
coefficient of 7.3 (7.3% degradation for speakers shorter than 30sec, compared to 
speakers longer than 30sec).  For a 60 seconds threshold, we find a small regression 
coefficient of 0.2.  The degradation for speakers shorter than 30sec may be due to 
insufficient adaptation data or to some other unknown phenomena. 

6   Conclusions 

In this work, we consider the Mandarin broadcast speech transcription task in the 
context of the DARPA GALE project.  A state-of-the-art Mandarin speech recogni-
tion system is presented and validated on both BN and BC data.  Experiments demon-
strate that the MPE-based discriminative training leads to significant reduction in 
CER for this task.  We also describe in this paper a topic-adaptive language modeling 
technique, and successfully apply the technique in the broadcast transcription domain.  
Lastly, a comprehensive error analysis is carried out to help steer future research 
efforts. 
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Abstract. Word-based consensus networks have been verified to be very useful 
in minimizing word error rates (WER) for large vocabulary continuous speech 
recognition for western languages. By considering the special structure of 
Chinese language, this paper points out that character-based rather then word-
based consensus networks should work better for Chinese language. This was 
verified by extensive experimental results also reported in the paper. 

1   Introduction 

Substantial efforts have been made by many researchers to try to optimize the large 
vocabulary continuous speech recognition (LVCSR) process via different approaches. 
In the conventional maximum a posteriori probability (MAP) decoding [1] the 
recognizer selects the word hypothesis string with the highest string posterior 
probability given the acoustic and language model scores. Following such an 
approach, in principle the expected sentence error rate is minimized. However, in 
speech recognition usually it is the minimized word error rate (WER) rather than the 
minimized sentence error rate which is desired. A different approach was therefore 
developed to explicitly minimize the WER in an N-best rescoring algorithm [2]. 
However, this approach only solves the problem in a suboptimal way, because 
constrained by the N-best lists the hypothesis space is reduced to a rather small subset 
compared to the search space of the original recognizer. A new WER minimization 
algorithm applicable to word lattices was then developed [3]. Since word lattice is a 
very compact intermediate representation of alternative hypotheses and includes 
orders of magnitude more hypotheses than the typical N-best lists, searching through 
the entire word lattices usually requires too much computations. As a result, in the 
above approach [3] the word lattice is first reduced to a word-based consensus 
network as shown in Figure 1, which is the cascade of several properly aligned 
segments, each of which includes several word hypotheses having consensus on their 
word entities (the same word or words with similar phonemic structure) and time 
spans (reasonably overlapping in time), such as ' ''

1 1 1, ,w w w  in Figure 1. By choosing the 
word hypotheses having the highest posterior probabilities in each segment, the final 
word string can be obtained with the expected WER minimized to a good extent [3].  
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2w

'
1w

3w 4w1w
'
2w '

3w '
4w

''
3w''

2w''
1w ''

4w
 

Fig. 1. A word-based consensus network to minimize WER in a LVCSR system 

Although the above approach of word-based consensus network [3] was very 
successful for western languages, in this paper we point out that it is not well suitable 
for Chinese language due to the mono-syllable/character structure of Chinese 
language. As a result, a character–based consensus network considering the mono-
syllable/character structure of Chinese language is proposed in this paper, and 
extensive experimental results indicated that with this character-based consensus 
network improved recognition performance can be obtained as compared to the word-
based consensus network, or the conventional one-pass or two-pass search algorithms. 
Similar concept of evaluating the character posterior probabilities has been 
independently developed and proposed by different considerations with improved 
performance demonstrated [4, 5, 6], but here we look at the problem from a different 
point of view, and verify the concept with extensive experiment results. 

Below, we will first review the basic principles from MAP decoding to the word-
based consensus network in section 2. The mono-syllable/character structure of 
Chinese language and its impact on word-based consensus networks are then 
discussed in section 3. The new character-based consensus network proposed here in 
this paper is then presented in section 4, with experimental results reported in  
section 5. 

2   Word-Based Consensus Network 

Here the basic principle from MAP decoding to word-based consensus network is 
first briefly reviewed and carefully formulated such that the basic principles of 
character-based consensus network can be easily obtained from the formulation here. 

2.1   From MAP Decoding to Minimum WER with N-Best Rescoring  

Given a sequence of acoustic feature vectors A , suppose the probability distribution 
of each possible word string R , ( | )P R A  is available, then the expected loss of 

decoding the input A  into a specific output word string 
1 2 3..... NW w w w w=  based on 

the distribution ( | )P R A , 
( | )[ ( , )]P R AE l W R , can be given by 

( | )[ ( , )] ( | ) ( , )P R A
R

E l W R P R A l W R= ,                                    (1) 
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where ( , )l W R is the loss function for a given pair ofW and R . The goal of decoding is 

then to find the word string W  that minimizes 
( | )[ ( , )]P R AE l W R  as given above. 

When we define the loss function ( , )l W R as the sentence error ( , )SE W R  , 

1       
( , ) ( , )

0      

if W R
l W R SE W R

if W R

≠
= =

=
 

equation (1) is reduced to 

{ | }
( | )[ ( , )] ( | ) 1 ( | )

R R W
p R AE l W R P R A P W A

≠
= = − ,              (2) 

with which the minimum expected loss is equivalent to the maximum posterior 
probability ( | )P W A , or the MAP principle. Therefore with the MAP principle the 

expected sentence error rate is minimized.  
However, for most recognition system it is the minimized word error rate (WER) 

rather than the minimized sentence error which is desired. In that case, we can 
reformulate the loss function ( , )l W R as the word error ( , )WE W R , or the number of 

different words between W  and R , and we then have 

( | )[ ( , )]  ( | ) ( , )P R A R
E l W R P R A WE W R= ,                            (3) 

If the word strings R in the above equation (3) are reduced to the N-best list, the 
above equation becomes 

( | ) 1
[ ( , )] ( | ) ( , )

N

P R A i ii
E l W R P R A WE W R

=
= ,                           (4) 

where
iR  is the i-th word string in the N-best list. The goal of decoding is then to find 

the string W  among the N-best lists { }iR  which minimizes the expected loss in 

equation (4). This approach is known as the WER minimization by an N-best 
rescoring algorithm [2]. 

2.2   Word-Based Consensus Network for WER Minimization 

Word lattices represent a combinatorial number of sentence hypotheses, offering very 
good potential to improve the above N-best rescoring approach through both an 
accurate word error estimates [ ( , )WE W R in equation (3)] and a much larger search 

space for minimization than that in (4). The lattice actually leads to a computational 
problem. The number of word string hypotheses represented in a lattice is usually 
several orders of magnitude larger than that in an N-best list of reasonable size, which 
makes the straightforward computation of equation (4) infeasible.  

The word-based consensus network algorithm is an engineering solution to the 
above computational problem. In this approach a segmentation process is first 
developed to divide the original lattice into K segments, or to divide each path in the 
lattice into K segments, each including a word hypothesis. After the segmentation, 
each segment includes several word hypotheses from different paths in the lattice but 
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having consensus on their word entities and time spans, such as '
1 1, ,w w and ''

1w  in 

Figure 1 in the above. The cascade of these segments is thus a word-based consensus 
network. Equation (3) can be evaluated by  

1

1

( | ) ( , ) ( | ) ( , )

                                 ( | ) ( , )

K

k k
R R k

K

k k
k R

P R A WE W R P R A WE w r

P R A WE w r

=

=

=

=
,        (5) 

where
kw , 

kr are the word hypotheses in the k-th segment for the word strings W and 

R , respectively. We can now redefine the word error as 

( , ) 1       

( , ) 0       
k k k k

k k k k

WE w r if w r

WE w r if w r

= ≠
= =  

Equation (5) can then be simplified as follows: 

{ }( )

[ ]
1 1

1

( | ) ( , ) |

                                        1 ( | )

K K

k k k k k k
k R k

K

k
k

P R A WE w r P r | r R, r w A     

P w A

= =

=

= ∈ ≠

= −
,   (6) 

In this way the difficult problem of minimizing equation (3) becomes 
computationally tractable now. The optimal word string W minimizing equation (6) is 
apparently the cascade of those word hypothesis having the maximal word posterior 
probabilities ( | )kP w A  in each segment k , 1......k K= .  

3   The Problem of Word-Based Consensus Network for Chinese 
Language 

Chinese language is quite different from many western languages such as English. It 
is not alphabetic. Chinese characters are idiographic symbols. Almost each Chinese 
character is a morpheme with its own meaning. A word is composed of one to several 
characters, with meaning somehow related to the meaning of the component 
characters. A nice property is that all the characters are pronounced as monosyllables, 
and the total number of phonologically allowed monosyllables is limited, roughly 
1345 for Mandarin. But the number of commonly used characters is much higher, 
roughly 8000 to 10000. This implies the existence of large number of homonym 
characters sharing the same monosyllable. As a result, each monosyllable represents 
many characters with different meanings, and the combination of these monosyllables 
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(upon) 

(handle) 

(note) 

(pay) 

(vice president) 

(vice president) 

(president)

(agree) 

(unification) 

(through)
(one)

(look) 

(watch) 

(don’t)

(standard) 

(respect) 

[in]
[ing] [fu] [tzung] [tung] ….. ….. …..

 

Fig. 2. The difficulties in generating good word-based consensus network for Chinese   
language 

ull

(upon)

(handle)

(vice president)

(vice president)

(agree)

(unification)

(president)

 

Fig. 3. Word-based consensus network directly obtained from the first several word arcs of the 
word lattice in Figure 2 

(or characters) gives almost unlimited number of words (at least 80000 are commonly 
used) and sentences. This is referred to as the mono-syllable/character structure of 
Chinese language here. 

The above mono-syllable/character structure of Chinese language makes the 
previously mentioned word-based consensus network difficult to use. Consider an 
example utterance, “ ( )…(Upon (the instruction of ) unifying 
the standard by the vice president…)”, a partial list of the possible word lattice 
generated is shown in Figure 2. The correct path is represented by red arcs. The first 
syllable [ing] is for the first monosyllabic word “ (upon)”, while the next two 
syllables [fu] and [tzung] form the second bisyllabic word “ (vice president)”, etc. 
However, the first two syllables can also form other two noisy word hypothesis “
(handle)” and “ (note)”, while the third and fourth syllables [tzung] and [tung] 
can form another noisy word hypotheses “ (president)” and so on. The majority of 
Chinese words are bisyllable. From Figure 2, it can be easily found that very possibly 
a syllable hypothesis may connect to the syllable hypotheses on its left or right to 
form different word hypotheses. Correct identification of word boundaries from an 
utterance is usually difficult too. The segmentation algorithm developed for 
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constructing word-based consensus networks for English can certainly work here, but 
with much more errors. Take the example in Figure 2, the monosyllabic word 
hypothesis “ (upon)”, the bisyllabic word hypotheses “ (handle)”, “ (vice 
president)”, “  (president)” and the trisyllabic word hypothesis “ (vice 
president)” may all be highly probable word arcs, but it is difficult to construct a good 
word-based consensus network here, because there are high degree of ambiguities 
among the word entities and time spans of the word hypotheses, or it is difficult to 
locate the boundaries of the segments for a word based consensus network. Following 
the standard segmentation algorithm for English, the word-based consensus network 
obtained for the first several word arcs in Figure 2 may look like that in Figure 3, 
which may result in serious recognition errors. For example, the first mono-character 
word “ (upon)” may be deleted and replaced by a “Null element”, and there may be 
additional errors for the next several segments as well.  

4   Character-Based Consensus Network for CER Minimization 

With the above considerations, here in this paper we propose a similar but slightly 
different approach to tackle the problem: using the sub-word unit of character as the 
unit in the segmentation process to construct character-based consensus networks 
rather than word-based consensus networks. It is easy to see from Figure2 that 
although the consensus among word arcs are very limited and it is difficult to 
construct good word-based consensus networks, the syllable or character boundaries 
have much higher consensus, and the consensus in character entities and time spans 
are also much higher given a word lattice. Generally speaking, it is very easy to 
record transition time between each HMM states. Therefore the time information of 
each character of a word is handy after decoding. 

In addition, each character in Chinese has its own meaning and plays linguistic 
roles rather independently in sentences. Also, there are no “blanks” in written or 
printed Chinese sentences serving as word boundaries as in western languages. As a 
result, the “words” in Chinese have very flexible structure and are not very well 
defined, the segmentation of a sentence into words is usually not unique, and there 
even does not exist a commonly acceptable lexicon of words. This is why in Chinese 
speech recognition consistent evaluation of WER is difficult, and the performance 
evaluation is usually based on character error rates (CER). So it is also reasonable to 
perform the recognition over the character-based consensus network proposed here to 
try to minimize CER.  

Note that similar concept of evaluating the character posterior probabilities has 
been independently developed [4, 5, 6], but here we propose the character-based 
consensus network from a different point of view, and later on in the paper extensive 
experimental results will be presented to verify the concept here.   

4.1   Character Lattices and Character Posterior Probabilities 

The character-based consensus network is constructed based on a character lattice 
transformed from the word lattice and the character posterior probabilities. The  
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character posterior probabilities can be obtained directly from the popularly used 
formula for word posterior probabilities given a word lattice [7]. Given an acoustic 
signal A  the word posterior probability for a specific word arc in the obtained word 
lattice with the respective begin-time τ  and end-time t can be estimated by the 
following equation (7): 

'

1/

 :  :
  [ ; , ]   [ ; , ]

1/

 ' 

( | ) ( ) ( | )

([ ; , ] | )
( ' | ) ( ') ( | ')

path W Lattice path W Lattice
W contains w t W contains w t

path W Latticepath W Lattice

P W A P W P A W

P w t A
P W A P W P A W

λ

τ τ
λτ

∈ ∈

∈∈

⋅

= =
⋅

, (7) 

Where the word lattice is used as the space of all word string hypotheses considered 
and the summations are over all paths in the lattice and all paths in the lattice but 
contains [ , , ]c tw τ τ  in the denominator and numerator respectively. And ( )P W  

represents the probability obtained with the language model. For character lattice and 
character posterior probability, we can easily transform the word lattice into a 
corresponding character lattice by simply dividing each word arc in the word lattice 
into its component character arcs as in Figure 4. The posterior probability for each 
component character arc is then simply the posterior probability of the original word 
arc, because all the paths in the character lattice and containing the considered 
component character arc are exactly the same as those for the original word arc. A 
typical character lattice obtained in this way from the first several word arcs in Figure 
2 is shown in Figure 4. Note that the structure of the character lattice in Figure 4 is 
exactly the same as that of the original word lattice in Figure 2. So only those 
component character arcs of the same word arc in the original word lattice can be 
connected here. In this way much of the ambiguities can be avoided.  

(upon)

(upon)

(sound)

(deputy)

(deputy)

(pay)

(pay)

(symbol)

(total)

(total)

(total)

(total)

(total)

(total)

(pass)

 

Fig. 4. Corresponding character lattice transformed from the first several word arcs in the word 
lattice in Figure 2 
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4.2   Character-Based Consensus Network 

With the character lattice and corresponding character posterior probabilities obtained 
above, we can then construct the character-based consensus network by a clustering 
process very similar to that of constructing the word-based consensus network. First 
we regard each character arc in the character lattice as a separate cluster. We may first 
need to prune those character arcs with extremely low posterior probabilities, 
followed by the clustering approach with details given below, in which we merge 
some clusters together to form bigger clusters, and the process continues recursively. 
After this clustering process is finished, the final sets of clusters are sorted according 
to their time indices, and this produces the final character-based consensus network. 
The clustering approach mentioned above includes two basic steps, intra-character 
first and inter-character next, both performed recursively.  

In the first step of intra-character clustering, the goal is to merge those character 
arcs carrying exactly the same character and have good consensus in time spans, such 
as the two character arcs “ (upon)” in the beginning of the character lattice in Figure 
4. For any two clusters 

1C and 
2C carrying the same character, we may define its 

similarity 
1 1 2( , )SIM C C  as 

1 1

2 2

1 1 2 1 2 1 2( , ) max ( , ) ( ) ( )
c C

c C

SIM C C overlap c c p c p c
∈
∈

= ⋅ ⋅  ,                (8) 

where 
1 2,c c  are character arcs in the clusters 

1 2,C C  respectively, 
1 2( , )overlap c c is the 

length of the overlapped time period between arcs 
1c and

2c normalized by the sum of 

their respective lengths (i.e., the lattice alignment requirement), and
1 2( ), ( )p c p c  are 

the posterior probabilities for 
1 2,c c . In the beginning each cluster 

iC  contains only 

one character arc and in each iteration we merge two clusters 
1C  and 

2C  that having 

the highest similarity
1 1 2(C ,C )SIM . So those clusters with higher posterior 

probabilities and longer overlapping time period will be merged first. After merging, 
the posterior probabilities of the new cluster is simply the sum of the posterior 
probabilities of the two component clusters, because it is easy to see from equation (7) 
the denominators for the two posterior probabilities are the same, while the 
numerators are additive. 

In the second step of inter-character clustering, the goal is to merge those 
character arcs carrying different characters but having good consensus in phonemic 
structures and time spans, such as the character arcs “ (upon)” and “ (sound)” in 
the beginning of the character lattice in Figure 4, in which case the right vertices of 
these two character arcs will be merged. Similarly as in equation (8), the similarity 

2 1 2(C ,C )SIM for two clusters 
1C  and 

2C can be defined as 

1 1

2 2

2 1 2 1 2 1 2
C

C

(C ,C ) ( , ) ( ) ( )
c

c

SIM avg c c p c p c
∈
∈

= Λ ⋅ ⋅ ,                  (9) 
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Where
1 2,C C  are clusters carrying different characters,

1 2( , )c cΛ is the phonemic 

similarity between the two component character arcs 
1c in 

1C and 
2c in 

2C , and 
1( )p c , 

2( )p c are the character posterior probabilities of 
1c and 

2c . So the clusters 
1C ,

2C with 

the highest similarity 
2 1 2(C ,C )SIM  will be merged first, and both ends of the two 

character arcs for the clusters 
1C ,

2C will be merged, with each arc having its original 

posterior probabilities. In addition, for two clusters
1C ,

2C  to be merged they have to 

satisfy the lattice alignment requirement, i.e. all component character arc 
1c in 

1C has 

to overlap with all component character 
2c in 

2C  for the same time.  

After the clustering process, all the clusters are sorted by their time information 
and the character-based consensus network is constructed. During decoding, in every 
segment of the character-based consensus network, the character with the highest 
posterior probability is chosen.  

5   Experimental Results 

Test results are reported here. 

5.1   Test Corpus and Baseline System 

The speech corpus we used is the broadcast news corpus collected from the local 
radio station in Taiwan in 2001. The baseline system is a one-pass tree-copy trigram 
decoder, and the baseline word lattice is obtained by a bigram decoding phase. In the 
generation of the word lattices we adjusted the word lattice beam width to have 
different number of word arcs retained in the bigram decoding phase. With the given 
lattices we also performed a second-pass rescoring using trigram language model to 
find the path with the maximal MAP scores. Initial/Final acoustic models and the 
feature vectors of 13 MFCC and their first and second-order time derivatives were 
used. The test set includes 87 news stories with total length of 40 minutes and a total 
of 11917 characters. It is noted here that in section 4.1 we’ve mentioned the posterior 
probability for each component character arc is then simply the posterior probability 
of the original word arc, therefore the trigram language model rescoring can also be 
conducted on the character-based consensus network. 

5.2   Performance of Word-Based Consensus Network 

The baseline one-pass trigram decoder results in terms of character accuracy (1-CER) 
for different word lattice beam width are listed in the second column of Table 1. We 
also compared the two-pass rescoring results listed in the next column, in which in the 
first phase we generated the same word lattices by bigram decoding to be used in the 
following word- or character-based consensus network approach, and then in the 
second phase we used trigram language model to rescore the word lattices. It can be 
found that the rescoring approach offer slightly worse performance than the one-pass  
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Table 1. Performance comparison of the various speech decoding approaches 

Word-based consensus 
network(WCN) 

Character-based consensus 
network(CCN) 

Word 
lattice 
beam 
width 

One-Pass 
Trigram 
decoder 

Two-pass 
Rescoring 

Language 
model 
weight 

Character 
accuracy 

Language
model 
weight 

Character 
accuracy 

9 75.80 9 76.37 

10 75.99 10 76.49 

11 76.25 11 76.73 

12 76.22 12 76.60 

50 76.19 75.77 

13 76.15 13 76.56 
9 75.84 9 76.50 

10 76.10 10 76.68 

11 76.32 11 76.89 

12 76.33 12 76.74 

55 76.19 75.82 

13 76.26 13 76.58 

9 76.09 9 76.72 

10 76.37 10 76.96 

11 76.58 11 77.11 

12 76.54 12 77.02 

60 76.19 75.91 

13 76.45 13 76.90 

9 76.19 9 76.78 

10 76.44 10 77.01 

11 76.65 11 77.12 

12 76.64 12 77.18 

65 76.19 75.97 

13 76.48 13 77.04 
9 76.28 9 76.86 

10 76.52 10 77.07 

11 76.73 11 77.23 

12 76.66 12 77.26 

70 76.19 76.04 

13 76.61 13 77.12 

trigram decoder, which is a known fact. In the next column of the table we list the 
results for word-based consensus network under different setting of the language 
model weight in equation (7), we see we can consistently get better results using the 
word-based consensus network approach as compared with the two-pass rescoring 
approach with all choices of the language model weight. Furthermore, in many cases 
the performances of word-based consensus network can even be better than the 
baseline one-pass trigram decoding, if the language model weight was properly 
chosen. This is where minimizing the word error in each segment in equation (6) 
turned out to be better than minimizing the sentence error in equation (2). This 
verified the effectiveness of the word-based consensus network, even for evaluation 
based on CER.  
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5.3   Performance of Character-Based Consensus Network 

The results for the character-based consensus network approach are in the last column 
of the table. We can see that under all different language model weight and all 
different word lattice beam width, the character-based consensus network provided 
consistently better results than the word-based consensus network approach. These 
results in Table 1 are summarized in Figure 5, where the results using the best choices 
of the language model weights are shown. In addition, the performance of the 
proposed character-based consensus network approach is actually always better than 
the word-based consensus network as well as the baseline one-pass trigram decoder 
approach under all parameter settings. It can also be found in Figure 5 that the 
performance of character-based consensus network was improved continuously as the 
word lattice bandwidth was increased. It seemed not yet saturated for the maximum 
bandwidth of 70 shown in Figure5. This verified the outstanding performance of the 
proposed character-based consensus network. The case for word lattice beam width 
being 70 with all choices of language model weights are also plotted in Figure 6 as an 
example. 

We can then take a deeper look into the error types for the word- and character-
based consensus network as shown in Table 2. We noticed that the number of 
substitution errors in the character-based consensus network is slightly higher than 
that in the word-based consensus network, while the number of deletion errors in 
character-based consensus network is significant lower. This phenomenon is 
consistent with our early discussions that it is difficult to construct good word-based 
consensus networks from word lattices for Chinese language. The high degree of 
ambiguities among the word entities and time spans of the word arcs in the word 
lattice causes major problem in assigning the word arcs into proper segments of the 
 

 

Fig. 5. Summary of Table 1:  the comparison among the different decoding approach discussed 
here 
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Fig. 6. Performance of word- and character-based consensus networks compared with 1-pass 
trigram decoder for word lattice beam width being 70 and different language model weights 

Table 2. Error types in the two different consensus networks 

Word 
lattice 
beam 
width 

Language 
model 
weight 

Word-based consensus 
network 

Character-based consensus  
network 

 Insertions Deletions Substitutions Insertions Deletions Substitutions 
9 98 364 2422 91 228 2497 
10 97 365 2399 90 233 2479 
11 90 376 2364 92 245 2436 
12 85 372 2377 89 255 2444 
13 85 371 2386 88 259 2446 
14 87 382 2399 86 257 2468 
15 86 392 2390 86 259 2470 

50

16 85 391 2406 84 266 2485  

word-based consensus network. Once the assignment is biased for some specific 
segment with higher posterior probabilities, the adjacent segment may then have too 
few arcs and result in a deletion error. One example is in Figure 3, in which the 
second segment is biased and a deletion is very possibly generated in the first 
segment. This is why the character–based consensus network gives much less deletion 
errors, which in turn leads to slightly higher substitution errors. In other words, with 
more deletions in the word-based consensus networks, some character hypotheses 
which may be misrecognized were deleted as well. So the substitution errors may 
become less.    
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6   Conclusion 

In this paper, we first briefly review the concept of word-based consensus network, 
and discuss why it is not suitable for Chinese language. We then propose an approach 
to optimize the obtainable performance by character-based consensus network, which 
is more suitable for Chinese language. Extensive experimental results verified that the 
proposed character-based consensus network performed better than the word-based 
consensus network for Chinese language. 
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Abstract. In conventional speech processing, researchers adopt a di-
vidable assumption, that the speech utterance can be divided into non-
overlapping feature sequences and each segment represents an acoustic
event or a label. And the probability of a label sequence on an utter-
ance approximates to the probability of the best utterance segmentation
for this label sequence. But in the real case, feature sequences of acous-
tic events may be overlapped partially, especially for the neighboring
phonemes within a syllable. And the best segmentation approximation
even reinforces the distortion by the dividable assumption. In this pa-
per, we propose an all-path decoding algorithm, which can fuse the in-
formation obtained by different segmentations (or paths) without paying
obvious computation load, so the weakness of the dividable assumption
could be alleviated. Our experiments show, the new decoding algorithm
can improve the system performance effectively in tasks with heavy in-
sertion and deletion errors.

1 Introduction

In the framework of statistics, the mapping between the label sequence lN1 =
{l1, l2, · · ·, lN} and one speech observation sequence xT

1 is determined by the rule
of maximum a posterior probability (MAP).

lN1 = argmax
lN1 ,N

P (lN1 |xT
1 ),

= argmax
lN1 ,N

P (xT
1 |lN1 )P (lN1 ), (1)

where, P (xT
1 |lN1 ) is the acoustic model score and P (lN1 ) is the language model

score for the label sequence lN1 . Each label in lN1 represents an acoustic event,
such as phonme, and is exhibited by a corresponding segment in xT

1 . The cor-
responding segments for neighboring labels may be disjunct, or adjacent, or
even overlapped. For example, the corresponding segments for label sequence
{a, b, c, d, e} are shown in fig.1(I), where ”sil” means that there exists silence
between labels. Shadowed parts in fig.1(I) indicate that these regions in time
axis are shared by more than one acoustic event. The corresponding observation
segments for a and b are disjunct; the corresponding observation segments for b

Q. Huo et al.(Eds.): ISCSLP 2006, LNAI 4274, pp. 435–444, 2006.
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and c are overlapped partially. For the convenience of modeling and decoding, a
dividable assumption is adopted in the state-of-the-art of acoustic model, that
is, the corresponding segment for each label is dividable in time axis and no
overlapping region exists, as fig.1(II) shows. By this assumption, the influence
of each acoustic event is limited in its corresponding observation segment, such
as the context independent acoustic model; or it may also affect neighboring
observation segments, such as the context dependent acoustic model. Then, the
likelihood probability of a label sequence matching an observation sequence could
be dissolved into likelihood scores of labels on their corresponding segments.

Fig. 1. Dividable assumption in speech processing. (I) The overlapping between acous-
tic events; (II) the segmentation after the dividable assumption is applied.

P (xT
1 |lN1 ) =

∑
BN

0 ∈ΛT,N

N∏
i=1

P (xBi

B(i−1)+1|li), (2)

Bi−1 < Bi, B0 = 0, BN = T ,

where ΛT,N is the segmentation set for an observation sequence with T frames
and N labels, (Bi−1 + 1) and Bi are the boundary frames of the i-th label.
As N and T increasing, the number of possible segmentations is increased ex-
ponentially. So it is infeasible to count all segmentation cases to find the most
likely label sequence for a given observation sequence. An usual way is to choose
the label sequence with the highest probability segmentation as an approximate
result of Equ.(2)

P (xT
1 |lN1 ) = max

BN
0 ∈ΛT,N

N∏
i=1

P (xBi

Bi−1+1|li). (3)

As mentioned above, the boundary between neighboring labels may be over-
lapped or even not exist for certain label pairs, such as the virtual syllable initial
and syllable final pairs for non-initial syllables1 in Mandarin[1]. Hence, the divid-
able assumption does not represent the real situation of human utterances. The
1 The syllables only consist of syllable final and tone in Chinese characters, such as

digit ”2”.
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best path approximation in Equ.(3) ignores other possible segmentations and
reinforces the distortion introduced by the dividable assumption. In this paper,
we propose an all-path decoding algorithm, which can fuse the information ob-
tained by different segmentations or paths without paying obvious computation
load, so the weakness of the dividable assumption could be alleviated. In order
to distinguish the all-path decoding from the conventional method, the decoding
based on Equ.(3) is called the best path decoding in this paper. Our experiments
show, the best path approximation has no obvious influence on common tasks,
while the all-path decoding can effectively improve the system performance in
tasks with heavy reduction and deletion errors.

The rest of this paper is organized as follows. A brief introduction of Stochastic
Segment Model(SSM)[2], the acoustic model adopted in the prototype system, is
given in Section 2. Then in Section 3, the all-path decoding algorithm is presented
in detail. Section 4 shows the experimental results and analysis on the mandarin
digit string and mandarin large vocabulary continue speech recognition (LVCSR)
tasks respectively. Conclusions are drawn in the last section.

2 Stochastic Segment Model

Segment model (SM)[3] is a family of methods that adopt segmental distribu-
tion rather than frame-based features to represent the underlying trajectory of
the observation sequence. The biggest difference between HMM and SM is that
HMM models and decodes the utterance in a frame-based way while SM is in
a segment-based way. A segment in SM can present a phoneme, a syllable or a
word etc. The decoding algorithm of SM is directly based on Equ.(3).

SSM is one kind of SM. Each segment model in SSM has a fixed length region
sequence rL

1 , which is used to represent the variable length observation sequence
xτ2

τ1
. A re-sample function is needed to uniform xτ2

τ1
to an L length sequence yL

1

so it can be measured by SSM.

yi = x	 i
L (τ2−τ1)+τ1
, 0 < i ≤ L, (4)

where �z� is the maximum integer no larger than z.
The re-sampled frame is measured by region, which is similar to the conception

of the state in HMM. The log-likelihood of a segment xτ2
τ1

given model lα is the
production of region scores:

ln[p(xτ2
τ1

|lα)] =
L∑

i=1

ln[p(yi|lα, ri)] (5)

where ri is the i-th region model in segment model lα. Usually, each region is
characterized by a Gaussian mixture model.

From Equ.(3), the decoding process for utterance xT
1 is as follows:

J∗(m) = max
τ,lα

{J∗(τ) + ln[p(xm
τ |lα)] · (m − τ) + C}, (6)
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where C is the insertion factor, J∗(m) is the accumulated score of the best
acoustic model sequence at frame m and J∗(0) is initialized to 0. A candidate set
and an expanding set are formed at each frame during decoding. The candidate
set is a collection of hypothesized paths ending at this point and the expanding
set is the collection of acoustic models which succeed the paths in the candidate
set. The decoding is performed from 1 to T frame by frame and the decoding
result is the label sequence attached to the path with the highest probability in
candidate set of T .

3 All-Path Decoding Algorithm

The all-path decoding algorithm aims to find the probability of a label sequence
for an utterance by integrating more information from passible segmentations
or paths as Equ.(2) does. In the conventional best path decoding algorithm,
a label sequence can reach frame m by multiple paths, which will be merged
and only the path with the highest score is survived to the following decoding
process. While, in the all-path decoding algorithm, these paths will be fused to
form a comprehensive score. Assuming frame τ is ahead of frame m and we have
obtained the probability of label sequence ln1 = {l1, l2, · · ·, ln} reaching frame τ
through all paths. We call the probability PA(xτ

1 |ln1 ) as the all-path probability
for ln1 on xτ

1 . Then, at condition that the segment xm
τ is labeled as ln+1, the

probability of label sequence ln+1
1 on xm

1 is,

PA(xm
1 |τ, ln+1

1 ) = PA(xτ
1 |ln1 ) · PA(xm

τ |ln+1) · P (ln+1|ln1 ). (7)

Hence, the all-path probability for labels ln+1
1 on observation sequence xm

1 can
be obtained by adding all PA(xm

1 |τ, ln+1
1 )s with different τs ahead of m, that is,

PA(xm
1 |ln+1

1 ) =
m−1∑
τ=1

PA(xm
1 |τ, ln+1

1 ). (8)

Consequently, the decoding process of SSM is modified according to Equ.(8)
as follows,

J∗
A(m|ln+1

1 ) = {ln
m−1∑
τ=1

exp[(f(m|τ, ln+1
1 ))/β]} · β, (9)

f(m|τ, ln+1
1 ) = J∗

A(τ |ln1 ) + (m − τ) ln p(xm
τ |ln+1) + C, (10)

where β is a transfer factor for likelihood probability to probability, J∗
A(m|ln+1

1 )
is the all-path version of J∗(m|ln+1

1 ), and f(m|τ, ln+1
1 ) is the likelihood version

of PA(xm
1 |τ, ln+1

1 ). The probability differences among paths will be enhanced
when the transfer factor is small, whereas the sub-optimal paths will play more
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1 m = 0, J∗
0 = 0;

2 while m ≤ T do
3 m = m + 1
4 foreach ln+1

1 ∈ active expanding sets
5 τ = max{m − Lext, 0}, Jτ−1

A (m|ln+1
1 ) = PMin

6 while τ < m do
7 measuring f(m|τ, ln+1

1 ),
8 updating Jτ

A(m|ln+1
1 ) from Jτ−1

A (m|ln+1
1 ) by Equ.(11)

9 τ = (τ + 1)
10 repeat
11 J∗

A(m|ln+1
1 ) = Jm−1

A (m|ln+1
1 )

12 pruning low-likelihood label sequences ended in m
13 repeat
14 repeat
15 get the best label sequence from the last utterance frame. #

Fig. 2. All-path decoding algorithm

important roles in the all-path probability score. When the value of β is close to
0, the all-path probability will approximate to the maximum likelihood score in
current paths. So the all-path decoding algorithm will at least achieve a compa-
rable performance with the best path based decoding algorithm. The optimal β
is chosen by experience in the experiments.

The all-path probability in Equ.(9) is updated in a sequential way. Assuming
that the decoder moves to frame m and the current label sequence is ln+1

1 . The
initial value of J∗

A(m|ln+1
1 ) sets to a minimal score PMin; then we count the

log likelihood score f(m|τ, ln+1
1 ) for each frame τ before m, and these scores

update J∗
A(m|ln+1

1 ) in a sequential way by the difference between f(m|τ, ln+1
1 )

and J∗
A(m|ln+1

1 ),

Jτ
A(m|ln+1

1 ) = ln[exp((Jτ−1
A (m|ln+1

1 ) − fmax)/β)
+ exp((f(m|τ, ln+1

1 ) − fmax)/β)] · β + fmax, (11)
fmax = max{Jτ−1

A (m|ln+1
1 ), f(m|τ, ln+1

1 )}, (12)

where Jτ−1
A (m|ln+1

1 ) and Jτ
A(m|ln+1

1 ) are all-path probabilities before and after
updated by the score f(m|τ, ln+1

1 ) . In this way, the range of β could be expanded
to a larger scale without consideration of overflowing or underflowing errors. The
details of the all-path decoding algorithm is listed in fig.2. Lext is the allowed
maximum segment duration.

Pruning technologies[4][5][6] are applied in the all-path decoding algorithm,
since most paths pruned are wrong paths and their probability scores are close
to 0. So it will not make obvious difference whether these wrong paths are
considered.

In practice, we assume that two label sequences are same if the last two words
are identical. In fact, after pruning, the paths in the expanding set of each frame
are originated from a few label sequences and these paths are different from each
other mostly by segmentations or the last words. So Equ.(9) can be simplified to



440 Y. Tang, W. Liu, and B. Xu

J∗
A(m|WI , WII) = {ln

m−1∑
τ=1

exp[J∗
A(τ |WI ) + ln(p(xm

τ |WII) + C)β]} · β, (13)

where WII is the last word and WI is the word previous WII in the current
label sequence respectively, J∗

A(τ |WI ) is the maximum all-path probability for
the label sequence with the last word WI on frame τ , and J∗

A(m|WI , WII) is
the all-path score on frame m for the label sequence with WII and WI as the
last two words. Such simplification can seamlessly integrate to a system with a
bigram language model. When the trigram model is used, we can trace back to
compare the last three words in the current label sequence and a more accurate
result can be expected.

4 Experiments and Analysis

4.1 Mandarin Digit String Recognition

The all-path decoding algorithm was first verified by the mandarin digit string
recognition task. Digit string recognition has achieved a satisfied performance in
English [7]. However, due to the serious confusion among mandarin digits, the
state-of-the-art of mandarin digital string recognition systems does not match
that of the English counterpart. Mandarin is a monosyllabic and tonal language,
in which a syllable is composed of a syllable initial, syllable final, and tone.
Insertion or deletion errors mainly exist in non-syllable initial characters, e.g.,
”1,” ”2,” and ”5.” If a digit’s syllable final is similar to that of the non-syllable
initial character followed immediately, it is difficult to segment the non-syllable
initial character accurately and segmentation errors tend to occur, such as the
confusability between ”5” and ”55.” Substitution errors mainly occur among
”6,” ”9,” and ”yiao” (”yiao” is the variation of ”1”), or between ”2” and ”8,”
because of the similarity of their syllable finals. Insertion and deletion errors are
high related with the accuracy of segmentation. Hence, mandarin digit string is
a good platform for verifying the all-path decoding algorithm.

The data corpus used in this experiment was the digit string database built
by Institute of Automation, CAS [8]. The database was collected from 55 male
speakers (80 utterances per speaker). The speech of the first 40 speakers (ordered
by the name of speakers) were taken as the training set and the data from the
remaining 15 speakers as the test set in digit string experiments.

The baseline system[5] was based on the whole-word model and each SSM was
sequentially composed of 40 regions and each region was modeled by 12 Gaus-
sian mixtures. Acoustic features were 12 dimensions MFCC plus 1 dimension
normalized energy and their 1st and 2nd order derivatives. The comparison of
mandarin digit string recognition results of two systems, the all-path decoding
based system and the best path decoding based system, was listed in table1.
”S.Corr,” ”Sub,” ”Del,” ”Ins” and ”Err” were the string correct, substitution,
deletion insertion and word error rate respectively. Compared with the baseline,
the all-path method reduced 14.0% relative word error rate and the total error
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Table 1. Mandarin digit string recognition results achieved by the all-path decoding
based system and best path based system

Decoder S.Corr% Sub% Del% Ins% Err%

Best Path 95.00 1.02 0.27 0.35 1.64

All Paths 95.67 0.91 0.23 0.27 1.41

Table 2. Recognition results in Test-863 achieved by the all-path decoding based
system and best path based system

Decoder Sub% Del% Ins% CER%

Best Path 12.9 0.1 0.0 13.0

All-Path 12.4 0.1 0.1 12.6

made by insertion and deletion was obviously decreased by 19.4%. It is useful to
consider information from all paths instead of the best path in tasks with heavy
insertion and deletion errors.

4.2 Mandarin LVCSR

The all-path decoding algorithm had also been run in a mandarin LVCSR system
to test the algorithm performance on common tasks. The data corpus applied in
LVCSR experiments was provided by Chinese National Hi-Tech Project 863 for
Mandarin LVCSR system development [9]. 83 male speakers’ data were employed
for training (48373 sentences, 55.6 hours)and 6 male speakers’ for test (240
sentences, 17.1 minutes). The acoustic feature adopted the same configures used
in section 4.1.

The baseline system was a context-dependent triphone SSM system [4]. The
search paths were organized by the lexical tree and began/ended with the silence
model. Each segment model was sequentially composed of 15 regions and each
region was modeled by 12 Gaussian mixtures. Region models were tied by phone
based decision trees. Triphone based duration models were used to improve the
system accuracy.

Table2 showed the recognition results on Test-863 by the best path decod-
ing and all-path decoding. The ”CER” here meant the character error rate. In
Test-863, the character error rate reduced 3%, which was not so effective as
we expected. The insertion and deletion error were also not alleviated too. It
might be caused by two factors. First, the weight of sub-optimal path scores in
the all-path score was limited. In Equ.(13), the gain of the fusing score by one
sub-optimal path was at most (β · ln 2), if the sub-optimal path was with an
equal score as the optimal path. In practice, the optimal path score was multiple
times of the sub-optimal path scores when they were transferred to probabili-
ties. Hence, the gain by combining these sub-optimal paths was limited; the other
factor was that the main error in Test-863 was substitution error, which might
come from the confusion between models, or be due to the wrong segmentation.
Since the insertion and deletion error rates were low in Test-863, the main error
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Table 3. The difference between the results achieved by the best path decoding and
all-path decoding

Mode Sub% Del% Ins% Err%

B-A 3.2 0.0 0.1 3.3

S-A* 10.4 0.1 0.1 10.6

owed to the confusion between different models. The current all-path decoding
algorithm had done little to reduce such errors.

We had also compared the difference of recognition results obtained by the
best path decoding and all-path decoding, as table 3 showed. The recognition
hypotheses from one system was taken as the reference for alignment, and the
recognition result from the other system was compared with the reference by
string comparison algorithm[10]. The higher the character error rate was, the
more different between two results was, and vice versa. ”B-A” showed the result
by taking the ”best-path” hypothesis as the reference for alignment with the
”all-path” hypothesis. The character error rate was 3.3%, whereas the character
error rate difference of two decoding results was only 0.4%, compared with the
true transcription file. Hence, the different places between two recognition re-
sults should be with low confidence. In order to prove this assertion, we replaced
the characters, which were marked as substitution error when the string com-
parison was done between the two results, with the ”Don’t Care” symbols[10].
The ”Don’t Care” symbol can match any one word in the template. Row ”S-A*”
gave the result obtained by using the true transcription as reference for align-
ment with the modified ”all-path” hypothesis. Ignoring these unstable charac-
ters, the substitution error reduced 16.1% and the character error rate reduced
15.1%. Though two decoding results were similar, the differences between two
results were informative for low confidential characters. The result achieved by
one decoding algorithm was a good complement for the other decoding result.

5 Conclusions

An all-path decoding algorithm, which uses the information of all possible paths
or segmentations instead of the best path to recognize the speech utterance,
is proposed in this paper. Compared with the conventional best path decoding
algorithm, the all-path decoding algorithm has following characteristics,

– The weakness of the dividable assumption is partially amended in decoding
by fusing information from all possible paths;

– The decoding result is directly based on Equ.(2), and the best path is not
necessary.

– The results obtained by the all-path decoding and the best path decoding are
informative and the difference identifies the characters with low confidence.

In above experiments, the all-path decoding algorithm achieved at least a com-
parable result with that of the best path based algorithm. In tasks dominated by
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substitution errors, the experiment showed that the approximation by Equ.(3)
performed as well as the original scheme, while the all-path decoding algorithm
achieved a better performance than the conventional best-path based algorithm
in tasks with heavy insertion and deletion errors. Considering the all-path decod-
ing algorithm will not add obvious computation load, it is desirable for SM based
decoding.

In this paper, the same acoustic model was taken in both the all-path based
decoding and the best path based decoding. The acoustic model was built as the
conventional way, that was, it took the dividable assumption during modeling.
Such modeling method might introduce mismatch between the model and the
decoding algorithm. Our following work will concentrate on building an uniform
framework for speech recognition without taking the dividable assumption, that
is, the corresponding segments of neighboring acoustic events may be overlapped
both in modeling and decoding. We believe it would be useful for a more accurate
representation of human speech.
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Abstract. Tone plays an important lexical role in spoken tonal languages like 
Mandarin Chinese. In this paper we propose a two-pass search strategy for 
improving tonal syllable recognition performance. In the first pass, 
instantaneous F0 information is employed along with corresponding cepstral 
information in a 2-stream HMM based decoding. The F0 stream, which 
incorporates both discrete voiced/unvoiced information and continuous F0 
contour, is modeled with a multi-space distribution. With just the first-pass 
decoding, we recently reported a relative improvement of 24% reduction of 
tonal syllable recognition errors on a Mandarin Chinese database [5]. In the 
second pass, F0 information over a horizontal, longer time span is used to build 
explicit tone models for rescoring the lattice generated in the first pass. 
Experimental results on the same Mandarin database show that an additional 
8% relative error reduction of tonal syllable recognition is obtained by the 
second-pass search, lattice rescoring with enhanced tone models. 

Keywords: tone modeling, lattice rescoring, supra-tone units, tonal syllable 
recognition. 

1   Introduction 

Chinese is known as a monosyllabically paced tonal language. Each Chinese 
character, which is the basic unit in written Chinese, is pronounced as a tonal syllable: 
a base syllable plus a lexical tone. Correct tonal syllable recognition is critical to 
differentiate homonyms of same base syllables, e.g., recognizing name of a person or 
a place and many other application scenarios where strong contextual information or 
language model is not available in general. Measuring the tonal syllable recognition 
performance is also a good evaluation of the acoustic model resolution of a recognizer 
because it is done purely at the phonetic level by removing the language model from 
the LVCSR decoding process. A recognizer with high tonal syllable recognition rate 
has many other applications in language learning and objective evaluation of tonal 
language proficiency of a speaker. 

In tonal languages like Chinese, succinct tone modeling is critical for high 
performance speech recognition due to the lexical nature of tone. The properties of 
tone, which are listed as follows, have traditionally made tone modeling difficult. 
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a) Tone is carried by perceivable pitch in the voiced part of a syllable. 
However, no pitch is perceived in the unvoiced region. As a result, the 
continuous HMM can not be directly applied to tone modeling since the 
whole F0 trajectory is discontinuous at the junctures between neighboring 
voiced and unvoiced segments. 

b) Tone is a supra-segmental feature which can span over multiple voiced 
segments. A time window longer than the window size used for extracting 
spectral features should be used for extracting tonal features. 

There have been studies on tone modeling. A commonly used approach to cope 
with discontinuous F0 trajectory is to interpolate F0 in the unvoiced segments [1-4]. 
This approach is obviously incorrect, but a convenient way to bypass the discontinuity 
problem. The artificially interpolated F0 value has no or even wrong information for 
identifying a tone. In our recent work [5], we applied a multi-space distribution 
(MSD) based HMM [6] to tone modeling. It is done without interpolating F0 and 
resorting to any heuristics. It has been successfully tested in tonal syllable recognition 
experiments on a Mandarin database. Comparing with tone modeling based on F0 
interpolation, the new approach improves absolute tonal syllable error rate by 6%. 

Explicit tone modeling [7-8], where tone modeling is separated from spectrum 
modeling, is commonly employed to take the supra-segmental property of tone into 
account. The outline feature of a tone contour [9-10] is modeled in such a model. In 
[10], we proposed supra-tone modeling of Cantonese and used it for Cantonese 
LVCSR. It characterizes not only the tone contour of a single syllable but also the 
adjacent bi- or tri-syllables. Experimental results show that the supra-tone modeling 
outperforms the conventional tone modeling methods significantly. 

In decoding, tone (syllable) boundaries are needed for applying explicit tone 
models. Usually such segmentations can be obtained as a byproduct of the first-pass 
decoding. However, the optimal tonal syllable sequence might have been pruned 
prematurely, due to the fact that the tone information is not fully exploited in the 
search. We propose a two-pass search strategy for improving tonal syllable 
recognition performance.  In [5], we presented our first-pass search with a multi-space 
distribution (MSD) based tone model and reported corresponding tonal syllable 
recognition results on a Mandarin Chinese speech database. In this paper, explicit 
tone modeling is investigated and a lattice rescoring technique with explicit tone 
models is tested on the same Mandarin database. 

The rest of paper is organized as follows. In section 2, we present a two-pass 
search strategy for improving tonal syllable recognition performance. Explicit tone 
modeling for Mandarin and lattice rescoring with explicit tone models are studied in 
section 3. Finally, evaluation experiments are performed on a speaker-independent 
tonal syllable recognition task in section 4. In section 5 we give a conclusion of this 
research. 

2   Two-Pass Search Strategy with Tone Information 

The block diagram of our proposed two-pass search is shown in Figure 1, where the 
instantaneous F0 information is employed in the first-pass search, while long-term F0 
information is used in the second-pass search.  
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In the first-pass search [5], a tonal syllable lattice is generated with embedded tone 
information in the acoustic HMMs, in which the tone features and spectral features 
are separated into two streams and stream-dependent models are constructed to cluster 
corresponding features into their decision trees. Tone features are modeled by multi-
space distribution (MSD) based HMM [6], while spectral features are modeled by 
conventional HMM.  

In the second-pass search, the outline F0 features are firstly extracted with the 
syllable boundaries given by the first-pass search, and then modeled by explicit tone 
models. Scores computed from the trained explicit tone models are combined with the 
scores of tonal syllable obtained in the first-pass search. The combined scores are 
used to find the best path in the lattice.  

 

Fig. 1. The block diagram of two-pass search with tone information 

3   Lattice Rescoring with Tone Model 

3.1   Outline F0 Feature Extraction 

F0 is a highly variable acoustic feature. Difference in F0 could be affected by many 
factors, e.g. age, gender, dialectal difference, health condition, education and 
idiosyncratic style. Even for the same speaker, the actual range of F0 changes from 
time to time. Effective F0 normalization is necessary to minimize undesirable 
fluctuations. In the first-pass search, only logarithm is used to reduce the F0 dynamic 
range of speakers since search is done time-synchronously and normalization of F0 
values on a longer time basis, e.g. sentence, is not feasible. However, in the second-
pass search, or lattice rescoring, we can apply utterance-based normalization to F0, 
which is defined as 

( )
i

i
i

F
F

mean F
=  (1) 

where 1{ }N
i iF =  is a sequence of original F0 values and N is the total number of voiced 

frames in that utterance. F0 normalization in the above equation (1) can reduce F0 
variation at both inter- and intra-speaker levels.  



448 H. Wang et al. 

Lattice rescoring can integrate high-level knowledge sources that may not be easily 
incorporated in the first decoding pass, e.g. long-term F0 information. We extract 
outline F0 features for tone modeling. The tone contour of a syllable is evenly divided 
into three sections, and each section is represented by the corresponding F0 mean of 
all F0 values in that section. Figure 2 shows an example of outline F0 feature 
extraction for the tonal syllable “pu3 tong1 hua4”. The outline F0 feature is a rough 
sketch of the F0 contour. The window for feature extraction is whole syllable, the 
carrier of the tone. The outline F0 features indicate an averaged pitch trajectory. 

 

Fig. 2. An example of outline F0 feature extraction for a tonal syllable sequence “pu3 
tong1 hua4” 

3.2   Supra-Tone Modeling 

In continuous speech, the F0 contour of the current tone can be affected significantly 
by the neighboring tones due to co-articulation. Supra-tone modeling [10] 
characterizes not only the tone contour of the current syllable but also the adjacent 
ones. Supra-tone model has been shown to outperform the conventional tone models 
in Cantonese tone recognition. Here, we apply it to Mandarin. 

A supra-tone unit covers the contour of successive tones. Figure 3 shows di-tone 
units of tonal syllable sequence “pu3 tong1 hua4”. The di-tone unit to be modeled 
covers two consecutive tones and there is an overlap of one syllable between two 
adjacent di-tone units. In this way, the supra-tone unit characterizes long-term, inter-
syllabic speech dynamics in both time and frequency. Supra-tone modeling is 
different from context-dependent tone modeling, which is based on phonetic context 
rather than acoustic context. The supra-tone models capture the tonal context effect by 
using not only the tone identities but also the acoustic features. 

Gaussian mixture model (GMM) is employed to model the supra-tone units. 
Theoretically, GMM with sufficient mixture components is capable of approximating 
any arbitrary statistical distribution. Moreover, GMM provides a probabilistic output 
that can be readily integrated into HMM based ASR system.  
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Fig. 3.  Di-tone units of tonal syllable “pu3 tong1 hua4” 

3.3   Lattice Rescoring 

Supra-tone model is used to rescore the tonal syllable lattice. The search process in 
the lattice is rewritten as 

* arg max( log ( | ) log ( | ) ( ) )TS T
TS

TS P TS O P T O P TS WPα β γ= + + +  (2) 

where TS is a sequence of tonal syllables, ( | )TSP TS O  is the score of a tonal syllable 

sequence obtained in the first-pass search, ( | )TP T O  is the score obtained by 

evaluating the outline F0 features against a supra-tone model, ( )P TS  is the prior 

probability of a tonal syllable sequence, and WP  is the word penalty. α , β  and γ  

are the weights of corresponding models and they are optimized in a development set. 
In our tonal syllable recognition task, a free tonal syllable loop is used as language 
model and α  is set to one. Therefore, only β  and WP  need to be estimated. A 

Viterbi search is employed to find the best tonal syllable sequence in the lattice. 

4   Experimental Results and Analysis 

4.1   Experimental Setup 

The evaluation experiments are performed on a speaker-independent database of read 
speech. Training set consists of 50k utterances (80 hours) data recorded by 250 male 
speakers. Development set consists of 5 speakers and 100 utterances (about 2k tonal 
syllables). Testing set consists of 400 utterances (about 8k tonal syllables) from 20 
speakers. Speakers in the training, development and testing sets are all different. For 
tone recognition experiments, we use all 500 utterances from the development and 
testing sets as the testing set. In all following experiments, a Mandarin tone is 
classified as one of five categories, i.e. tone 1 to tone 5.  
 
The performance of the first-pass search 
In the first-pass search, MSD-HMM based tri-phone models are used as tone 
embedded acoustic models, which have totally 5,000 tied states and 16 Gaussian 
components/state. Acoustic features are made of 39-dimensional MFCC and  
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5-dimensional, extended F0 feature. Those two sets of features are divided into two 
streams. Free tonal syllable loop (i.e. no language model is used) is employed in the 
decoding and a tonal syllable lattice is generated by the recognizer for each utterance.  

The performances of tonal syllable and tone recognition in the first-pass search are 
shown in Table 1, where the second line is the one-best result and third line is the 
graph error rate (GER). GER is computed by aligning the correct tonal syllable 
sequence with the generated lattice to find the path with the least number of tonal 
syllable errors. The error rates of tonal syllable are 35.0% and 10.4% in one-best and 
lattice, respectively. The large difference between the two tonal syllable error rates 
indicates that by rescoring tonal syllable lattice with high-level knowledge sources 
like long term F0 information we might be able to improve the recognition 
performance significantly. 

Table 1.  The performances of one-best results and generated lattice on the testing set 

 Tonal syllable error rate (TSER) Tone error rate (TER) 
One-best (%) 35.0 24.9 
Lattice (%) 10.4 7.81 

 
Experimental setup for the second-pass search 
GMM is used to model the supra-tone units and each model has 32 Gaussian 
components with full covariance. The training data is force-aligned by the first-pass 
recognizer to get the syllable boundaries for tone modeling. Outline features of F0 
contour and dynamic F0 contour are evaluated for supra-tone modeling. In order to 
make comparison with the conventional tone modeling method, MSD-HMM is used 
to explicitly model tone in the following tone recognition experiments. Each MSD-
HMM consists of 4 states with a left-to-right topology. Each state is made up of 32 
Gaussian components. 

4.2   Role of F0 Normalization 

We compare the performance of two different F0 normalizations with the original F0 
on a tone recognition experiment, where mono-tone based supra-tone model is used. 
Table 2 shows the experimental results. 

Table 2.  Tone recognition results using different F0 normalization methods 

 
Original F0 

Logarithm 
normalization 

Utterance-based 
normalization 

Tone Error Rate (%) 39.1 38.7 38.3 

 
From Table 2 we can see that utterance-based normalization method yields the best 

tone recognition performance. In the following experiments, utterance-based 
normalization method is used.  
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4.3   The Experiments of Tone Recognition 

Quality tone models are important for improving lattice rescoring performance. In 
order to evaluate tone model resolution, tone recognition experiments are performed 
on the testing set. The tone recognition results of three supra-tone models 
with/without dynamic outline F0 feature are shown in Figure 4, where 

1) GMM-ST-MT: mono-tone based supra-tone model 
2) GMM-ST-DT: di-tone based supra-tone model 
3) GMM-ST-TT: tri-tone based supra-tone model 

 

Fig. 4. Tone recognition results of three supra-tone models with/without dynamic outline F0 
feature 

and F0_ F0 is the case with dynamic outline F0 feature which is the mean of delta F0 
in each section of the F0 contour. Figure 4 shows that the supra-tone units (di-tone 
and tri-tone) and dynamic outline F0 feature can significantly improve the 
performance of tone recognition. 

In order to compare the performance of supra-tone model with other tone modeling 
methods, the following two experiments are performed. 

1) Conventional context-dependent tone modeling with outline F0 feature 
2) MSD-based HMM for tone modeling 

The experimental results show that supra-tone modes with outline F0 feature can 
outperform above 1) and 2) models by about 3% and 4% absolute tone error rate 
reduction, respectively. It indicates that the outline F0 feature and a wider time 
window are benefit to Mandarin tone recognition. 

4.4   The Experiments of Lattice Rescoring with Supra-Tone Model  

Di-tone models with/without dynamic outline F0 feature are used in lattice rescoring. 
Tri-tone models are not tried in these experiments since their performances of tone 
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recognition are only slightly better than those of di-tone models while their 
computation complexities are much higher. The optimal weight β  and WP for 
computing the new search score in Equation 2) are found on the development data set 
with a full grid search. For di-tone model without dynamic outline F0 features, total 
tonal syllable error rates of lattice rescoring with different tone model weights and 
word penalties on the development set are shown via a contour plot in Figure 5. It 
indicates that the optimal weight pair is (4.7, -49). Rescoring results on the testing 
data set with optimal weights are shown in Table 3. It shows that the di-tone models 
with dynamic outline F0 feature can achieve 8% relative TSER reduction and 12.4% 
relative TER reduction.  

Table 3.  Results of lattice rescoring using di-tone models with/without dynamic outline F0 
feature 

Tone Model Type 
Optimal point 

( , )WPβ  TSER (%) TER (%) 

Baseline (0,-35) 35.0 24.9 
GMM-ST-DT_F0 (4.7, -49) 32.4 22.5 

GMM-ST-DT_F0- F0 (3.5, -67) 32.2 21.8 

 
Fig. 5. Contour plot of tonal syllable error rate for different tone model weights and word 
penalties 

5   Conclusions 

In the paper, a two-pass search strategy with tone information is introduced for 
improving tonal syllable recognition performance. Lattice rescoring with enhanced 
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tone models is particularly investigated. Explicit tone modeling with outline F0 
features via supra-tone model is applied to Mandarin Chinese. In the experiments of 
tone recognition, supra-tone modeling shows improved performance over the 
conventional tone modeling methods. In lattice rescoring, by using di-tone models 
with dynamic outline F0 feature we obtains an 8% tonal syllable error reduction and 
12.4% relative tone error reduction all relative, compared to the single-best results in 
the first-pass search. 
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Abstract. In this paper, we propose a novel approach that reduces the 
confidence error rate of traditional posterior probability-based confidence 
measures in large vocabulary continuous speech recognition systems. The 
method enhances the discriminability of confidence measures by applying 
entropy information to the posterior probability-based confidence measures of 
word hypotheses. The experiments conducted on the Chinese Mandarin 
broadcast news database MATBN show that entropy-based confidence 
measures outperform traditional posterior probability-based confidence 
measures. The relative reductions in the confidence error rate are 14.11% and 
9.17% for experiments conducted on field reporter speech and interviewee 
speech, respectively.  

Keywords: confidence measure, entropy, posterior probability, continuous 
speech recognition. 

1   Introduction 

With the growing number of applications for automatic speech recognition (ASR) 
systems, the robustness and stability of a speech recognizer has become increasing 
important. The performance of ASR systems in real-world applications usually 
degrades dramatically compared to that of laboratory ASR systems. Therefore, 
verifying the recognition output of ASR systems is a critical issue. Confidence 
measures can be used to automatically label individual hypothesized words in the 
output of ASR systems as either correct or incorrect. This additional appraisal of 
word sequences has been adopted in unsupervised model training [1], and to improve 
the recognition accuracy [2]. 

Confidence measure algorithms can be roughly classified into three major 
categories [3] as follows: 

1) Feature-based: These approaches assess the confidence based on some 
selected features, such as word duration, acoustic score, language model 
back-off, and part-of-speech. 

2) Explicit model-based: These approaches treat confidence measures as hypothesis 
testing problems [4], and need to model extra alternative hypotheses. 
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3) Posterior probability-based: The posterior probability estimated according to 
the standard Maximum a Posteriori (MAP) framework is a good candidate 
for confidence measures, because it has a good bounded range between 0  
and 1. The superior performance of the posterior probability has been 
demonstrated by using it as a confidence measure [5] [6]. 

In this paper, our objective is to improve the posterior probability-based approach 
by integrating entropy information into the posterior probability-based confidence 
measures of word hypotheses using a word graph. The experiments conducted on the 
Chinese Mandarin broadcast news database MATBN show that our approach can 
effectively reduce the confidence error rate. 

The remainder of the paper is organized as follows. Section 2 describes traditional 
posterior probability-based confidence measures [5]. In Section 3, we explain how to 
combine the entropy information with the posterior probability-based confidence 
measures. Section 4 introduces the ASR system and the databases used in this paper. 
The experiment results are detailed in Section 5. Finally, in Section 6, we present our 
conclusions and indicate some future research directions. 

2   Traditional Posterior Probability-Based Confidence Measures 

The fundamental rule in statistical speech recognition systems tries to find a word 

sequence opt
Mw }]{[ 1  that maximizes the posterior probability, given a sequence of 

acoustic observations X of length T:  
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where )]([ 1
Mwp  and )][|( 1

MwXp denote the language model probability and the 

acoustic model probability, respectively; and )( Xp  represents the prior probability of 

the acoustic observation sequence X . In practical implementations, the denominator 
term )( Xp  is omitted because it is invariant for all possible word sequences. Apart 

from being used to select the most likely sentence, the sentence posterior probability 
also serves as a good confidence measure. However, the following question arises: 
How can we compute the sentence posterior probability? 

2.1   Calculating the Posterior Probability of a Hypothesized Word 

Given a hypothesized sentence (or word sequence), the posterior probability of a 
hypothesized word [w,s,e]1 in the sentence, )|],,([ Xeswp , is equal to the sum of the 

posterior probabilities of all the sentences that contain the word:  
                                                           
1 s is the start time and e is the end time of the hypothesized word w. 
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In Eq. (2), )|( m
e
s wXp m

m
 is the acoustic likelihood; )|( mm hwp  is the language 

model probability given the preceding history mh ; ΣW  denotes the set of all possible 

word sequences belonging to the language; N denotes the number of words in an 
arbitrary word sequence; and κ  is the language model scaling factor. Note that the 
denominator term in Eq. (2) is equal to p(X) in Eq. (1). Practically speaking, it is 
infeasible to enumerate all the word sequences in the implementation of a speech 
recognition system. Thus, to calculate the denominator term in Eq. (2), a word graph 

is usually adopted to approximate the word sequence set ΣW . Let XΨ denote the 

word graph generated for an acoustic observation sequence X. The posterior 
probability of the hypothesized word [w,s,e], )|],,([ Xeswp , can be approximated as 

)|],,[:( Xeswap Ψ  computed by: 

⋅

⋅

=Ψ

∏

∏

=Ψ∈

=
===

Ψ∈

=

=

κ

κ

)|()|(

)|()|(

)|],,[:(

1],,[

1
,,
],,[  

1

1

nnn
e
s

N

nesw

mmm
e
s

M

m
eessww

esw
X

hwpwXp

hwpwXp

eswap

n

n
XN

nnnn

m

m

mmm

XM
mmmm

, (3) 

where ],,[: eswa  denotes the word arc associated with the hypothesized word [w,s,e] 

in the word graph. The word posterior probability can be computed efficiently by 
applying a forward-backward algorithm to the word graph [5]. The forward score 

]),,[:( eswaα  is recursively computed from the start time of the word graph to the 

start time of the word arc ],,[: eswa , i.e., s:  

καα )|(])1,','[:'()|(]),,[:(
]1,','[:'

w
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e
s hwpsswawXpeswa −×=

−

, 
(4) 

where the summation is conducted for all word arcs ending at 1−s ; )|( wXp e
s  is the 

acoustic likelihood; and wh  is the preceding history of w . Similarly, a backward 

score ]),,[:( eswaβ  is calculated from the end time of the word graph to the end time 

of ],,[: eswa , i.e., e:  
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where the summation is conducted for all word arcs starting at 1+e . Obviously, the 
numerator in Eq. (3) is the product of ]),,[:( eswaα  and ]),,[:( eswaβ , while the 

denominator in Eq. (3) is the summation of the forward scores of all end-word arcs in 
the word graph. Therefore, Eq. (3) can be rewritten as: 

]),','[:'(

]),,[:(]),,[:(
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X
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Ψ∈
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(6) 

2.2   Posterior Probability-Based Confidence Measure of a Hypothesized Word 

The word arc posterior probability calculated by Eq. (6) can be used directly as a 
measure of confidence for the word hypothesis ],,[ esw : 

)|],,[:(]),,([ X
normal eswapeswC Ψ= . (7) 

Consider a word arc ],,[: eswa  in a word graph. There usually exist some 
alternative word arcs whose word identities are identical to w, but the time marks are 
slightly different to [s,e]. The more such alternative word arcs exist, the more likely it 
is that [w,s,e] is correct and should be accepted. Based on this concept, Wessel et al. 
proposed three methods for calculating the confidence of a hypothesized word 

],,[ esw  according to the word arc posterior probabilities [5]:  
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In Eq. (8), the summation is over all word arcs containing the same word identity that 
intersect with the word arc ],,[: eswa . In Eq. (9), only word arcs that associate with the 

same word identity w and intersect the median time of the word arc ],,[: eswa  are 

considered. In Eq. (10), for each time instance between s and e, the posterior 
probabilities of the word arcs whose word identities are w are accumulated. This process 
yields e-s+1 accumulated posterior probabilities. Then, the confidence of the word 
hypothesis [w,s,e] is the maximum of these accumulated posterior probabilities. 

3   The Proposed Approach 

To determine whether a recognized word is correct or not, it might be helpful to take 
all the other word arcs with time boundaries similar to the target word arc hypothesis 

 



458 T.-H. Chen, B. Chen, and H.-M. Wang 

A (2/3)

B (2/3)

C (2/3)

D (2/3)

E (2/3)

A (1/3)

B (1/9)

C (1/9)

D (1/9)

E (1/9)

A (2/3)

B (2/3)

C (2/3)

D (2/3)

E (2/3)

A (1/3)

B (1/9)

C (1/9)

D (1/9)

E (1/9)
 

Fig. 1. Two examples of word arcs extracted from word graphs. The values in parentheses 
represent the confidence (e.g., Cmax) of the word arc. 

into account, instead of just considering the word arcs whose word identities are 
identical to the recognized word to be evaluated. As illustrated in Fig. 1, the 
confidence of word ‘A’ on the left-hand side is not reliable in terms of alternative 
words because all the confidence measures are high. In contrast, the confidence of 
word ‘A’ on the right-hand side is trustworthy because it is relatively higher than 
those of the other words. Entropy, described as “a measure of the disorder”, is a way 
to measure the amount of information in a random variable. To emphasize the 
reliability of confidence measure, we propose an entropy-based approach that 
evaluates the degree of confusion in confidence measures. By incorporating entropy 
information into traditional posterior probability-based confidence measures, the new 
entropy-based confidence measure of a hypothesized word is defined as: 

])),,([1(]),,([]),,([ eswEeswCMeswC avgentropy −⋅= , (11) 

where ]),,([ eswCM  denotes a traditional confidence measure of ],,[ esw , which can 

be estimated by Eqs. (7), (8), (9), or (10); and ]),,([ eswEavg is the average normalized 

entropy defined as: 

)(
1

1
]),,([ tE

se
eswE f

e

st
avg

=+−
= . (12) 

The larger the ]),,([ eswEavg , the greater the degree of uncertainty there will be 

about the confidence measure. Consequently, the originally estimated confidence of a 
recognized word is considered more unreliable. Based on this concept, we weight the 
conventional confidence measure by ]),,([1 eswEavg− . In Eq. (12), )(tE f is 

computed by, 



 On Using Entropy Information 459 

)],,,([log)],,,([
log

1
)( 2

],,,[2

teswPteswP
N

tE CMCM
etsesw

f
≤≤

−= , 
(13) 

where N  is the number of distinct word identities in frame t; and )],,,([ teswPCM  

represents the normalized confidence in each frame t, calculated by 
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When computing the entropy, we only consider the distribution of different words. 
We take the summation over the confidence of words with the same identity before 
calculating )],,,([ teswPCM . In [7], the entropy information was considered as one of 

predictor features in a confusion network. In this paper, we integrate entropy 
information into the posterior probability-based confidence measures directly. 

4   The Speech Recognition System 

The large vocabulary continuous speech recognition (LVCSR) system [1] and the 
databases used in this paper are described in this section. 

4.1   Front-End Signal Processing 

Front-end signal processing is performed with the HLDA-based [8] data-driven Mel-
frequency feature extraction approach, and further processed by MLLT 
transformation for feature de-correlation. Finally, utterance-based feature mean 
subtraction and variance normalization are applied to all the training and test 
utterances. 

4.2   Speech Corpus and Acoustic Model Training 

In this work, we use the MATBN (Mandarin Across Taiwan Broadcast News) speech 
database [9], which was collected by Academia Sinica and Public Television Service 
Foundation of Taiwan between November 2001 and April 2003. Approximately 200 
hours of speech data was supplemented with corresponding orthographic transcripts. 
Our experiments are conducted on the “field reporter” and “interviewee” subsets. The 
statistics of these two subsets are summarized in Table 1.  

The acoustic models used in our LVCSR system are comprised of 112 right-
context-dependent INITIAL models, 38 context-independent FINAL models, and a 
silence model. The models are first trained by using the Baum-Welch training 
algorithm according to the ML criterion, and then optimized by the MPE-based [10] 
discriminative training approach. 
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Table 1. The statistics of two speech data sets used in this paper 

 Field reporter speech Interviewee speech 
Training data 25.5 h 8.80 h 
Validation data 0.74 h 0.45 h 
Test data 1.5 h 0.60 h 

4.3   The Lexicon and Language Model 

The recognition lexicon consists of 72K words. The language models used in this 
paper consist of trigram and bigram models. They were estimated from a text corpus 
of 170 million Chinese characters collected from Central News Agency in 2001 and 
2002 (the Chinese Gigaword Corpus released by LDC) based on the ML criterion. For 
the interviewee task, we used the Mandarin Conversational Dialogue Corpus (MCDC) 
[11] to train an in-domain language model. The n-gram language models were trained 
with the SRI Language Modeling Toolkit (SRILM) [12]. We also employed the Katz 
back-off smoothing technique. 

4.4   Speech Recognition 

The speech recognizer is implemented with a left-to-right frame-synchronous Viterbi 
Tree search and a lexical prefix tree organization of the lexicon. The recognition 
hypotheses are organized into a word graph for further language model rescoring. In 
this study, the word bigram language model is used in the tree search procedure, 
while the trigram language model is used in the word graph rescoring procedure [1]. 

5   Experiments 

5.1   Experiment Setup 

The acoustic models for the field reporter and interviewee tasks were trained with 
approximately 25 hours and 9 hours of speech, respectively. The acoustic models for 
field reporters were trained by 150 iterations of ML training and 10 iterations of MPE 
training; while the acoustic models for interviewees were trained by 30 iterations of 
ML training and 8 iterations of MPE training. The character error rates of the two 
tasks are shown in Table 2. 

Table 2.  Recognition results for the two test subsets 

 Field reporter speech Interviewee speech 
Character error rate 20.79% 49.56% 

5.2   Evaluation Metric 

The performance of the confidence measure is evaluated on the basis of the 
confidence error rate (CER) defined as:  
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 wordsrecognized #

 wordsrejectedfalsely  #   wordsacceptedfalsely  # +=CER . (16) 

CER can be clarified as follows: Given the confidence of a hypothesized word and a 
rejection threshold, the word is labeled correct (i.e., accepted) or incorrect (i.e., 
rejected). If an incorrectly recognized word is labeled correct, it is a false acceptance; 
similarly, if a correctly recognized word is tagged incorrect, it is a false rejection. The 
baseline CER is calculated as the number of insertions and substitutions divided by 
the number of recognized words. Obviously, the CER is heavily dependent on the 
choice of the rejection threshold. In our experiments, the threshold was adjusted to 
minimize the CER of the validation set. Then, the threshold that yielded the minimal 
CER for the validation set was applied to the test set. 

Another evaluation metric is the detection-error-tradeoff (DET) curve, which 
contains a plot of the false acceptance rate over the false rejection rate for different 
thresholds. 

5.3   Experiment Results  

The comparison of the proposed entropy-based confidence measures and the 
traditional posterior probability-based confidence measures is shown in Table 3. The 
language model scaling factor κ  in Eq. (3) is set to 11. The third to sixth rows in the 
table show the results obtained when Eqs. (7), (8), (9) and (10) are used, respectively, 
and the seventh to tenth rows are the results obtained when entropy information is 
integrated into the listed methods. From Table 3, it is clear that the proposed entropy-
based confidence measures outperform traditional posterior probability-based 
confidence measures. The proposed approach achieves a relative CER reduction of 
14.11% over the traditional approach (Centropy(C sec) or Centropy(C med) versus Csec, Cmed, 
or Cmax) in the field reporter task; and a relative reduction of 9.17% (Centropy(Cmed) 
versus Cnormal) in the interviewee task. 

The DET curves of Cmax and Centropy(Csec) for the field reporter task and the DET 
curves of Cnormal and Centropy(Cmed) for the interviewee task are shown in Figs. 2 and 3, 
respectively. Again, we find that the proposed methods outperform traditional 
methods. 

Table 3. Experiment results using the confidence error rate to evaluate traditional posterior 
probability-based confidence measures and entropy-based confidence measures 

Methods Field reporter speech Interviewee speech 
baseline 24.52% 51.97% 
Cnormal 22.18% 31.31% 
Csec 21.47% 32.32% 
Cmed 21.47% 32.32% 
Cmax 21.47% 32.32% 
Centropy(C normal) 18.55% 31.08% 
Centropy(C sec) 18.44% 28.50% 
Centropy(C med) 18.44% 28.44% 
Centropy(C max) 18.45% 28.51% 
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Fig. 2. DET curves for the test set of the field reporter task 

 

Fig. 3. DET curves for the test set of the interviewee task 

6   Conclusions 

We have presented a new approach that combines traditional posterior probability-
based confidence measures with entropy information to verify the output of large 
vocabulary continuous speech recognition systems. The proposed methods were 
evaluated on two speech recognition tasks: a field reporter speech set and an 
interviewee speech set. In the field reporter speech set, the proposed methods 
achieved a 14.11% relative reduction in the confidence error rate compared to 
traditional methods, while in the interviewee speech set, the proposed methods 
achieved a 9.17% relative reduction. In our future work, we will incorporate the 
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entropy information into feature-based confidence measures or other confidence 
measures. 
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Abstract. Automatic speech recognition for languages in Southeast
Asia, including Chinese, Thai and Vietnamese, typically models both
acoustics and languages at the syllable level. This paper presents a new
approach for recognizing those languages by exploiting information at
the word level. The new approach, adapted from our FLaVoR architec-
ture[1], consists of two layers. In the first layer, a pure acoustic-phonemic
search generates a dense phoneme network enriched with meta data. In
the second layer, a word decoding is performed in the composition of
a series of finite state transducers (FST), combining various knowledge
sources across sub-lexical, word lexical and word-based language models.
Experimental results on the Vietnamese Broadcast News corpus showed
that our approach is both effective and flexible.

Keywords: Automatic speech recognition, finite state transducer,
phoneme network, Vietnamese.

1 Introduction

Like Chinese [5], Thai [4] and other languages in Southeast Asia, Vietnamese is a
tonal, morpho-syllabic language in which each syllable is represented by a unique
word unit (WU) and most WUs are also morphemes, except for some foreign
words, mainly borrowed from English and French. Notice that the term WU we
use here has a similar meaning to the term “character” in Chinese. There are six
distinct tones and around seven thousand WUs found in the language. Of these
7000, about five thousand WUs are frequently used [2]. The Vietnamese writing
system, on the other hand, is completely different from the ones in Southeast
Asia, including Chinese. In fact, it is based on an extended Latin symbol set as
given in Fig 1. The underlined symbols in Fig 1 are not in the original system. In
addition, the last five symbols are tone marks (the sixth tone has no mark). Fig 2
shows some examples of Vietnamese WUs and words. This example sequence
contains six WUs and three words. With this writing system, even if WUs are
separated by spaces, the problem of word segmentation is not trivial. As with
Chinese, words are not well defined. Each word is composed of one to several
WUs with different meaning.

Q. Huo et al.(Eds.): ISCSLP 2006, LNAI 4274, pp. 464–474, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Vietnamese written symbols

Fig. 2. Example of Vietnamese morphemes and words

For the automatic speech recognition problem, most systems for Chinese [3],
Thai [4] or Vietnamese [2] share a similar approach in both acoustic model-
ing (AC) and language modeling (LM). Specifically, the acoustic modeling is
typically based on the decomposition of a syllable into initial and final parts;
while the language modeling is trained on WUs or words. As reported in [6],
the performance of the system which used a word-based LM is better than the
one that used a WU-based LM. However with the word-based LM approach, the
search network is much bigger than the former as the vocabulary size is increased
considerably. More precisely, in those systems, the standard speech recognition
architecture brings all available knowledge sources very early in the process. In
fact, an all-in-one search strategy is adopted which completely integrates the
acoustic model with word-based LM. Subsequently, it will be more expensive in
terms of memory and time, when a long-span word-based LM is exploited.

In this paper, we present a new approach for recognizing the languages men-
tioned above. Our approach is based on the FLaVoR architecture and exploits
the compositional property of FSTs [7]. The approach consists of two steps. First,
a pure acoustic-phonetic search generates a dense phoneme graph or phoneme
FST, enriched with meta-data. Then, the output of the first step is composed
with a series of FSTs, including sub-lexical, word lexical and word-based LM
FSTs from which an usual word decoding is carried out. The word-based LM is
trained by using the word segmentation procedure [6].

The paper is structured as follows. First, we briefly describe the FLaVoR
architecture in Section 2. Section 3 presents our approach in detail. In Section 4,
we will report the experimental result on the Vietnamese Broadcast News corpus
and compare it to our previous work. Finally, some conclusions and remarks are
given in Section 5.

2 The FLaVoR Approach

2.1 The Architecture

As depicted in Fig 3, the key aspect of the FLaVoR architecture consists of
splitting up the search engine into two separate layers. The first layer performs
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Fig. 3. FLaVoR architecture

phoneme recognition and outputs a dense phoneme network, which acts as an
interface to the second layer. In this second layer, the actual word decoding is
accomplished by means of sophisticated probabilistic morpho-phonological and
morpho-syntactic models.

Specifically, in the first layer, a search algorithm determines the network of
most probable phoneme strings F given the acoustic feature X of the incoming
signal. The knowledge sources employed are an acoustic model p(X |F ) and a
phoneme transition model p(F ). The isolation of the low-level acoustic-phonemic
search provides the generic nature of the first layer for a full natural language.
That is, the phoneme recognizer can function in any knowledge domain for a
specific language.

In the word decoding stage, the search algorithm has two knowledge sources
as its disposal: a morpho-phonological and a morpho-syntactic component. The
morpho-phonological component converts the phoneme network into sequences
of morphemes and hypothesizes word boundaries. Its knowledge sources include
a morpheme lexicon, constraints on morpheme sequences, and pronunciation
rules. The morpho-syntactic language model provides a probability measure for
each hypothesized word based on morphological and syntactic information of the
word and its context.

In this work, just a part of the FlaVoR architecture was exploited. Specifically,
the PLCG, shallow parsing and searching components, as shown in Fig 3 were
skipped. Instead, a full composition of transducers, including phoneme network,
sub-lexion, word-based LM is performed.
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2.2 Finite State Transducers

It is important to notice that all the knowledge sources mentioned above can
be represented as FSTs, and that all these FSTs can be combined into one
transducer. Transducers are a compact and efficient means to represents the
knowledges and are a good match for the decoding process. A Weighted finite-
state transducer, (Q, Σ ∪ {ε}, Ω ∪ {ε}, K, E, i, F, λ, ρ) is a structure with a set of
states Q, an alphabet of input symbols Σ, an alphabet of output symbols Ω, a
weight semiring K, a set of arcs E, a single initial state i, with weight λ and a
set of final states F weighted by the function ρ : F → K. A weighted finite-state
acceptor is a weighted finite-state transducer without the output alphabet.

A composition algorithm is defined as: Let T1 : Σ∗ × Ω∗ → K and T2 :
Ω∗ × Γ ∗ → K be two transducers defined over the same semiring K. Their
composition T1 ◦ T2 realizes the function T : Σ∗ × Γ ∗ → K.

Three different FST Toolkits were used for our experiments. The AT&T FSM
Toolkit [7] was basically written in C, while both RWTH FSA [8] and MIT
FST [9] Toolkits were written in C++, exploring the use of STL - the C++
Standard Template Library. In addition, the AT&T FSM Toolkit requires a
specific license agreement in order to use its source codes, while both RWTH FSA
and MIT FST are provided as open-sources. The organization of the AT&T FSM
and MIT FST is similar in which each algorithm or operation is corresponding
to an executable file. In contrast, the RWTH FSA combined all the algorithms
and the operations into just one file. Moreover, the RWTH FSA supports labels
with Unicode encoding so that it can work directly with other languages like
Chinese, Japanese etc.

In the following section, we will describe how the FLaVoR architecture is
applied to the Vietnamese automatic speech recognition.

3 The Proposed Approach

As suggested in Fig 4, our approach includes the following steps.

1. A phoneme transducer F is generated based on the corresponding acoustic
models. F contains a set of best matching phonemes with their optimal start
and end time.

2. F is composed with M , where M represents WU pronunciations, mapping
phone sequences to WU sequences according to a pronouncing dictionary.

3. The resulting FST of step 2 is composed with W , where W represents word
segmentations, mapping WU sequences to word sequences according to a
predefined lexicon.

4. Finally, the resulting FST of step 3 is composed with word-based LM G
to produces the final FST . Viterbi decoding is used to find the best path
(hypothesis) through this final FST.

Thus, each path in the composition F ◦ M ◦ W ◦ G pairs a sequence of phones
with a word sequence, assigning it a weight corresponding to the likelihood that
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Fig. 4. The proposed approach

the word sequence is pronounced. The composition L◦M ◦W ◦G can thus serve
as the modeling network for a standard Viterbi decoding in an usual way. It
is important to notice that the proposed approach may not lead to a real-time
system as it requires the composition and optimization of a series of FSTs.

Consider the abstract example illustrated in Fig 5. In this example, there are
four WUs, namely, A,B,C,D and these map respectively to four pronunciations
ab, ac, eb, ec, as shown in Fig 5-b (the symbol eps represents the empty transi-
tion). Furthermore, there are three words, AB, CD, D, represented in the UW
to word dictionary (Fig 5-c). The word-based LM is simply a bigram with its
transition from AB to CD, as in Fig 5-d. Finally, the phone transducer includes
a path for the phone sequence (a, b, a, c, e, b, e, c) , as given in Fig 5-a. By com-
posing those transducers according to the procedure mentioned above, we obtain
the final transducer, as depicted in Fig 5-e.

4 Experimental Results

In this section we present the experimental results of our approach on the Viet-
namese Broadcast News corpus (VNBN). The results include phone error rate,
word-base LM perplexity, word error rate and FST sizes.

4.1 Training Corpus and Test Data

Acoustic Training and Test Data. We used the VNBN for training and
testing [2]. The acoustic training data was collected from July to August 2005
from VOV - the national radio broadcaster (mostly in Hanoi and Saigon dialects),
which consists of a total of 20 hours. The recording was manually transcribed
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Fig. 5. An abstract example illustrating the approach

Table 1. Data for training and testing

Training Testing

Dialect Length #Sentence Length #Sentence
(hours) (hours)

Hanoi 18.0 17502 1.0 1021
Saigon 2.0 1994

Total 20.0 19496 1.0 1021

and segmented into sentences, which resulted in a total of 19496 sentences and
a vocabulary size of 3174 WUs. The corpus was further divided into two sets:
training and testing, as shown in Table 1. The speech was sampled at 16kHz and
16 bits. They were further parameterized into 12 dimensional MFCC, energy, and
their delta and acceleration (39 length front-end parameters).

Language Training Data. The language model training data comes from
newspaper text sources. In particular, a 100M-WU collection of the national
wide newspaper, VOV, was employed, which included all issues between 1998-
2005 [2]. Numeric expressions and abbreviated words occurring in the texts were
replaced by suitable labels. In addition, the transcriptions of the acoustic training
data were also added.
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Fig. 6. Initial-Final Units for Vietnamese

4.2 Acoustic Models

As depicted in Fig 6, we follow the usual approach as for Chinese acoustic mod-
eling [3] in which each syllable is decomposed into initial and final parts. While
most of Vietnamese syllables consist of an initial and an final part, some of
them have only the final. The initial part always corresponds to a consonant.
The final part includes main sound plus tone and an optional ending sound. This
decomposition results in a total number of 44 phones, as shown in Fig 6.

There is an interesting point in our decomposition scheme, which are related to
a given tone in a syllable. Specifically, we treat the tone as a distinct phoneme and
it follows immediately after the main sound. With this approach, the context-
dependent model could be built straightforwardly. Fig 7 illustrates the process
of making triphones from a syllable.

Fig. 7. Construction of triphones

We use a tree-based state tying technique in which a set of 35 left and 17 right
questions was designed, based on the Vietnamese linguistic knowledge. Initially,
all of the states to be clustered are placed in the root node of the tree and the log
likelihood of the training data calculated on the assumption that all of the states
in that node are tied. This node is then split into two by finding the question
which partitions the states in the parent node so as to give the maximum increase
in log likelihood. The process is repeated until the likelihood increase is smaller
than a predefined threshold. Fig 8 shows the split process of the decision tree
for the main sound ă.

4.3 Language Model

Both the trigram WU-based LM and the word-based LM were trained on the
text corpus mentioned above, using the SRI LM toolkit [10] with Kneser-Ney
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Fig. 8. Decision tree based state tying

smoothing. For the WU-based LM, a lexicon with the 5K most frequent WUs
was used. This lexicon gives a 1.8% OOV rate on the newspaper corpus and
about 1.0% on the VNBN. The process of building a word-based LM consists of
two steps. In the first step, the WU sentences were segmented into words using
the maximum match method. A Named-Entity list was also added to the original
wordlist at this step to improve segmentation quality. After word segmentation,
we chose the vocabulary to be the top-N most frequent words. The commonly
used WUs (5K) are added then to the vocabulary as well. In particular, a lexicon
consisting of 40K words and 5K WUs was selected. Table 2 reports the perplexi-
ties of both LMs on the same test set, containing 580 sentences randomly selected
from VOV, issued in 2006.

Table 2. WU-based and word-based perplexities

bigram trigram

WU-based LM 188.6 136.2

Word-based LM 384.5 321.4

4.4 Results

Phone Recognition Results. As mentioned in [1], the key prerequisite for
the proposed approach is the generation of high quality phoneme lattices in the
acoustic-phonemic layer. The quality of phoneme lattices is defined by both a
low phoneme error rate and a low event rate or density. The phoneme decoding
was based on the architecture described in [1] in which the decoder extends the
word-pair approximation to the phoneme level in order to assure a high quality of
the output. Hence, to obtain high quality phoneme lattices, a phoneme transition
model (an N-gram between phonemes) of a sufficiently high order N has to be
used, or the LM-context has to be artificially expanded to (M-1) phonemes. The
acoustic models used are context-dependent (CD) tied state phoneme models
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Fig. 9. Phone recognition results

(2410 states) with mixtures of tied Gaussian (48216 Gaussian) as observation
density functions.

Figure 3 shows the results of phoneme recognition experiments with N=3
and M=3 and with different lattice densities. The values on the ordinate are
the phoneme error rates (ins. + del. + sub.) of the phoneme lattice, i.e. the
error rate of that path which matches best with the reference transcription. The
values on the abscissa are the average number of events (an arc representing a
CD-phoneme) per frame in the lattice. The phone graph that results in a phone
error rate of 8% was selected as input to the second layer in our approach. As
shown in Fig 9, this is already reached with an event rate less than 4.

Size of Transducers. Table 3 reports size of the optimized transducers, in
terms of transitions. They include:

– the 5162-WU pronunciation dictionary M .
– the 39882-word lexicon W .
– the trigram word-based LM G, built as mentioned in the previous subsection.
– the phone transducer F - the report number is the average number of tran-

sitions over the sentences in the test set.
– the final composed transducer FT , also average over the test sentences.

There are two main observations obtained from the experiment. Firstly, the
optimized transducers have acceptable sizes, even with a trigram word-based

Table 3. Size (number of arcs) of transducers mentioned in Fig 4

FST(MIT) FSA(Aachen) FSM (AT&T)

F 4681 6112 4868
M 18741 21635 20196
W 52131 58472 54618
G 3491884 3689128 3512841

FT 58918 66121 64767



Vietnamese Automatic Speech Recognition: The FLaVoR Approach 473

LM. Secondly, the MIT FST Toolkit performed best in the optimization, though
the differences are not significant. Although the computing time is not reported
here, our experiments showed that the AT&T FSM Toolkit is the fastest one.

Word Error Rate. Finally, we report the WU error rate of the new approach
and compare the results with the previous work [2] (the baseline). The acoustic
model in [2] is identical to the one described in this paper. The LMs however
differs. In the previous work, the LM was trained on WU level while in this work,
the LM was trained on word level. Moreover, both experiments used the same
training and testing sets, given in Table 1.

Table 4. The WU error rate for the two approaches

bigram trigram

Baseline 20.8 19.1

The new approach 19.0 17.8

As shown in Table 4, the new approach shows significant improvements over
the previous results. It is also observed that the WU error rate with trigram WU-
based LM is roughly comparable to the one obtained with a bigram word-based
LM.

5 Conclusion

We presented a different approach for recognizing the languages in the Southeast
Asia, of which the boundary between words is not clear. The main advantage of
our approach is that, it allows for an easier integration of different knowledge
sources. In this paper, we used FST as a tool for combining the phoneme net-
work with the word-based LM to demonstrate the idea. Experimental results on
VNBN showed that our approach is both robust and flexible.
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Abstract. Many approaches to automatic spoken language identification (LID) 
on monolingual speech are successfully, but LID on the code-switching speech 
identifying at least 2 languages from one acoustic utterance challenges these 
approaches. In [6], we have successfully used one-pass approach to recognize 
the Chinese character on the Mandarin-Taiwanese code-switching speech. In 
this paper, we introduce a classification method (named syllable-based duration 
classification) based on three clues: recognized common tonal syllable tonal 
syllable, the corresponding duration and speech signal to identify specific 
language from code-switching speech. Experimental results show that the 
performance of the proposed LID approach on code-switching speech exhibits 
closely to that of parallel tonal syllable recognition LID system on monolingual 
speech.  

Keywords: language identification, code-switching speech. 

1   Introduction 

Code-switching is defined as the use of more than one language, variety, or style by a 
speaker within an utterance or discourse. It is a common phenomenon in many 
bilingual societies. In Taiwan, at least two languages (or dialects, as some linguists 
prefer to call them) - Mandarin and Taiwanese- are frequently mixed and spoken in 
daily conversations.  

For the monolingual LID system development, the parallel syllable recognition 
(PSR) was adopted, which is similar to the method of parallel phone recognition 
(PPR), and this approach is widely used in the automatic LID researches. [1,-5] Here, 
the reason to use syllable as the recognized result instead of phone is because both 
Taiwanese and Mandarin are syllabic languages. Another approach, which is called 
parallel phone recognition followed by language modeling (parallel PRLM), used 
language-dependent acoustic phone models to convert speech utterances into 
sequences of phone symbols with language decoding followed. After that, these 
acoustic and language scores are combined into language-specific scores for making 
an LID decision. Compared with parallel PRLM, PSR uses integrated acoustic models 
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to allow the syllable recognizer to use the language-specific syllabic constraints 
during decoding process, and it is better than applying those constraints after syllable 
recognition. The most likely syllable sequence identified during recognition is optimal 
with respect to some combination of both the acoustics and linguistics. 

However, all these approaches were confronted with an apparent difficulty. That is, 
they use speech signal length in sentence level or 10-45 seconds as test speech and 
then the language is decided by which gets maximum number of unique phonetic unit 
is noted as the winner for the test utterance. In our case, code-switching speech, the 
length of language changing may be intra-sentence or word-based level, and we can 
not identify the language using above approach, because there may have at least two 
languages embedded in a test utterance. Therefore, we have to decide the language 
identity in a very short time of speech utterance.  

In this paper, we propose an alternative to deal with the code-switching speech LID 
task, which is SBDC (syllable-based duration classification). This framework could 
identify the language in syllable level which avoids the shortcoming of LID system in 
sentence or utterance-based utterances. Besides, to identify a language in each 
syllable that performs more precise language boundary in the code-switching speech. 
In this framework, we, firstly, extract acoustic and pitch features from code-switching 
utterance, secondly, the features are recognized as tonal syllable by our pervious 
recognizer [6]. Thirdly, by given the tonal syllable and its duration information, we 
use SBDC to identify the language for each common tonal syllable. Finally, the 
language smoother modifies the language identify in a statistical approach form 
training a code-switching speech corpus. 

The structure of the paper is as follows: A LVCSR-based LID system is introduced 
in Section 2. The phonetic characteristic between Mandarin and Taiwanese is 
introduced in Section 3. In Section 4 the SBDC-based LID system is described. 
Finally, the performed experiments and achieved results are presented. 

2   LVCSR-Based LID 

It is known that LVCSR-based systems achieve high performance in language 
identification since they use knowledge from phoneme and phoneme sequence to 
word and word sequence. In [7], the LVCSR-based systems were shown to perform 
well in language identification. Unlike mono-lingual speech LID system [8], we 
implement a multi-lingual LVCSR-based system [9] as our code-switching speech 
LID baseline system. Fig 1 shows a block diagram of the system which includes two 
recognizers and each recognizer contains its won acoustic model and language model, 
such as AMT, LMT. 

In this paper, the multi-lingual LVCSR-based system requires significant tonal 
syllable level transcribed Mandarin and Taiwanese speech data for training the 
acoustic and language models. During the test phase, the recognizer is employed a 
unified approach to recognize each tonal syllable. The step of decoding translates 
each tonal syllable to its won language by phonetic knowledge. It is among the most 
computationally complex algorithms and achieves very high language identification 
accuracy. 
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Fig. 1. A diagram of the unified LVCSR-based LID architecture for code-switching speech 

3   Linguistic Characteristics of Mandarin and Taiwanese 

In order to achieve reasonable identification accuracy in Taiwanese and Mandarin 
identification, it is necessary to understand how languages differ. They differ in the 
following ways: 

1. Phonemic System: 
2. Tone (e.g., Mandarin has four tones , Taiwanese has seven tones) 
3. Tonal Syllable (there are 677 tonal syllables only belonging to Mandarin, 2231 

ones only belonging to Taiwanese, and 610 tonal syllables exist in both languages by 
using IPA notation) 

4. Lexical distribution 
5. Rhythmical characteristics  
6. Pace (average number of tonal syllables uttered per second) or tonal syllable 

duration 
7. Intonation or lexical stress 

The duration distribution of common tonal syllables (610) estimating from training 
corpus is shown in Fig 2, and they have different mean and variation. The numbers of 
the total sample for Mandarin are 54371 samples and 39589 samples for Taiwanese. 
The syllable duration of Taiwanese is about 04 sec. and 0.3 sec. for Mandarin 
syllable. 

 

Fig. 2. The average duration distribution of common tonal syllables in Taiwanese (left) and 
Mandarin (right). The x-axle is the duration in second unit and y-axle is the number of common 
tonal syllable. (610 is the total value if the summing all y-axle value in x-axle).  
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4   SBDC LID 

From the analysis of sec 3, we have an idea to discriminate Taiwanese from Mandarin 
by the duration discrepancy of the common tonal syllables. Thus, in this section, we 
develop a new approach to identify language for each tonal common syllable on code-
switching speech. 

4.1   System Overview 

There are five components, including a feature extractor, a unified speech recognizer, 
a common tonal syllable extractor and a language smoother, in our code-switching 
LID system. Figure 3 illustrates the process, and the procedures are as the followings: 

1) The code-switching speech input utterance is pre-extracted into a sequence of 
MFCCs-based feature vectors )o,...,o,o(O TT 21= with the length (frame number) T.  

2) The unified speech recognizer [6] receives the features as the input and finds the 
best hypothesis tonal syllable )s,...,s,s(S NN 21= and its corresponding duration 

RD , where N is the distinct tonal syllables for all the languages and R is the real 

number which represents the duration of each hypothesis tonal syllable. 
According to the pronunciation dictionary, each of the hypothesis tonal syllable 
is further represented by the language code }c,t,m{L = , where m represents 

Mandarin, t represents Taiwanese and c means common language. The tonal 
syllables with the common language mean that they exist in both Mandarin and 
Taiwanese, and this kind of phenomenon is caused by the union phonetic 
representation of the unified speech recognizer. An example is shown in the 
figure 4. 

3) We only extract the speech segment with common language, 
cS , for discrimina- 

ting between Mandarin and Taiwanese.  
4) The three parameters, 

TO , 
cS  and 

RD  are as the inputs to train the syllable-based 

duration classifier (SBDC). The output is language specific tonal syllable, 
ctS  

and 
cmS  for instance. This part will describe particularly in the section 4.2.   

5) In practice, the unit of code-switching language appears as a word whose unit 
exceeds duration. Under this assumption, the smoothing process is involved to 
eliminate the unreasonable language switching with a short interval by the 
language modeling after joining the parts of 

cmS , 
ctS  and 

tS , 
mS . The final output is 

m~S or 
t~S which is a tonal syllable with the language identity of Mandarin or 

Taiwanese. 

4.2   Probabilistic Framework 

The most likely language 
iL by given three parameters: the acoustic information TO , the 

common tonal syllable cS , and its duration RD , is found using the following expression:  

     ),,|(maxarg     RcTi
i

T DSOLP) Li(O =  (1) 
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Fig. 3. The flow chart of SBDC LID system 

 

Fig. 4. Example of language code 

Using standard probability theory, this expression can be equivalently written as  

   )()|(),|(),,|(maxarg iicciRRciT
i

Ti LPLSPSLDPDSLOP)(OL =  (2) 

The four probability expressions in (2) are organized in such a way that duration 
and common tonal syllable information are contained in separate terms. In modeling, 
these terms become known as  

1. )D,S,L|O(P RciT
Common tonal syllable acoustic model.  

2. )S,L|D(P ciR
Duration model.  
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3. )L|S(P ic
The phonetic language model. 

4. )( iLP The a priori language probability.  

Assuming that a priori language probability for each language on code-switching 
speech is equal, and phonetic language model for common hypothesis tonal syllable is 
also equal. The hypothesized language is determined by maximizing the log-
likelihood of language 

iL  with respect to speech 
TO  and is estimated as follows: 

 )},|(log),,|({logmaxarg ciRRciT
i

Ti SLDPDSLOP)(OL +=  (3) 

According to [3], the syllabic information is contained in two separate models: the 
syllabic acoustic model and the syllabic duration model, which are shown in Fig 5. In 
subsequent sections these models will simply be referred to as the acoustic model and 
the duration model. The acoustic model accounts for the different acoustic realizations 
of the syllabic elements that may occur across languages, whereas the duration model 
accounts for the probability distributions of the syllabic elements, and captures the 
differences that can occur in duration structures of different languages due to the 
boundary or segmented created by variations in the common tonal syllabic durations. 
This organization provides a useful structure for evaluating the relative contribution 
towards language identification that acoustic and duration information provide. 

 

Fig. 5. Illustration of syllable-based duration classifier component 

4.3   Acoustic Model of SBDC 

The expression )L,D,S|O(P iRcT
is called the acoustic model, which is used to capture 

information about the acoustic realizations of each of the common tonal syllable used 
in each language. However, the duration of each common tonal syllable is a real 
number form 0 to 1 and that is parametric difficultly. To simplify the parameter of the 
acoustic model, like the idea of [1], the duration R of the RD  for each common tonal 

syllable cS is quantized into two levels: long and short, by the following steps: 

Step1: Forced alignment: 
In the training phase, we need to get the duration for each tonal syllable, because our 
transcription of the training speech only contains the pronunciation, not including 
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duration information. Therefore, we used HMM-based method to get the duration 
value of each tonal syllable by forced alignment approach on training corpora for both 
languages.  
Step2: Average duration estimation: 
A histogram of duration for each tonal syllable emitted from forced alignment is 
collected and the average duration determined. 
Step3: Quantization: 
A –L suffix is appended to all tonal syllables having duration longer than the average 
duration for that tonal syllable, and –S suffix is appended to all tonal syllables having 
duration shorter than the average duration for that tonal syllable. The diagram for 
these steps for language i is illustrated in the Fig. 6 

 

Fig. 6. An example of tagging quantized duration for each common tonal syllable (Form RD  to 

lD  or 
sD ) 

4.4   Duration Model of SBDC 

The expression )S,L|D(P ciR
 captures the segment duration information in a common 

tonal syllable. While there may be very useful information to separate the difference 
between Mandarin and Taiwanese in syllable level. The probability can be modeled 
with a mixture of Gaussian models. The Gaussians in each mixture are then iteratively 
re-estimated to maximize the average likelihood score of the vectors in the training 
data. To ensure proper amounts of training data for each mixture of Gaussians, the 
number of Gaussian used to model each syllable in each language is determined by 
the amount of the training data.  

4.5   Language Smoother (LS) 

The goal of the language smoother is to modify the language identity to be more 
reasonable in language switching by an N-gram language model trained from a real 
code-switching corpus. An example is shown in Fig 7. 
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Fig. 7. An example for merging language identification results by language smoother 

5   Experiments and Results 

The goal of the experiment is to verify that SBDC-based system could have high 
accuracy syllable LID rate and to outperform a LVCSR-based system. In addition, we 
also evaluate the performance of our proposed approach is close to that on monolingual 
speech which maybe the upper bound performance on code-switching speech. 

5.1   Corpus and Experiment Setup 

The speech corpus used in all the experiments were divided into three parts, namely, 
the training set, evaluating set  and the testing set. The training set consists of two 
mono-lingual Taiwanese and Mandarin speech data, which includes 100 speakers. 
Each speaker read about 700 phonetically abundant utterances in both languages. The 
evaluating set is to train the back-off bi-gram code-switching language model, which 
estimates the probability of language translation, and adapts the threshold of syllable 
duration quantizer. For testing data set, another 12 speakers were asked to record 
3000 Mandarin-Taiwanese code-switching utterances. Among these utterances, at 
least one Taiwanese word is embedded into a Mandarin carrier sentence. The length 
of each word is various from one to eight syllables. The statistics of the corpus used 
here are listed in Table 1. 

The acoustic features used in SBDC are the same with in [5], they are: mel-
frequency cepstral coefficients (MFCC) which includes 12 cepstral coefficients, 
normalized energy and prosody information. The first and second derivatives of 
parameters are also included. The acoustic model of SBDC is used HMM-based 
approach in tonal syllable unit with duration tag for both languages, and each HMM 
has seven states. We have 2440 (610 common tonal syllables, and each one has two 
duration classes and two languages) HMM, and the final number of the mixture in 
each state dependents on the occurrence of training data. The more the training data of 
the state has, the more of the mixture number is.  

5.2   Results 

We compare the LID performance on two different types of speech: f monolingual 
speech, and on code-switching speech. The contents of these two sets are the same, 
because we used manual segment to extract the part of monolingual speech form 
code-switching speech. For the monolingual speech, we used parallel tonal syllable 
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Table 1. Statistics of the bi-lingual speech corpus used for training and testing sets.  
M: Mandarin, T: Taiwanese, CS: code-switching utterances. 

 Language No. of Speakers No. of Syllable No. of Hours 

M 100 112,032 11.3 Training set 

T 100 124,768 11.2 

Evaluating set CS 4 12,680 1.10 

Test set CS. 12 41,681 3.31 

recognition approach [5], and the approach is similar with PPR [1]. On the other 
hands, for the code-switching speech, we used three approaches which are LVCSR-
based approach, SBDC and SBDC+LS. The last one is SBDC approach adding the 
language smoother. The 10K and 20K vocabulary size of SBDC and SBDC+LS 
approaches are followed the experimental condition of [6], because, before do SBDC 
approach, we need the recognized tonal syllable form unified ASR in [6]. The results 
are listed in the Table2. 

The experimental result for the monolingual speech has the highest LID accuracy 
rate, 88.05%, and this is the experimental upper bound performance of LID on code-
switching speech using our method.  

On the code-switching speech, using SBDC+LS approach has the best performance 
which is close to that in the monolingual speech. Both of the performances of using 
SBDC approach are more outstanding than LVCSR-based approach, the critical 
reason is according to the useful information such as duration of tonal syllable used 
during decision process.  

Table 2. The LID accuracy rate for different approaches 

 LID accuracy rate (%) 

monolingual speech 88.05 
code-switching speech 10K 20K 

LVCSR-based 82.14 81.93 
SBDC 86.08 84.78 
SBDC+LS 87.53 85.91 

6   Conclusion 

In this paper, we used three clues: recognized common tonal syllable tonal syllable, 
the corresponding duration and speech signal, building a SBDC LID system to 
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identify specific language from code-switching speech. The system’s architecture is 
factorized as HMM-based quantized duration acoustic model in tonal syllable, GMM-
based duration model and language smoother. The experimental results show a 
promising performance on LID accuracy rate to compare with the LVCSR-based 
system and the performance also approaches that in monolingual speech by using 
PSR method. 
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Abstract. For the special session on speaker recognition of the 5th 
International Symposium on Chinese Spoken Language Processing (ISCSLP 
2006), the Chinese Corpus Consortium (CCC), the session organizer, developed 
a speaker recognition evaluation (SRE) to act as a platform for developers in 
this field to evaluate their speaker recognition systems using two databases 
provided by the CCC. In this paper, the objective of the evaluation, and the 
methods and the data used are described. The results of the evaluation are also 
presented. 

Keywords: Speaker recognition, Evaluation. 

1   Introduction 

Speaker recognition (or voiceprint recognition, VPR) is an important branch of 
speech processing with applications in many fields, including public security, anti-
terrorism, forensics, telephony banking, and personal services. However, there are 
still many fundamental and theoretical problems to solve, such as issues with 
background noise, cross-channel recognition, multi-speaker recognition, and 
difficulties arising from short speech segments for training and testing [1-3]. 

In addition to inviting researchers to present their state-of-the-art achievements in 
various aspects of the speaker recognition field, this special session on speaker 
recognition of the 5th International Symposium on Chinese Spoken Language 
Processing (ISCSLP 2006) provides a platform for VPR developers to evaluate their 
speaker recognition systems using two databases provided by the Chinese Corpus 
Consortium (CCC). This paper is organized as follows. In Section 2, an overview of 
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the evaluation is given. Details of the evaluation are described in Section 3. The 
summary and further perspectives on the evaluation are given in Section 4. 

2   Overview of the Evaluation 

2.1   Organizer 

This speaker recognition evaluation (SRE) was organized by the CCC. The CCC was 
founded in March 2004, sponsored by Dr. Thomas Fang Zheng and co-founded by 8 
universities, institutes and companies. The aim of the CCC is to provide corpora for 
Chinese ASR, TTS, NLP, perception analysis, phonetics analysis, linguistic analysis, 
and other related tasks. The corpora can be speech- or text-based; read or 
spontaneous; wideband or narrowband; standard or dialectal Chinese; clean or with 
noise; or of any other kinds which are deemed helpful for the aforementioned 
purposes. Currently there are numerous corpora available from the CCC. For more 
information, readers can refer to the official website of the CCC 
(http://www.CCCForum.org) and paper [4]. 

2.2   Objective 

The purpose of this SRE is to provide an opportunity for VPR researchers and 
developers to exchange their ideas and to help push forward, especially, 
corresponding work on Chinese language data. It can be seen as a specially focused 
event, similar to other well-known events (e.g. the speaker recognition evaluations 
carried out by NIST [5-7]). 

3   The CCC 2006 SRE 

Detailed information on the CCC 2006 SRE is given in this section. 

3.1   Task Definition 

The CCC 2006 SRE covers the following six tasks: 

1) Text-dependent single-channel speaker verification. 
2) Text-independent single-channel speaker verification. 
3) Text-dependent cross-channel speaker verification. 
4) Text-independent cross-channel speaker verification. 
5) Text-independent single-channel speaker identification. 
6) Text-independent cross-channel speaker identification. 

All of the above tasks are optional for participants. 
Please note that for text-dependent speaker-verification tasks in this evaluation 

(both single-channel and cross-channel), a test sample is treated as a true speaker trial 
only when both the speaker identity and the content match those of the training 
samples. 
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3.2   Performance Measure 

The methods for measuring the performance of the participating systems are 
described below. 
(1) Speaker Verification 
 
The performance of a speaker verification system is evaluated by a Detection Error 
Tradeoff (DET) curve and a detection cost function (CDet) [6]. The CDetis defined as a 
weighted sum of miss and false alarm error probabilities:  

( )1Det Miss Miss Target FalseAlarm FalseAlarm TargetC C P P C P P= × × + × × −  (1) 

where CMiss and CFalseAlarm are the relative costs of miss errors and false alarm errors, 
and PTarget is the a priori probability of the specified target speaker (in this evaluation, 
these parameters are set as in Table 1). PMiss and PFalseAlarm are the miss probability and 
false-alarm probability, respectively. A miss error occurs when a true speaker model 
of a test segment is rejected, while a false alarm error occurs when an impostor model 
of a test segment is accepted. The miss probability is defined as 

×100%Miss
Miss

VS

N
P

N
=  (2) 

where NMiss is the number of miss errors and NVS is the number of true speaker trials. 
The false alarm probability is defined as 

×100%FalseAlarm
FalseAlarm

VI

N
P

N
=  (3) 

where NFalseAlarm is the number of false alarm errors and NVI is the number of impostor 
trials. 

Table 1. Speaker verification cost model parameters 

CMiss CFalseAlarm PTarget 
10 1 0.05 

 
(2) Speaker Identification 
 
The performance of a speaker identification system is evaluated by its Identification 
Correctness Rate (PIC), which is defined as:   

ICP = ×100%IC

IT

N

N
 (4) 

where NIC is the number of correctly identified segments. A correctly identi- 
fied segment means that the system should output the model speaker’s identity as  



488 T.F. Zheng et al. 

top-candidate for “in-set” tests, and output a “non-match” flag for “out-of-set” tests. 
NIT is the total number of trial segments. 

3.3   Corpora 

The data sets, including development data and evaluation data, were extracted from 
two CCC databases, CCC-VPR3C2005 and CCC-VPR2C2005-1000. 

CCC-VPR3C2005: This corpus contains two subsets, one for text-independent 
VPR and the other for text-dependent VPR. This corpus can also be used for multi-
channel or cross-channel VPR research, because each sentence (in Chinese) was 
simultaneously recorded through three different types of microphones. The three 
types of microphones are labeled with ‘U’, ‘L’, and ‘R’, respectively. All samples are 
stored in Microsoft wave format files with a 48 kHz sampling rate, 16-bit PCM, and 
mono-channel. 

CCC-VPR2C2005-1000: This corpus contains speech from 1,000 male speakers 
aged 18-23, each of whom was required to utter 40 Chinese sentences in the given 
order. All utterances were required to be made twice, speaking clearly and naturally 
without any attempt to disguise the voice. For each speaker, the first time the 
utterance was recorded through a GSM mobile phone and the second time the 
utterance was recorded through a landline telephone. 

For more details on these two data sets, please visit the homepage of the CCC and 
check their corresponding links on the “Corpora” page. 

Although the participants were allowed to use the data set(s) they already had to 
develop their system(s), the CCC also provided them with development data, and all 
tests were performed on the evaluation data later provided by the CCC. All the wave 
files in the selected data sets are of 8 kHz sample rate, 16-bit precision, mono, linear 
PCM format (some of them were converted from different sample rates). 

3.4   Development Data 

Two development data sets were provided, one for text-independent tasks and one for 
text-dependent tasks. 
 
(1) Development Data for Text-Independent Tasks 

 
This data set is taken from CCC-VPR2C2005-1000. It contains data from 300 
speakers randomly selected from the original 1,000 speakers. Data for each speaker 
includes 2 utterances, corresponding to one land-line (PSTN) channel utterance and 
one cellular-phone (GSM only) channel utterance. So the development data includes a 
total of 600 (=300×2) utterances. 

Each utterance is divided into several segments, where there is at least 1 segment 
longer than 30 seconds, which can be used to train the speaker model. The other part 
is divided into several shorter segments, which can be used for testing. The order of 
the segments of different lengths in an utterance is determined randomly. 
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The relationships between the segment files and their speaker identities are defined 
in a key file shipped with the data set. This file also includes other necessary 
information, such as channel type and gender. 

 
(2) Development Data for Text-Dependent Tasks 
 
This data set is taken from CCC-VPR3C2005. It contains utterances partly selected 
from 5 male speakers’ data and 5 female speakers’ data. The data can be used as 
samples to listen or to perform some simple tests, but it is not sufficient to be used for 
clustering, for example, training channel-specific UBMs as the other data set can. In 
this data set, each speaker’s data comes from three microphones, marked as micl, 
micr, and micu, respectively. For each channel, the data for each speaker includes 5 
utterances repeated 4 times, as well as 21 other unrepeated utterances. The 
relationship between the segment files and their speaker identity are defined in a key 
file shipped with the data set. This file also includes other necessary information, 
including channel type and gender. 

This data set also provides transcriptions for the training utterances, which can be 
accessed via the indexes listed in the key file. 

3.5   Evaluation Data 

The general features of the evaluation data, such as involved channel types and 
speaking styles, are the same as those of the development data. However, the speakers 
in the two stages’ data sets do not overlap. 

The training and trial lists were shipped with the evaluation data set, which covers 
the predefined evaluation tasks, i.e., combinations of text-independent or text-
dependent, identification or verification, single-channel or cross-channel. For 
verification tasks, the ratio of testing samples for true-speakers and imposters is about 
1:20; while for identification tasks, the ratio of testing samples for in-set (matched) 
and out-of-set (non-matched) cases is about 1:1. 

The key files mapping test samples with their speaker identities were sent to the 
participants, along with the performance rankings and evaluation scripts, after all 
results were received and verified. 

3.6   Participants 

Eight research sites participated in the CCC 2006 SRE. The sites and their affiliations 
are: 

 NTUT-EE: Speech Lab, Department of Electronic Engineering, National 
Taipei University of Technology, Taipei. 

 UVA-CS: Computer Science Department, Universidad de Valladolid, 
Valladolid 

 CUHK-EE: Department of Electronic Engineering, The Chinese 
University of Hong Kong, HKSAR. 

 THU-EE: Department of Electronic Engineering, Tsinghua University, 
Beijing. 
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 I2R-SDPG: Speech and Dialogue Processing Group, Institute for 
Infocomm Research, Singapore. 

 EPITA: BiOSECURE-EPiTA-FRiBOURG-GET, Le KREMLiN-
BiCETRE 

 UT-ITS: Institute of Technology and Science, The University of 
Tokushima, Tokushima 

 SINICA-IIS: Institute of Information Science, Academia Sinica, Taipei. 

3.7   Results 

Although in total there were 6 tasks, no results for text-dependent single-channel 
speaker verification were submitted. A total of 17 systems from the eight participants 
were submitted for the remaining 5 tasks. 
 
(1) Identification tasks 

 

Only one test result for the text-independent cross-channel speaker identification task 
(abbreviated as i-ti-c) and two test results for the text-independent single-channel 
speaker identification task (abbreviated as i-ti-s) were submitted. The PIC’s of these 
systems are shown in Table 2. 

 

Fig. 1. DET curves for the v-ti-s task 

(2) Verification tasks 
 

The remaining 14 systems were for the verification tasks, particularly, 6 for the text-
independent single-channel speaker verification task (abbreviated as v-ti-s), 7 for the 
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text-independent cross-channel speaker verification task (abbreviated as v-ti-c) and 1 
for the text-dependent cross-channel speaker verification task (abbreviated as v-td-c). 

Table 2. Identification test results 

 i-ti-c i-ti-s 
Sys1 86.45%  
Sys2  99.33% 
Sys3  97.16% 

The DET curves and corresponding minimum CDets for the above tasks are given in 
Fig. 1 and Table 3, Fig. 2 and Table 4, Fig. 3 and Table 5, respectively. Note that the 
system IDs for each task are assigned independently. 

Table 3. The minimum CDets for the systems in the v-ti-s task 

System Sys1 Sys2 Sys3 Sys4 Sys5 Sys6 
CDet (×100) 1.1 2.1 3.0 0.6 0.8 1.6 

 

Fig. 2. DET curves for the v-ti-c task 

Table 4. The minimum CDets for the systems in the v-ti-c task 

System Sys1 Sys2 Sys3 Sys4 Sys5 Sys6 Sys7 
CDet (×100) 8.6 5.1 5.2 8.2 17.8 8.2 11.5 
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Fig. 3. DET curves for the v-td-c task 

Table 5. The minimum CDets for the systems in the v-td-c task 

System Sys1 
CDet (×100) 3.53 

 
As shown in the above results for the text-independent identification and 

verification tasks, the overall system performance in a cross-channel environment is 
worse than that in a single-channel environment, even though the cross-channel 
environment involves only two channel types, GSM and land-line. This phenomenon 
reveals that the channel effect is still a great impediment for speaker recognition. In 
light of this, the CCC is planning to collect corpora covering more complicated cross-
channel environments, including various transmission channels and handsets. 

4   Summary and Perspective 

The CCC 2006 SRE began on Feb. 01, 2006 [8], and the conference presentation will 
be held on Dec. 16, 2006. Although this is the first time for this evaluation event to be 
carried out, the CCC would like to continuously support, improve and develop it into 
a series of events in the near future. This SRE was designed to be open to all, with 
announced schedules, written evaluation plans and follow-up workshops. The purpose 
of the evaluation is to provide additional chances for researchers and developers in 
this field to exchange their ideas and to help push forward, especially,  corresponding 
work on Chinese language data. The CCC intends to use the experience gained this 
year in designing future evaluations. Any site or research group desiring to participate 
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in future evaluations is welcome, and should contact Dr. Thomas Fang Zheng 
(fzheng@tsinghua.edu.cn). 
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Abstract. This paper describes the design and implementation of a practical 
automatic speaker recognition system for the CSLP speaker recognition 
evaluation (SRE). The speaker recognition system is built upon four subsystems 
using speaker information from acoustic spectral features. In addition to the 
conventional spectral features, a novel temporal discrete cosine transform 
(TDCT) feature is introduced in order to capture long-term speech dynamic. 
The speaker information is modeled using two complementary speaker 
modeling techniques, namely, Gaussian mixture model (GMM) and support 
vector machine (SVM). The resulting subsystems are then integrated at the 
score level through a multilayer perceptron (MLP) neural network. Evaluation 
results confirm that the feature selection, classifier design, and fusion strategy 
are successful, giving rise to an effective speaker recognition system. 

1   Introduction 

Speaker recognition is the process of automatically establishing personal identity 
information by analyzing speech utterances [1]. The goal of speaker recognition is to 
identify people by voice. This paper describes and evaluates an automatic speaker 
recognition system that addresses two different tasks, namely, speaker verification 
and speaker identification. Speaker verification is the task of validating a claimed 
identity, whereas speaker identification refers to the task of determining who is 
speaking [1, 2]. Speaker recognition technology has been found important in various 
applications, such as, public security, anti-terrorism, justice, and telephone banking. 

As part of the 5th International Symposium on Chinese Spoken Language 
Processing (ISCSLP 2006), a special session on speaker recognition is organized by 
the Chinese Corpus Consortium (CCC) [3]. The CSLP speaker recognition evaluation 
(SRE) aims to provide a common platform for researchers to evaluate their speaker 
recognition systems. The focus of the CSLP SRE is on Chinese speech, as opposed to 
some other well-known SRE events, e.g., those carried out by National Institute of 
Standards and Technology (NIST) [4], which focus on English speech. The CSLP 
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2006 SRE includes text-dependent and text-independent speaker recognition tasks 
under single-channel and cross-channel training-testing conditions. In this paper we 
focus on the text-independent speaker verification and identification tasks. 

The development and evaluation sets provided for the text-independent tasks of the 
CSLP 2006 SRE are derived from the CCC-VPR2C2005-1000 corpus (CCC 2-
channel corpus for voiceprint recognition 2005–1000 speakers) [3]. The development 
set contains telephone speech utterances from 300 male speakers, while the evaluation 
set involves 700 male speakers. The speakers in the two datasets do not overlap. In 
both datasets, the duration of training samples is guaranteed to be approximately 
longer than 30 seconds, however, the test segments are much shorter. 

Table 1. CSLP 2006 SRE evaluation categories 

  Text independent Text-dependent 

Single channel ×  
Speaker verification 

Cross channel ×  

Single channel ×  
Speaker identification 

Cross channel ×  

 

Fig. 1. An automatic speaker recognition system built upon four subsystems. Three different 
features (MFCC, LPCC, and TDCT) and two different speaker modeling techniques (SVM and 
GMM) are employed in the subsystems. 

This paper describes the design and implementation of a practical automatic 
speaker recognition system for the CSLP 2006 SRE. The Speech and Dialogue 
Processing Group of Institute for Infocomm Research (IIR) participates in four (see 
checked boxes in Table 1) out of the six evaluation categories (see shaded boxes in 
Table 1) of this year SRE event. Our submission is built upon four subsystems using 
speaker information from acoustic spectral features [2, 5, 6, 7], as illustrated in Fig. 1. 
The speaker information represented in various forms is modeled using Gaussian 
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mixture model (GMM) [7, 8] and support vector machine (SVM) [9, 10]. Feature 
extraction and speaker modeling techniques employed in the subsystems are 
described in Section 2 and Section 3, respectively. The specifications of the 
subsystems, together with the system integration issue, are then detailed in Section 4. 
In Section 5, the evaluation results are presented. Finally, Section 6 concludes the 
paper. 

2   Feature Extraction 

As the front-end of the automatic speaker recognition system, the function of the 
feature extraction is to parameterize an input speech signal into a sequence of feature 
vectors [2]. The purpose of such transformation is to obtain a new representation of 
the speech signal, which is more compact and allows a tractable statistical modeling. 
Our speaker recognition system uses two basic sets of acoustic spectral features, 
namely, the mel-frequency cepstral coefficients (MFCC) and the linear prediction 
cepstral coefficients (LPCC) [2, 5, 7]. A third set of features is derived from the 
MFCC features by taking the discrete cosine transform (DCT) along the time axis, 
hence the name temporal DCT (TDCT) features [6]. 

2.1   Mel-Frequency Cepstral Coefficients 

Prior to feature extraction, the input speech signal is pre-emphasized using a first 
order finite impulse response filter (FIR) with its zero located at 0.97z = . The pre-
emphasis filter enhances the high frequencies of the speech signal, which are 
generally reduced by the speech production process [7].  

MFCC feature extraction begins by applying a discrete short-time Fourier 
transform (STFT) on the pre-emphasized speech signal, using a 30 ms Hamming 
window with 10 ms overlap between frames. The magnitude spectrum of each speech 
frame, in the frequency range of 0 to 4000 Hz, is then weighted by a set of 27 mel-
scale filters [5]. The mel-scale filter bank emulates the critical band filters of human 
hearing mechanism. Finally, a 27-point DCT is applied on the log energy of the mel-
scale filter bank outputs giving rise to 27 cepstral coefficients. The first coefficient is 
discarded, and the subsequent 12 coefficients are taken to form a cepstral vector. 
Delta and delta-delta features are computed over a 1±  frame span and appended to 
the cepstral vector, forming a 36-dimensional MFCC feature vector. The delta and 
delta-delta features contain the dynamic information about the way the cepstral 
features vary in time. 

2.2   Linear Prediction Cepstral Coefficients 

In addition to the MFCC feature, the input speech signal is also parameterized in 
terms of LPCC, which we believe is able to provide complementary information to 
the MFCC features. Similar to that of the MFCC feature, the LPCC feature is 
extracted from the pre-emphasized speech signal using a 30 ms Hamming window 
with 10 ms overlap between frames. For each of the speech frame, an 18th order 
linear prediction analysis is performed using the autocorrelation method. Finally, 18 
cepstral coefficients are derived from the LP coefficients. Dynamic information of the 
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features is added by appending delta features, resulting in a 36-dimensional LPCC 
feature vector. Note that we do not include delta-delta features. Preliminary 
experiment on the NIST 2001 SRE dataset shows that a better performance can be 
achieved with the current setting. 

2.3   Temporal Discrete Cosine Transform 

In MFCC features, the delta and delta-delta features capture short-term dynamic 
information in the interval ranging from 50 to 100 ms. However, this interval is 
insufficient for longer term “high-level” features like prosodic gestures, and syllable 
usage. TDCT encodes the long-term dynamic of the cepstral features by taking the 
DCT over several frames [6]. Fig. 2 illustrates the TDCT features computation 
procedure. Each cepstral coefficient is considered as an independent signal which is 
windowed in blocks of length B. DCT is applied on each block, and the lowest L DCT 
coefficients, which contain most of the energy, are retained. Suppose we have M 
coefficients in the MFCC feature vector, the DCT coefficients can be stacked to form 
a long vector of dimensionality M L×  . The next TDCT vector is computed by 
advancing the block by one frame. Experimental results show that a block size of B = 
8 frames, and L = 3 for the DCT, give the best performance on the NIST 2001 SRE 
dataset [6]. The resulting TDCT feature vector has a dimension of 36×3 = 108, and 
corresponds to a total time span of 250ms. 
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Fig. 2. Illustration of the TDCT features computation [6] 

2.4   Voice Activity Detection 

An energy-based voice activity detector (VAD) is applied after feature extraction. The 
VAD decides which feature vectors correspond to speech portions of the signal and 
which correspond to non-speech portions (i.e., silence and background noise). In 
particular, we use a GMM with 64 components to model the energy distribution of the 
speech frames pertaining to each of the two classes. The GMMs are trained 
beforehand using the development set of the NIST 2001 SRE corpus. The decision is 
then made through a likelihood ratio test, whereby speech frames with their energy 
having a higher likelihood with the speech GMM are retained, while those having a 
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higher likelihood with the non-speech GMM are discarded. Recall that a TDCT 
feature vector is derived from a block of B MFCC feature vectors. If most of the 
MFCC facture vectors in a certain block belong to speech portion, then the TDCT 
feature vector derived from that specific block can be determined to be corresponding 
to speech portion. In our implementation, a TDCT feature vector is retained if more 
than 40% of the MFCC feature vectors in the block belong to speech portion. Finally, 
mean subtraction and variance normalization are applied to the outputs of the VAD to 
produce zero mean, unit variance MFCC, LPCC, and TDCT features.  

3   Speaker Modeling and Pattern Matching 

Given a speech utterance represented in terms of spectral feature vectors, as described 
in the previous section, the next step is to model the speaker specific information 
embedded in the given set of feature vectors. Two different approaches to speaker 
modeling and verification, as listed below, are employed in our system. 

3.1   GMM-UBM 

The GMM-UBM subsystems in Fig. 1 uses the standard set-up described in [7, 8]. A 
GMM is a weighted combination of a finite number of Gaussian distributions in the 
following form 

( ) ( )
1

|
K

k k
k

p w pλ
=

=x x , (1) 

where kw  is the mixture weight associated with the kth Gaussian component given by 

( )
( )

( ) ( )1
1 22

1 1
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22

T

k k k kD

k

p
π

−= − − −x x x . (2) 

In the above equations, each of the Gaussian densities is parameterized by a 1D ×  
mean vector k  and a D D× covariance matrix k , where D  is the dimension of the 
feature vector x . The mixture weights of all the K mixture components are by 
definition 0≥  and have to satisfy the constraint 

1
1

K

kk
w

=
= . Collectively, the 

parameters of the mixture density, i.e., { }, ,k k kwλ =  for 1,2, ,k K= , represent a 
speaker model in the feature space of x . 

For a given test segment { }1 2, , , NX = x x x , the average log likelihood of the 
speaker model λ  for the test segment, assuming that the feature vectors nx  are 
independent, is given by 

( ) ( )
1

1
log | log |

N

n
n

p X p
N

λ λ
=

= x . (3) 

Notice that log-likelihood value is divided by N, which essentially normalizes out 
the duration effects of test segments with different length. The final score is then 
taken as a log likelihood ratio, as follows 
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( ) ( )UBMlog  LR log | log |p X p Xλ λ= − , (4) 

where UBMλ  is the universal background model (UBM) that represents a background 
set of speaker models. For computational simplicity, we use fast GMM-UBM scoring 
algorithm [8] using only the top 20 mixture components. It should be emphasized that 
the fast scoring algorithm makes sense only if the target model is adapted from the 
background model, as explained below. 

In the training phase, speech segments from several background speakers are 
combined to train a UBM, thereby allowing the UBM to represent the speaker-
independent distribution of features. The parameters of the UBM UBMλ  are estimated 
by maximum likelihood estimation, using the expectation-maximization (EM) 
algorithm. A speaker model λ  is then derived by adapting the parameters of the 
UBM UBMλ  using the speech segment from the speaker by means of maximum a 
posteriori (MAP) training [8]. For numerical reasons, the covariance matrices 
pertaining to the Gaussian components are assumed to be diagonal. 

3.2   Spectral SVM 

SVM is a two-class classifier. For a given set of training samples with positive and 
negative labels, the SVM models the hyperplane that separates the two classes of 
samples. In the context of speaker verification, SVM models the boundary between a 
speaker and a set of background speakers that represent the population of impostors 
expected during recognition. The idea is different from the GMM-UBM, which 
models the distribution of the two classes. Furthermore, SVMs are non-probabilistic 
and use a different training philosophy compared to GMM. With a proper fusion 
strategy, both classifiers would complement each other in speaker recognition task 
[10]. 

The spectral SVM classifier in Fig. 1 closely follows the work reported in [9, 10], 
which greatly relies on polynomial expansion and the generalized linear discriminant 
sequence (GLDS) kernel. The central element of the GLDS kernel is a kernel inner 
product matrix defined as follows 

( ) ( ){ }TE≡R b x b x , (5) 

where ( )b x  denotes the polynomial expansion of the feature vector x. For example, 
the second-order polynomial expansion of a two-dimensional vector [ ]1 2,

T
x x≡x  is 

given by ( ) 2 2
1 2 1 1 2 21, , , , ,

T
x x x x x x=b x . For computational simplicity, it is 

customary to assumed that the matrix R  is diagonal, i.e., [ ]diag≈ =R r , where 
the vector r  is given by 

( ) ( )
1

1
[ ]

M
T

m m
m
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M =

=r b x b x . (6) 

In the above equation, { } 1

M

m m=
x  denotes a pool of M  feature vectors from all the non-

target background speakers, and [ ].diag  denotes the operation forming a diagonal 
matrix from a column vector and vice versa. 



500 K.-A. Lee et al. 

During enrollment, all the utterances in the background and the utterance for the 
current speaker under training are represented in terms of average expanded feature 
vectors in the following form  

( )
1

1 N

av n
nN =

=b b x , (7) 

where N denotes the length of any specific utterance. These average expanded feature 
vectors are then normalized in the form 1 2

av
− b , assigned with appropriate label (i.e., 

+1 for target speaker, -1 for other competing speakers in the background), and finally 
used for SVM training. The output of the training is a set of support vectors ib , 
weights iα , and a bias d. A speaker model w  is then obtained by collapsing all the 
support vectors, as follows 

1 2

1

l

i i i
i

tα−

=

= +w b d , (8) 

where [ ], 0, , 0
T

d=d  and l  denotes the number of support vectors resulted from 
the discriminative training. In the verification phase, for a given test segment 

{ }1 2, , , NX = x x x , and a hypothesized speaker w , the classifier score is obtained 
as the inner product between the speaker model w  and the average expanded feature 
vector avb  pertaining to the test segment X, as follows 

score T
av= w b . (9) 

4   System Specifications 

Given the approaches described in Section 2 and Section 3, four separate subsystems 
are constructed forming an ensemble of classifiers, as illustrated in Fig. 1. The four 
classifiers are (i) MFCC GMM-UBM, (ii) TDCT GMM-UBM, (iii) MFCC SVM, and 
(iv) LPCC SVM. For a given speech utterance, pattern matching is performed in the 
individual classifier, and a final score is obtained by combining the scores from all the 
subsystems. The specifications of the subsystems and fusion strategy are described 
below. The specifications presented below are obtained through numerous 
experiments carried using the development set of the CSLP SRE corpus, and some 
other corpora like CCC-VPR2C2005-6000 (CCC 2-channel corpus for voiceprint 
recognition 2005 – 6000 speakers) and NIST SRE corpus [4]. 

4.1   GMM-UBM 

We have two separate GMM-UBM subsystems. The first one is based on MFCC, 
whereas the second one uses the new TDCT features described in Section 2.3. The 
UBMs are trained from the development set of the CSLP SRE corpus, which is 
guaranteed to be disjoint with the evaluation set [3]. 

Separate UBMs are used for the single-channel and cross-channel tasks. For single-
channel task, we derive a 768-component UBM by training independently two 
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channel-dependent UBMs of size 512 and 256 components, respectively, for landline 
and cellular channel types. The final UBM model is obtained by aggregating the 
Gaussian components of the two UBMs, and normalizing the mixture weights so that 
they sum to one. It should be noted that, channel-dependent UBM is not applicable 
here because channel-type information is not available for the evaluation data. On the 
other hand, a different composition is used for cross-channel task. In particular, the 
UBM has 768 components (1024 components for TDCT GMM-UBM) with 512 
components trained from the landline data, and the remaining 256 components (512 
components for TDCT GMM-UBM) trained from cellular data. The speaker models 
are then obtained by adapting the UBM parameters towards the speaker’s training 
data using MAP adaptation principle. Therefore, the speaker models have the same 
number of Gaussian components with the UBM. 

4.2   Spectral SVM 

Two different sets of acoustic spectral features, namely MFCC and LPCC, are used 
thereby forming two separate SVM subsystems. The background or anti-speaker data 
consist of 4000 utterances extracted from CCC-VPR2C2005-6000. The evaluation set 
(for text-independent verification and identification tasks) of the CSLP SRE is 
derived from the CCC-VPR2C2005-1000, which is a subset of the CCC-VPR2C2005-
6000 corpus. The CCC-VPR2C2005-1000 subset is discarded from the CCC-
VPR2C2005-6000 beforehand so that the 4000 utterances used as the background 
would not overlap with the evaluation data. 

Similar background data is used for the single-channel and cross-channel tasks. For 
each utterance in the background and for the target speaker, an average expanded 
feature vector is created. All monomials up to order 3 are used, resulting in a feature 
space expansion from 36 to 9139 in dimension. These average expanded feature 
vectors are used in the SVM training. The commonly available SVMTorch [11] is 
used for this purpose. The result of the training is a vector w  of dimension 9139 
which represents the desired target speaker model. 

Test normalization (T-norm) method [12] is used to normalize the score. A 
collection of 500 cohort models are derived from development set of the CSLP SRE 
corpus. Scores from the cohort models are used to normalize a hypothesized speaker 
score for a given test segment. Score normalization is accomplished by subtracting the 
mean and dividing by the standard deviation of the scores produced by the cohort 
models in response to a given test segment. In order to obtain an accurate estimation 
of the mean and standard deviation parameters, the population of the cohort models 
has to be large enough. Furthermore, cohort models have to closely resemble the 
target speaker models. We believe that it is the best to establish the cohort models 
from the development set of the CSLP 2006 SRE. 

4.3   Subsystems Integration 

For a given speech utterance and a hypothesized speaker, pattern matching is 
performed separately in the four classifiers, giving rise to a 4-dimensional score 
vector. A final score is then derived from the score vector through a multilayer 
perceptron (MLP) neural network. The scores from all the subsystems are normalized 
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to zero mean and unit variance before passing to the neural network. The MLP has 
100 hidden neurons and one output neuron with sigmoid activation function. 
Conjugate gradient algorithm is used for the neural network training.  

The development set of the CSLP SRE corpus is used to train two neural networks 
for score fusion, one for the single-channel verification and identification tasks, and 
the other one for cross-channel verification and identification tasks.  

For speaker verification, the threshold (for the true/false decision) is set at a point 
whereby the following detection cost function (DCF) is minimized: 

( )DET Miss Miss Target FalseAlarm FalseAlarm Target1C C P P C P P= × × + × × − , (10) 

where MissP  and FalseAlarmP  are miss and false-alarm probabilities, respectively, and the 
parameters Miss 10C = , FalseAlarm 1C = , and Target 0.05P =  are as indicated in the 
evaluation plan [3]. 

The speaker identification task is handled through a ranking and pruning 
procedure. First, a MLP score is derived for each pair of test sample and model. For 
each test sample, we rank the corresponding trial models with their MLP scores in 
descending order. Second, we extract all the pairs of test sample and its top-best 
matching model, rank them in descending order. The top 50% of the pairs are selected 
as the genuine test trials. 

5   Evaluation Results 

Fig. 3 and Fig. 4 depict the detection error tradeoff (DET) curves of the individual 
subsystems for the single-channel and cross-channel verification tasks, respectively. 
As mentioned earlier, these subsystems are fused at the score level using a neural 
network classifier. The neural networks are trained using the provided development 
set. The results of fusion are shown in Fig. 3 and Fig. 4 as well. The characteristics of 
the development set matches well with that of the evaluation set thereby giving a 
satisfactory fusion result when the trained neural networks are used for the evaluation 
dataset. The final decision thresholds for the verification tasks are also determined 
using the development set. On the other hand, the thresholds for the identification 
tasks is set according to 1:1 in-set and out-of-set ratio stated in the evaluation plan [3]. 
That is, the speaker identification tasks are performed in an open set manner. 

Table 2 summarizes the performance of our submission to the CSLP 2006 SRE 
based on the actual DCF value and the identification correctness rate [3] for 
verification and identification tasks, respectively. As expected, channel mismatch 
makes the recognition tasks more difficult. The degradation in performance can be 
observed from both the DCF value and the identification correctness rate. 

Table 3 summarizes the equal-error rates (EERs) and the minimum DCF values for 
the individual and fused scores. Clearly, the subsystems fuse in a complementary way 
reducing error rates substantially. Taking the LPCC SVM as baseline, the fused 
systems give relative EER improvements of 52% and 22% for single-channel and 
cross-channel conditions, respectively. On the other hand, the relative improvements 
in minimum DCF for single-channel and cross-channel verification tasks are 57% and 
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Fig. 3. DET curves for single-channel verification task 

 

Fig. 4. DET curves for cross-channel verification task 

18%, respectively. The gains in performance are due both to the different features 
(MFCC, LPCC, and TDCT) and the different speaker modeling techniques (SVM and 
GMM). From the DET curves, it can be noted that SVM and GMM complement each 
other at different threshold values. In particular, SVM performs best at high threshold 
values (i.e., upper left corner), while GMM dominates at low threshold values (i.e.,  
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Table 2. Performance of IIR submission to the 2006 CSLP SRE based on the DCF value and 
the identification correctness rate. 

 Actual DCF 
value (×100)

Identification 
Correctness Rate 

Single-Channel Verification Task 0.90  
Cross-Channel Verification Task 6.42  
Single-Channel Identification Task  97.16% 
Cross-Channel Identification Task  86.45% 

Table 3. Comparison of EER and minimum DCF for IIR individual subsystems/final system in 
speaker verification tasks 

Single-channel verification task Cross-channel verification task 
System 

EER (%) Min DCF (×100)  EER (%) Min DCF (×100)  

MFCC GMM-UBM 2.54 3.44 7.70 10.22 

MFCC SVM 2.31 2.31 6.71 8.10 

TDCT GMM-UBM 2.85 3.89 6.69 8.68 

LPCC SVM 1.81 2.09 7.03 7.79 

Fusion 0.86 0.90 5.50 6.42 

lower left corner). It can also be observed that SVM performs best with LPCC 
features. On the other hand, GMM performs best with MFCC and TDCT features for 
single and cross-channel tasks, respectively, mainly due to the difference in the 
UBMs. Further research into optimizing features for each of the modeling techniques 
should be carried out. 

6   Conclusions 

A description of a speaker recognition system has been presented as it was developed 
for the CSLP 2006 SRE. Our submission was built upon three different acoustic 
spectral features and two different speaker modeling techniques giving rise to four 
subsystems, namely, MFCC GMM-UBM, TDCT GMM-UBM, MFCC SVM, and 
LPCC SVM. These subsystems were combined at the score level through a MLP 
neural network in a complementary way. The fused system achieved an EER of 
0.86% and 5.50% for single-channel and cross-channel verification tasks, 
respectively. Promising results were also obtained for identification tasks, where 
identification rates of 97.16% and 86.45% were obtained under single-channel and 
cross-channel conditions, respectively. The SRE results confirm a successful design 
and implementation of speaker recognition system. Nevertheless, continuous effort 
that makes use of the common platform provided by the CSLP SRE event should be 
carried out. 
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Abstract. In a log-likelihood ratio (LLR)-based speaker verification system, the 
alternative hypothesis is usually ill-defined and hard to characterize a priori, 
since it should cover the space of all possible impostors. In this paper, we propose 
a new LLR measure in an attempt to characterize the alternative hypothesis in a 
more effective and robust way than conventional methods. This LLR measure 
can be further formulated as a non-linear discriminant classifier and solved by 
kernel-based techniques, such as the Kernel Fisher Discriminant (KFD) and 
Support Vector Machine (SVM). The results of experiments on two speaker 
verification tasks show that the proposed methods outperform classical 
LLR-based approaches. 

Keywords: Speaker verification, Log-likelihood ratio, Kernel Fisher Discrimi-
nant, Support Vector Machine. 

1   Introduction 

In essence, the speaker verification task is a hypothesis testing problem. Given an input 
utterance U, the goal is to determine whether U was spoken by the hypothesized 
speaker or not. The log-likelihood ratio (LLR)-based [1] detector is one of the 
state-of-the-art approaches for speaker verification. Consider the following hypotheses: 

H0: U is from the hypothesized speaker,  
H1: U is not from the hypothesized speaker. 

The LLR test is expressed as 
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where ,1 ,0  ),|( =iHUp i  is the likelihood of the hypothesis Hi given the utterance U, 

and θ  is the threshold. H0 and H1 are, respectively, called the null hypothesis and the 
alternative hypothesis. Mathematically, H0 and H1 can be represented by parametric 
models denoted as λ  and λ , respectively; λ  is often called an anti-model. Though H0 
can be modeled straightforwardly using speech utterances from the hypothesized 
speaker, H1 does not involve any specific speaker, and thus lacks explicit data for 
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modeling. Many approaches have been proposed to characterize H1, and various LLR 
measures have been developed. We can formulate these measures in the following 
general form [2]: 

,
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where Ψ(⋅) is some function of the likelihood values from a set of so-called background 
models {λ1,λ2,…,λN}. For example, the background model set can be obtained from N 
representative speakers, called a cohort [8], which simulates potential impostors. If 
Ψ(⋅) is an average function [1], the LLR can be written as 
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Alternatively, the average function can be replaced by various functions, such as the 
maximum [3], i.e., 

),|(logmax)|(log)(
1

2 i
Ni

UpUpUL
≤≤

−=  (4) 

or the geometric mean [4], i.e., 
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A special case arises when Ψ(⋅) is an identity function and N = 1. In this instance, a 
single background model is usually trained by pooling all the available data, which is 
generally irrelevant to the clients, from a large number of speakers. This is called the 
world model or the Universal Background Model (UBM) [2]. The LLR in this case 
becomes 

),|(log)|(log)(4 Ω−= UpUpUL  (6) 

where Ω denotes the world model. 
However, none of the LLR measures developed so far has proved to be absolutely 

superior to any other, since the selection of Ψ(⋅) is usually application and training data 
dependent. In particular, the use of a simple function, such as the average, maximum, or 
geometric mean, is a heuristic that does not involve any optimization process. The is-
sues of selection, size, and combination of background models motivate us to design a 
more comprehensive function, Ψ(⋅), to improve the characterization of the alternative 
hypothesis. In this paper, we first propose a new LLR measure in an attempt to char-
acterize H1 by integrating all the background models in a more effective and robust way 
than conventional methods. Then, we formulate this new LLR measure as a non-linear 
discriminant classifier and apply kernel-based techniques, including the Kernel Fisher 
Discriminant (KFD) [6] and Support Vector Machine (SVM) [7], to optimally separate 
the LLR samples of the null hypothesis from those of the alternative hypothesis. 
Speaker verification experiments conducted on both the XM2VTSDB database and the 
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ISCSLP2006 speaker recognition evaluation database show that the proposed methods 
outperform classical LLR-based approaches. 

The remainder of this paper is organized as follows. Section 2 describes the analysis 
of the alternative hypothesis in our approach. Sections 3 and 4 introduce the kernel 
classifiers used in this work and the formation of the characteristic vector by back-
ground model selection, respectively. Section 5 contains our experiment results. Fi-
nally, in Section 6, we present our conclusions. 

2   Analysis of the Alternative Hypothesis 

First of all, we redesign the function Ψ(⋅) in Eq. (2) as 

,))|(...)|()|(()( ).../(1
21

2121 NN
NUpUpUp αααααα λλλ +++⋅⋅⋅=Ψ u  (7) 

where T
NUpUpUp )]|( ),...,|(),|([ 21 λλλ=u  is an N 1 vector and iα  is the weight 

of the likelihood p(U | λi), i = 1,2,…, N. This function gives N background models 
different weights according to their individual contribution to the alternative hypothe-
sis. It is clear that Eq. (7) is equivalent to a geometric mean function when 1=iα , i = 

1,2,…, N. If some background model λi contrasts with an input utterance U, the like-
lihood p(U | λi) may be extremely small, and thus cause the geometric mean to ap-
proximate zero. In contrast, by assigning a favorable weight to each background model, 
the function Ψ(⋅) defined in Eq. (7) may be less affected by any specific background 
model with an extremely small likelihood. Therefore, the resulting score for the alter-
native hypothesis obtained by Eq. (7) will be more robust and reliable than that ob-
tained by a geometric mean function. It is also clear that Eq. (7) will reduce to a 
maximum function when 1* =iα , )|(log* maxarg 1 iNi Upi ≤≤= ; and 0=iα , 

*ii ≠∀ . 
By substituting Eq. (7) into Eq. (2) and letting )...(/ 21 Niiw αααα +++= , i = 

1,2,…, N, we obtain 
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where T
Nwww ] ..., ,[ 21=w  is an N 1 weight vector and x is an N 1 vector in the space 

RN, expressed by 
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The implicit idea in Eq. (9) is that the speech utterance U can be represented by a 
characteristic vector x. 

If we replace the threshold θ  in Eq. (8) with a bias b, the equation can be rewritten 
as 

)(  )( xxw fbUL T =+= , (10) 

where f(x) forms a so-called linear discriminant classifier. This classifier translates the 
goal of solving an LLR measure into the optimization of w and b, such that the utter-
ances of clients and impostors can be separated. To realize this classifier, three distinct 
data sets are needed: one for generating each client’s model, one for generating the 
background models, and one for optimizing w and b. Since the bias b plays the same 
role as the decision threshold θ  of the conventional LLR-based detector defined in Eq. 
(1), which can be determined through a trade-off between false acceptance and false 
rejection, the main goal here is to find w. 

3   Kernel Classifiers 

Intuitively, f(x) in Eq. (10) can be solved via linear discriminant training algorithms [9]. 
However, such methods are based on the assumption that the observed data of different 
classes is linearly separable, which is obviously not feasible in most practical cases 
with nonlinearly separable data. To solve this problem more effectively, we propose 
using a kernel-based nonlinear discriminant classifier. It is hoped that data from dif-
ferent classes, which is not linearly separable in the original input space RN, can be 
separated linearly in a certain higher dimensional (maybe infinite) feature space F via a 
nonlinear mapping . Let (x) denote a vector obtained by mapping x from RN to F. 
Then, the objective function, based on Eq. (10), can be re-defined as 

, )()( bf T +Φ= xwx  (11) 

which constitutes a linear discriminant classifier in F. 
In practice, it is difficult to determine the kind of mapping that would be applicable; 

therefore, the computation of (x) might be infeasible. To overcome this difficulty, a 
promising approach is to characterize the relationship between the data samples in F, 
instead of computing (x) directly. This is achieved by introducing a kernel function 
k(x, y)=< (x), (y)>, which is the dot product of two vectors (x) and (y) in F. The 
kernel function k(⋅) must be symmetric, positive definite and conform to Mercer’s 
condition [7]. A number of kernel functions exist, such as the simplest dot product 
kernel function k(x, y) = xTy, and the very popular Radial Basis Function (RBF) kernel 
k(x, y) = exp(− ||x − y||2 / 2 2) in which  is a tunable parameter. Existing techniques, 
such as KFD [6] or SVM [7], can be applied to implement Eq. (11). 
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3.1   Kernel Fisher Discriminant (KFD) 

Suppose the i-th class has ni data samples, },..,{ 1
i
n

i
i i

xxX = , i = 1, 2. The goal of the 

KFD is to find a direction w in the feature space F such that the following Fisher’s 
criterion function J(w) is maximized: 
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where Φ
bS and Φ

wS  are, respectively, the between-class scatter matrix and the 

within-class scatter matrix defined as 
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sii n 1 )()/1( xm , and i = 1, 2, is the mean vector of the i-th class in F. 

Let },..,,{ 2121 lxxxXX =∪  and 21 nnl += . Since the solution of w must lie in the span 

of all training data samples mapped in F [6], w can be expressed as 
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Let αT = [α1, α2,…, αl]. Accordingly, Eq. (11) can be re-written as 
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Our goal therefore changes from finding w to finding α, which maximizes 
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where M and N are computed by 
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respectively, where i  is an l 1 vector with == in
s

i
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 is an ni ni identity matrix, and 1ni
 is an ni ni matrix 

with all entries equal to 1/ni. Following [6], the solution for α, which maximizes J(α) 
defined in Eq. (17), is the leading eigenvector of N-1M. 
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3.2   Support Vector Machine (SVM) 

Alternatively, Eq. (11) can be solved with an SVM, the goal of which is to seek a 
separating hyperplane in the feature space F that maximizes the margin between 
classes. Following [7], w is expressed as 
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which yields 
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where each training sample xj belongs to one of the two classes identified by the label 
yj∈{−1,1}, j=1, 2,…, l. We can find the coefficients αj by maximizing the objective 
function, 
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subject to the constraints, 
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where C is a penalty parameter [7]. The problem can be solved using quadratic pro-
gramming techniques [10]. Note that most αj are equal to zero, and the training samples 
associated with non-zero αj are called support vectors. A few support vectors act as the 
key to deciding the optimal margin between classes in the SVM. An SVM with a dot 
product kernel function is known as a Linear SVM. 

4   Formation of the Characteristic Vector 

In our experiments, we use B+1 background models, consisting of B cohort set models and 
one world model, to form the characteristic vector x in Eq. (9); and B cohort set models for 
L1(U) in Eq. (3), L2(U) in Eq. (4), and L3(U) in Eq. (5). Two cohort selection methods [1] 
are used in the experiments. One selects the B closest speakers to each client; and the other 
selects the B/2 closest speakers to, plus the B/2 farthest speakers from, each client. The se-
lection is based on the speaker distance measure [1], computed by 
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where iλ  and jλ  are speaker models trained using the i-th speaker’s utterances iX  

and the j-th speaker’s utterances jX , respectively. Two cohort selection methods yield 

the following two (B+1) 1 characteristic vectors: 
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model and the i-th farthest model of the client model λ , respectively. 

5   Experiments 

We evaluate the proposed approaches on two databases: the XM2VTSDB database 
[11] and the ISCSLP2006 speaker recognition evaluation (ISCSLP2006-SRE) data- 
base [12].  

For the performance evaluation, we adopt the Detection Error Tradeoff (DET) curve 
[13]. In addition, the NIST Detection Cost Function (DCF) [14], which reflects the 
performance at a single operating point on the DET curve, is also used. The DCF is 
defined as 

CDET = CMiss × PMiss × PTarget + CFalseAlarm × PFalseAlarm × (1 – PTarget) , (27) 

where MissP  and FalseAlarmP  are the miss probability and the false-alarm probability, 

respectively, MissC  and FalseAlarmC  are the respective relative costs of detection errors, 
and PTarget is the a priori probability of the specific target speaker. A special case of the 

DCF is known as the Half Total Error Rate (HTER), where MissC  and FalseAlarmC  are 

both equal to 1, and PTarget = 0.5, i.e., 2/)(HTER FalseAlarmMiss PP += . 

5.1   Evaluation on the XM2VTSDB Database 

The first set of speaker verification experiments was conducted on speech data ex-
tracted from the XM2VTSDB multi-modal database [11]. In accordance with “Con-
figuration II” described in [11], the database was divided into three subsets: “Training”, 
“Evaluation”, and “Test”. In our experiments, we used the “Training” subset to build 
the individual client’s model and the world model, and the “Evaluation” subset to es-
timate the decision threshold θ  in Eq. (1) and the parameters w and b in Eq. (11). The 
performance of speaker verification was then evaluated on the “Test” subset. As shown 
in Table 1, a total of 293 speakers1 in the database were divided into 199 clients, 25 
“evaluation impostors”, and 69 “test impostors”. Each speaker participated in four, 
recording sessions at approximately one-month intervals, and each recording session 
consisted of two shots. In a shot, every speaker was prompted to utter three sentences 
 

                                                           
1 We discarded 2 speakers (ID numbers 313 and 342) because of partial data corruption. 
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Table 1. Configuration of the XM2VTSDB speech database 

Session Shot 199 clients 25 impostors 69 impostors 

1 
1 

2 
1 

2 
2 

Training 

1 
3 

2 
Evaluation

1 
4 

2 
Test 

Evaluation Test 

 “0 1 2 3 4 5 6 7 8 9”, “5 0 6 9 2 8 1 3 7 4”, and “Joe took father’s green shoe bench out”. 
Using a 32-ms Hamming-windowed frame with 10-ms shifts, each utterance (sampled 
at 32 kHz) was converted into a stream of 24-order feature vectors, each consisting of 
12 Mel-scale cepstral coefficients [5] and their first time derivatives. 

We used 12 (2×2×3) utterances/speaker from sessions 1 and 2 to train the individual 
client’s model, represented by a Gaussian Mixture Model (GMM) [1] with 64 mixture 
components. For each client, the other 198 clients’ utterances from sessions 1 and 2 
were used to generate the world model, represented by a GMM with 256 mixture 
components; 20 speakers were chosen from these 198 clients as the cohort. Then, we 
used 6 utterances/client from session 3, and 24 (4×2×3) utterances/evaluation-impos- 
tor, which yielded 1,194 (6×199) client samples and 119,400 (24×25×199) impostor 
samples, to estimate θ , w, and b. However, because a kernel-based classifier can be 
intractable when a large number of training samples is involved, we reduced the 
number of impostor samples from 119,400 to 2,250 using a uniform random selection 
method. In the performance evaluation, we tested 6 utterances/client in session 4 and 24 
utterances/test-impostor, which produced 1,194 (6×199) client trials and 329,544 
(24×69×199) impostor trials. 

5.1.1   Experiment Results 
We implemented the proposed LLR system in four ways: KFD with Eq. (25) 
(“KFD_w_20c”), KFD with Eq. (26) (“KFD_w_10c_10f”), SVM with Eq. (25) 
(“SVM_w_20c”), and SVM with Eq. (26) (“SVM_w_10c_10f”). Both SVM and KFD 
used an RBF kernel function with = 5. For the performance comparison, we used five 
systems as our baselines: 1) L1(U) with the 20 closest cohort models (“L1_20c”), 2) 
L1(U) with the 10 closest cohort models plus the 10 farthest cohort models 
(“L1_10c_10f”), 3) L2(U) with the 20 closest cohort models (“L2_20c”), 4) L3(U) with 
the 20 closest cohort models (“L3_20c”), and 5) L4(U) (“L4”). 

Fig. 1 shows the results of the baseline systems tested on the “Evaluation” subset in 
DET curves [13]. We observe that the curves “L1_10c_10f” and “L4” are better than 
the others. Thus, in the second experiment, we focused on the performance improve-
ments of our proposed LLR systems over these two baselines. 
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Fig. 1. Baselines: DET curves for the XM2VTSDB “Evaluation” subset 

 

Fig. 2. Best baselines vs. our proposed LLR systems: DET curves for the XM2VTSDB “Test” 
subset 
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Table 2.  HTERs for “Evaluation” and “Test” subsets (The XM2VTSDB task) 

 min HTER for “Evaluation” HTER for “Test” 
L1_20c 0.0676 0.0535 

L1_10c_10f 0.0589 0.0515 
L2_20c 0.0776 0.0635 
L3_20c 0.0734 0.0583 

L4 0.0633 0.0519 
KFD_w_20c 0.0247 0.0357 
SVM_w_20c 0.0320 0.0414 

KFD_w_10c_10f 0.0232 0.0389 
SVM_w_10c_10f 0.0310 0.0417 

Fig. 2 shows the results of our proposed LLR systems versus the baseline systems 
evaluated on the “Test” subset. It is clear that the proposed LLR systems, including KFD 
and SVM, outperform the baseline LLR systems, while KFD performs better than SVM. 

An analysis of the results based on the HTER is given in Table 2. For each approach, 
the decision threshold, θ  or b, was used to minimize the HTER on the “Evaluation” 
subset, and then applied to the “Test” subset. From Table 2, we observe that, for the 
“Test” subset, a 30.68% relative improvement was achieved by “KFD_w_20c”, com-
pared to “L1_10c_10f” – the best baseline system. 

5.2   Evaluation on the ISCSLP2006-SRE Database 

We participated in the text-independent speaker verification task of the ISCSLP2006 
Speaker Recognition Evaluation (SRE) plan [12]. The database, which was provided by 
Chinese Corpus Consortium (CCC) [15], contained 800 clients. The length of the 
training data for each client ranged from 21 seconds to 1 minute and 25 seconds; the 
average length was approximately 37.06 seconds.  

We sorted the clients according to the length of their training data in descending 
order. For the first 100 clients, we cut two 4-second segments from the end; and for the 
remaining 700 clients, we cut one 4-second segment from the end, as the “Evaluation” 
data to estimate θ , w, and b. For each client, the remaining training data was used for 
“Training” to build that client’s model. In the implementation, all the “Training” data 
was pooled to train a UBM [2] with 1,024 mixture components. Then, the mean vectors 
of each client’s GMM were adapted from the UBM by his/her “Training” data. In the 
evaluation stage, each client was treated as an “evaluation impostor” of the other 799 
clients. In this way, we had 900 (2×100+700) client samples and 719,100 (900×799) 
impostor samples. We applied all the client samples and 2,400 randomly selected im-
postor samples to estimate w of the kernel classifiers. According to the evaluation plan, 
the ratio of true clients to imposters in the “Test” subset should be approximately 1:20. 
Therefore, we applied the 900 client samples and 18,000 randomly selected impostor 
samples to estimate the decision threshold, θ  or b. The “Test” data consisted of 5,933 
utterances. 

The signal processing front-end was same as that applied in the XM2VTSDB task. 
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5.2.1    Experiment Results 
Fig. 3 shows the results of the proposed LLR system using KFD with Eq. (26) and B = 
100 (“KFD_w_50c_50f”) versus the baseline GMM-UBM [2] system tested on 5,933 
“Test” utterances in DET curves. The proposed LLR system clearly outperforms the 
baseline GMM-UBM system. According to the ISCSLP2006 SRE plan, the perform-
ance is measured by the NIST DCF with 10=MissC , 1=FalseAlarmC , and PTarget =0.05. 

In each system, the decision threshold, θ  or b, was selected to minimize the DCF on 
the “Evaluation” data, and then applied to the “Test” data. The minimum DCFs for the 
“Evaluation” data and the associated DCFs for the “Test” data are given in Table 3. We 
observe that “KFD_w_50c_50f” achieved a 34.08% relative improvement over 
“GMM-UBM”. 

 

Fig. 3. DET curves for the ISCSLP2006-SRE “Test” subset 

Table 3. DCFs for “Evaluation” and “Test” subsets (The ISCSLP2006-SRE task) 

 min DCF for “Evaluation” DCF for “Test” 
GMM-UBM 0.0129 0.0179 

KFD_w_50c_50f 0.0067 0.0118 

6   Conclusions 

We have presented a new LLR measure for speaker verification that improves the 
characterization of the alternative hypothesis by integrating multiple background 
models in a more effective and robust way than conventional methods. This new LLR 
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measure is formulated as a non-linear classification problem and solved by using ker-
nel-based classifiers, namely, the Kernel Fisher Discriminant and Support Vector 
Machine, to optimally separate the LLR samples of the null hypothesis from those of 
the alternative hypothesis. Experiments, in which the proposed methods were applied 
to two speaker verification tasks, showed notable improvements in performance over 
classical LLR-based approaches. Finally, it is worth noting that the proposed methods 
can be applied to other types of data and hypothesis testing problems. 

Acknowledgments. This work was funded by the National Science Council, Taiwan, 
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Abstract. This paper describes a speaker verification system which
uses two complementary acoustic features: Mel-frequency cepstral coef-
ficients (MFCC) and wavelet octave coefficients of residues (WOCOR).
While MFCC characterizes mainly the spectral envelope, or the formant
structure of the vocal tract system, WOCOR aims at representing the
spectro-temporal characteristics of the vocal source excitation. Speaker
verification experiments carried out on the ISCSLP 2006 SRE database
demonstrate the complementary contributions of MFCC and WOCOR
to speaker verification. Particularly, WOCOR performs even better than
MFCC in single channel speaker verification task. Combining MFCC and
WOCOR achieves higher performance than using MFCC only in both
single and cross channel speaker verification tasks.

1 Introduction

Automatic speaker recognition is a process of automatically determining a per-
son’s identity based on the intrinsic characteristics of his/her voice. It is one of
the most important speech processing techniques and can be implemented in
many real-world applications, e.g. access control, telephone banking, public se-
curity, and so on. The state-of-the-art speaker recognition systems typically em-
ploy the Mel-frequency cepstral coefficients (MFCC) as the representative acous-
tic features and the statistical modeling techniques (e.g. the Gaussian Mixture
Models, GMM) for pattern matching [1], [2]. The MFCC+GMM architecture has
achieved very good performance (even better than recognition by human [3]) in
laboratory experiments or in some small scale, sophistically controlled applica-
tions. However, in most of the real-world applications, the speaker recognition
performances are far from being reliable due to environmental distortions, short-
age of speech materials for statistical modeling and testing, increased speaker
characteristics overlapping in large scale systems, and so on.

Many efforts have been devoted to developing new techniques to improve the
reliability and robustness of speaker recognition system in real-world applica-
tions. One technique is to extract new speaker-specific features to supplement
the conventional MFCC features to improve the recognition accuracy. For ex-
ample, the use of fundamental frequency (F0) and prosodic features for speaker
recognition has been reported in many papers [4], [5]. However, the pitch value

Q. Huo et al.(Eds.): ISCSLP 2006, LNAI 4274, pp. 518–528, 2006.
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Fig. 1. Examples of speech waveforms and LP residual signals of two male speakers.
Left: Speaker A; Right: Speaker B; Top to bottom: speech waveforms, Fourier spectra
of speech signals, LP residual signals and Fourier spectra of LP residual signals.

has large intra-speaker variations, including the fluctuation along a single utter-
ance and the long-term intra-speaker variations between the training and testing
utterances recorded at different time. The large intra-speaker variation restricts
the contribution of pitch related features for speaker recognition. In recent years,
generating high-level features, e.g. the speaking style, to supplement the low-level
acoustic features has become a hot topic in speaker recognition [6], [7]. However,
learning the speaker-specific speaking style generally requires a large amount of
training speech materials, and the effective feature extraction technique has not
been thoroughly exploited.

This paper describes a speaker recognition system which integrates two com-
plementary acoustic features for speaker verification. Besides the conventional
MFCC parameters, the system also incorporates the so called Wavelet Octave
Coefficient of Residues (WOCOR) as a complementary feature to MFCC. As
known, human speech can be modeled as the convolutional output of a vocal
source excitation signal and the impulse response of the vocal tract filter sys-
tem [8]. The MFCC parameters are derived mainly to represent the spectral
envelope, or the formant structure of the vocal tract system [9]. The WOCOR
parameters, on the other hand, are derived from the linear predictive (LP) resid-
ual signal and aim at characterizing the spectro-temporal characteristics of the
vocal source excitation [10]. Figure 1 shows the speech waveforms of the vowel
/a/ uttered by two male speakers, their corresponding LP residual signals and
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Fourier spectra of speech and residual signals. As shown, there are noticeable
differences between the residual signals of the two speakers. In addition to the
significant difference between their pitch periods, the residual signal of speaker
B shows much stronger periodicity than that of speaker A. For speaker A, the
magnitudes of the secondary pulses are relatively higher. For both speakers,
the short-time Fourier transforms of their residual signals give nearly flat spec-
tra. Although the harmonic structures of the spectra reflect the periodicity, the
pitch pulses related time-frequency properties cannot be easily extracted from
the Fourier spectra. To characterize the time-frequency characteristics of the
pitch pulses, wavelet transform is applied to generate the WOCOR parameters,
which characterize the spectro-temporal characteristics of the residual signal.

MFCC and WOCOR contain complementary speaker-specific information
since they characterize two physiologically different information sources in speech
production. In this paper, the effectiveness of combining MFCC and WOCOR
for speaker verification is evaluated over the database provided for the ISC-
SLP2006 Speaker Recognition Evaluation (SRE) by the Chinese Corpus Consor-
tium (CCC). Evaluation results show that the proposed system achieves higher
recognition performance than the MFCC based system in both single and cross
channel conditions.

2 Database Description

The experiments carried out in this paper are part of the ISCSLP 2006 SRE
tasks. Two tasks, i.e. text-independent single-channel speaker verification and
text-independent cross-channel speaker verification, are presented.

The database for the evaluation is divided into development and evaluation
sets. The development data are used for system development, e.g. determining
the decision thresholds and training the fusion parameters. It contains 300 male
speakers. Each speaker has 2 utterances corresponding to land-line (PSTN) and
cellular-phone (GSM only) channels respectively. Each utterance is divided into
several segments with at least one segment longer than 30 seconds for speaker
model training and several shorter segments for testing. There are totally 2151
segments in the development data set.

All the final results presented are carried out with the evaluation data set. For
the single-channel verification task, the evaluation data set contains 800 male
speakers, each having a training segment longer than 30 ms. There are 3157
testing segments with various durations. There are total 5939 verification tests
with ratio of true-speaker and impostor tests being about 1:20. For a specific
speaker, the training and testing segments are from the same channel. For the
cross-channel verification task, there are also 800 speakers, each having a training
segment longer than 30 ms. There are 3827 testing segments and 11788 verifi-
cation tests with ratio of true-speaker and impostor tests being about 1:20. For
each speaker, the training and testing utterances must come from different chan-
nels. There is no overlaps between the speakers of development and evaluation
data sets.
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Fig. 2. Block diagram of the system using MFCC and WOCOR for speaker verification

3 Speaker Verification System with MFCC and WOCOR

Figure 2 gives the block diagram of the system using MFCC and WOCOR for
speaker verification. In the pre-processing stage, the speech signal is first pre-
emphasized with a first order filter H(z) = 1 − 0.97z−1. Then an energy-based
voice activity detection (VAD) technique is applied to remove the silence portion.
The speech signal is passed through for MFCC and WOCOR generation respec-
tively. For each feature set, speaker models are trained with the UBM-GMM
technique [11] in the training stage. In the testing stage, for each testing utter-
ance, two matching scores are calculated from MFCC and WOCOR respectively
and they are combined to give a final score for verification decision.

3.1 Generating the Vocal Tract Related Features MFCC

The extraction of MFCC follows the standard procedures as described in [9]:

1) Short-time Fourier transform is applied every 10 ms with a 30 ms Hamming
window.

2) The magnitude spectrum is warped with a Mel-scale filter bank that con-
sists of 26 filters, which emulates the frequency resolution of human auditory
system. Log-magnitude of each filter output is calculated.

3) Discrete cosine transform (DCT) is applied to the filter bank output.

The MFCC feature vector has 39 components, including the first 12 cepstral
coefficients, the log energy, as well as their first and second order time deriva-
tives. Since the speech data used in our experiments were recorded via public
telephone networks, the method of cepstral mean normalization (CMN) is ap-
plied to eliminate the convolutional channel distortion [12].

3.2 Generating the Vocal Source Related Features WOCOR

While the MFCC features are extracted from both voiced and unvoiced speech
signal, the WOCOR features are extracted from only the voiced speech. This
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is because WOCOR are derived mainly to capture the time-frequency charac-
teristics of the pitch pulses of the LP residual signal. The excitation signal for
unvoiced speech in the source-filter model is approximated as a random noise [8].
We believe that such a noise-like signal carries little speaker-specific information
in the time-frequency domain. The process of extracting the proposed WOCOR
features is formulated in the following steps.

1) Voicing decision and pitch extraction. Pitch extraction and voicing status
decision are done by the Robust Algorithm for Pitch Tracking (RAPT) algorithm
[13]. Only voiced speech is kept for subsequent processing.

2) LP inverse filtering. LP analysis of order 12 is performed every 30 ms with
Hamming window. The filter coefficients ak are computed using the autocorre-
lation method [8]. The residual signal e(n) is obtained by inverse filtering the
speech signal s(n), i.e.

e(n) = s(n) −
12∑

k=1

aks(n − k). (1)

To reduce the intra-speaker variation, the amplitude of e(n) is normalized to
be within the interval [-1, 1].

3) Pitch-synchronous windowing. With the pitch periods estimated in step
1, pitch pulses in the residual signal are located. For each pitch pulse, pitch-
synchronous wavelet analysis is applied with a Hamming window of two pitch
periods long. Let ti−1, ti and ti+1 denote the locations of three successive pitch
pulses. The analysis window for the pitch pulse at ti spans from ti−1 to ti+1.
The windowed residual signal is denoted as eh(n).

4) Wavelet transform of the residual signal. The wavelet transform of eh(n)
is computed as

w(a, b) =
1√|a|

∑
n

eh(n)Ψ∗(
n − b

a
) (2)

where a = {2k|k = 1, 2 · · · , 6} and b = 1, 2 · · · , N , and N is the window length.
Ψ(n) is the 4th-order Daubechies wavelet basis function. a and b are called the
scaling parameter and the translation parameter respectively [14]. Assuming a
signal bandwidth of 4000 Hz, the signal is decomposed into six sub-bands at
different octave levels: 2000 - 4000 Hz (k = 1), 1000 - 2000 Hz, · · · , 62.5 - 125
Hz (k = 6). At a specific sub-band, the time-varying characteristics within the
analysis window are measured as the translation parameter b changes.

5) Generating the feature parameters. We now have six octave groups of
wavelet coefficients, i.e.,

Wk =
{
w(2k, b) |b = 1, 2, · · · , N

}
, k = 1, 2, ..., 6 (3)

Each octave group of coefficients is divided evenly into M sub-groups, i.e.,

WM
k (m) =

{
w(2k, b) |b ∈ (m − 1 : m] × (N/M)

}
m = 1, 2, · · · , M

(4)
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The 2-norm of each sub-group of coefficients is computed to be a feature
parameter. As a result, the complete feature vector is composed as,

WOCORM =
{∥∥WM

k (m)
∥∥ ∣∣∣∣m = 1, 2, · · · , M

k = 1, 2, · · · , 6

}
(5)

where ‖ · ‖ denotes the 2-norm operation.
In the case of M = 1, all the coefficients of a sub-band are combined to form a

single feature parameter, and therefore, all temporal information are lost. On the
other hand, if M = N , each coefficient is included as an individual component
in the feature vector. This may introduce too much unnecessary detail so that
the features become less discriminative. From statistical modeling point of view,
a relatively low feature dimension is also desirable. Our previous experiments
showed that generally, M = 4 gives good enough performance and larger M
does not improve the performance significantly [10].

To summarize, given a speech utterance, a sequence of WOCOR feature vec-
tors are obtained by pitch-synchronous analysis of the LP residual signal. Each
feature vector consists of 24 components, which capture useful spectro-temporal
characteristics of the residual signal.

3.3 Integrating MFCC and WOCOR for Speaker Verification

In general, the integration of different information sources for speaker verification
can be done at (i) feature level, (ii) score level, and (iii) decision level. In this
system, the integration is done at score level. Score level is preferred because
the matching scores are easily available and contain sufficient information for
distinguishing different speakers. Also, as described above, WOCOR and MFCC
are calculated in different time-resolution, it is difficult to concatenate them
together. Therefore, the feature level fusion is not applicable. To do the score level
fusion, we first train two models, one for MFCC and the other for WOCOR, for
each speaker. We adopt the state-of-the-art GMM-UBM approach for statistical
speaker modeling and speaker verification [11]. That is, for each feature set, a
universal background model (UBM), which is a large scale Gaussian mixture
model (GMM) with 1024 mixtures, is first built using the development data
described in Sec. 2. Then for each target speaker, a speaker model is adapted
from the UBM using the respective training data. In the verification stage, given
a testing utterance, two log-likelihood ratio (LLR) scores are obtained from the
MFCC and WOCOR streams respectively. For each stream, the LLR score is
given as

si = log P (si|λc,i) − log P (si|λU,i) (6)

where P (si|λc,i) and P (si|λU,i) denote the likelihoods given by the GMMs of the
claimed speaker and the UBM respectively. The subscript i denotes the different
features: i = 1 for MFCC and i = 2 for WOCOR. For verification decision, a
final score is obtained by a linear combination of s1 and s2, i.e.,

s = wts1 + (1 − wt)s2 (7)

where the fusion wt is trained using the development data.
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3.4 Evaluation Metrics

If s is higher than a preset threshold θ, the claimant is accepted. Otherwise it is
rejected. There are two types of errors: false acceptance (FA) of an impostor and
false rejection (FR) of the genuine speaker. With different values of θ, different
FA and FR rates can be attained. This leads to a detection error trade-off (DET)
curve for evaluating the system performance [15]. Each point on the DET curve
corresponds to a specific value of θ, with the horizontal and vertical coordinates
being the FA rate and the FR rate respectively. A DET curve closer to the
original point corresponds to a system with higher verification performance.

Another commonly adopted evaluation metric is the detection cost function
(DCF) which is defined as a weighted sum of FR and FA probabilities [16]:

DCF = CFR · PFR · PTarget + CFA · PFA · (1 − PTarget) (8)

where CFR and CFA are the detection error costs of false rejecting a target
speaker and false accepting an impostor. PFR and PFA are the probabilities of
false rejection and false acceptance. PTarget is the prior probability of testing
utterances coming from the target speaker among all the testing utterances.

While the DET curve gives a general evaluation of the system showing how
the FR can be traded off against FA in different decision thresholds, the DCF
evaluates the system performance at specified decision conditions.

4 Experimental Results

4.1 Single Channel Speaker Verification

For the single channel speaker verification, the DET curves for the MFCC based
system, the WOCOR based system and the combined system are given as in
Fig. 3. As illustrated, the WOCOR based system performs even better than the
MFCC based system. The combined system achieves much higher verification
performance than that using only one feature. On each of the DET curves, the
circle marked gives the FR rate and FA rate with the decision threshold θ, which
is trained using the development data, of the corresponding system. The DCFs
of the three systems with the respective θ are 4.74, 4.12 and 1.75, respectively.
In comparison to the system using MFCC only, the combined system reduces
the DCF by about 63% relatively.

4.2 Cross Channel Speaker Verification

Figure 4 illustrates the performances of the MFCC based system, WOCOR based
system and the combined system in cross channel speaker verification. As illus-
trated, WOCOR performs much worse than MFCC, which means that WOCOR
is very sensitive to channel mismatch between the training and testing segments.
Even though, combining MFCC and WOCOR still improves the overall perfor-
mance to a certain extent, as illustrated in the figure. The DCFs for the three
systems are 14.07, 25.68 and 12.43 in this case. In comparison to the system
using MFCC only, a relative 12% reduction of DCF has been achieved by the
proposed system.
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Fig. 3. DET curves for the MFCC based, WOCOR based and combined systems in
single channel speaker verification

 0.5    1     2     5     10    20    40    60  
 0.5  

  1   

  2   

  5   

  10  

  20  

  40  

  60  

False Alarm probability (in %)

F
al

se
 R

ej
ec

tio
n 

pr
ob

ab
ili

ty
 (i

n 
%

)

 

 

MFCC

WOCOR

MFCC+WOCOR

Fig. 4. DET curves for the MFCC based, WOCOR based and combined systems in
cross channel speaker verification



526 N. Zheng et al.

5 Discussion

With the primary goal of identifying different speech sounds, MFCC features
characterize mainly the spectral envelope of a quasi-stationary speech segment
and provide important cues for phonetic classification. The spectral envelope cor-
responds to the vocal tract filter, which determines the articulation of sounds.
Therefore, MFCC depends largely on linguistic content being spoken. On the
other hand, WOCOR captures the vocal source information, which is related
mainly to the periodicity and voice quality. Therefore, WOCOR is relatively
less dependent on the content. This property of WOCOR is very useful in text-
independent speaker recognition. As demonstrated in the single channel verifi-
cation task, WOCOR performs better than MFCC. However, this task does not
address the long-term intra-speaker variation because the training and testing
segments of each speaker come from the same utterance. When the training
and testing speeches are recorded in different time sessions, MFCC generally
achieves higher performance than WOCOR, which implies that the vocal source
excitation has larger degree of long-term intra-speaker variation than vocal tract
system. Even though, combining MFCC (or LPCC) and WOCOR can still im-
prove the recognition performance [10]. Our recent work showed that WOCOR
is particularly useful in speaker segmentation task, which divides a speech utter-
ance into homogenous segments containing speech of exactly one speaker [17].

Besides the long-term intra-speaker variation, another major challenge in
speaker recognition is the mismatch between training and testing conditions,
including the channel mismatch as addressed in the cross channel verification
task. In this task, the training and testing segments come from two different
channels, i.e. land-line (PSTN) and cellular phone (GSM). The frequency re-
sponse of transmitting channel mainly changes the spectral envelope of speech
signal and degrades the performance of MFCC in speaker recognition. Applying
CMN on MFCC reduces the impact of channel mismatch to a large extent. On
the other hand, land-line and cellular telephone networks use different speech
coding techniques. Particularly, GSM cellular network adopts the code-excited
linear prediction (CELP) coding technique. The parametric coding scheme of
CELP changes the excitation signal of the speech [18]. As a result, the derived
WOCOR parameters can not represent the exact vocal source characteristics of
the original speaker. Nevertheless, in CELP, the excitation signal is selected from
the codebook such that the re-synthesized speech is perceptually similar to the
original one. Therefore, although the WOCOR parameters perform much worse
than MFCC (with CMN) in cross channel task, they still contain some useful
speaker information and can improve the recognition performance to a certain
extent, as demonstrated in Fig. 4.

Although the sensitivity of WOCOR to channel mismatch restricts its ap-
plications in cross channel speaker verification. In some real-world applications,
if training data from different channels are available, integrating MFCC and
WOCOR can significantly improve the system performance without any knowl-
edge of the channel conditions. We design a verification experiment with the
ISCSLP2006 SRE development data to simulate this application scenario. In this
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Fig. 5. DET curves for SV systems with 2 channel training data

experiment, a GMM is trained for each speaker using 2 speech segments, with
one the land-line telephone speech and the other the cellular speech. The testing
segments come from both channels without any prior knowledge of the channel
types or any channel identification techniques implemented. The speaker verifi-
cation performances of MFCC, WOCOR, and the combined systems are shown
in Fig. 5. It is clear that using both MFCC and WOCOR significantly improves
the verification performance.

6 Conclusion

This paper describes a speaker verification system using the conventional vocal
tract related features MFCC and a newly proposed vocal source related features
WOCOR. The two features have complementary contributions to speaker recog-
nition. Experimental results show that WOCOR performs better than MFCC
in single channel speaker verification task. Combining MFCC and WOCOR
achieves much higher performance than using MFCC only in single channel
speaker verification. Although WOCOR is more sensitive to channel mismatch,
the combined system still improves the overall performance to a certain extent
in the cross-channel speaker verification task.
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Abstract. This paper shows a description of the system used in the ISC-
SLP06 Speaker Recognition Evaluation, text independent cross-channel
speaker verification task. It is a discriminative Artificial Neural Network-
based system, using the Non-Target Incremental Learning method to se-
lect world representatives. Two different training strategies have been
followed: (i) to use world representative samples with the same chan-
nel type as the true model, (ii) to select the world representatives from
a pool of samples without channel type identification. The best results
have been achieved with the first alternative, but with the appearance of
the additional problem of the true model channel type recognition. The
system used in this task will also be shown.

1 Introduction

This work is concerned with the use of discriminative Artificial Neural Networks
(ANNs) to deal with the speaker recognition problem.

The use of ANNs in Speaker Verification (SV), although very popular at the
beginning of the 90s [13,14] with promising results [1], has decreased in recent
years, where statistical classifiers, such as Gaussian Mixture Models (GMMs),
or other discriminative classifiers, such as Support Vector Machines (SVM) [18],
are more widely used.

In recent years, the SV task using ANNs has been mainly carried out by mem-
bers of the speech and vision laboratory from the Indian Institute of Technology,
Madras (India) [19][12], using Autoassociative Neural Networks (AANN) [8,3].
Other approaches can be found in [6], which uses a Locally Recurrent Proba-
bilistic Neural Network, or in [9], using a Self Organizing Map (SOM).

Our perspective differs from these, since a Multilayer Perceptron (MLP) is
used as a discriminative classifier, that is, as the estimator of the degree of
membership of vector xi to a class λC . The good performance of our MLP-
based systems in the text independent cross-channel speaker verification task
was shown in previous works [17][15]. Here, two different systems are presented:

– The so-called System 1, where the MLP is trained using world representative
samples with the same channel type as the true model.

� This work has been supported by the Ministerio de Ciencia y Tecnoloǵıa, Spain,
under Project TIC2003-08382-C05-03.

Q. Huo et al.(Eds.): ISCSLP 2006, LNAI 4274, pp. 529–538, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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– System 2, where the world representatives are selected from a pool of samples
with all the channel types of the corpus.

System 2 is similar to that shown in [15], but with a different parameter
extraction. The learning strategy followed in System 1 has not been used in
previous works. The advantage of this learning strategy is shown, as the final
evaluation result is approximately 30% better than that achieved with System
2.

In order to recognize the channel type of the true model for selecting the
world representatives with the same channel type, an MLP-based system was
also used. The system is described in greater detail in Section 4.3.

An additional problem appears in the MLP training. The task approached is
the so called two-class classification problem [7], since the classifier must clas-
sify a sample as belonging, or not, to a certain class called the Target Class
(TC) (true model), and examples of the TC and the ”Non-Target Class” (NTC)
(impostors) are both available. If this task is approached by means of a discri-
minative classifier, it must be trained with examples from both the TC and the
NTC.

The problem that appears is the imbalance in the datasets. A set of examples
(or training set) is said to be imbalanced if one of the classes is represented by
a small number of cases as compared to the other classes. In this situation, the
inductive learning systems may have difficulties to learn the concept related with
the minority class. This situation is found in the speaker verification task, where
the number of the impostor class (NTC) training examples is much higher than
those of the true speaker (TC).

Solutions to remedy the class imbalance problem have been proposed at both
the data and algorithmic levels. Our solution concerns the former. At this level,
the different solutions can be included in the following two forms of re-sampling
[4][2]:

– over-sampling the minority class until the classes are approximately
equally represented. This over-sampling can be accomplished with random
replacement, directed replacement (in which no new samples are created but
the choice of samples to replace is informed rather than random) and with
informed generation of new examples.

– under-sampling the majority class until the classes are approximately
equally represented. This method can be performed randomly or directed,
where the choice of examples to eliminate is informed.

In the SV task the probability distribution of the examples is unknown and the
generation of artificial samples is not recommended [11]. Thus, over-sampling by
means of informed generation of new examples is not a good idea. With regard
to the other over-sampling technique, replacement, it has shown good results in
the past [5][17] with small databases and, thus, a small imbalance in the data
sets. With the maturing of the problem, the databases became more realistic,
increasing the level of class imbalance. Under these conditions minor class sam-
ple replacement significantly increases the training time, and in addition, an
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over-learning of the classifier was observed, decreasing the system performance.
For these reasons our efforts have focused on the under-sampling solution.

The problem to be solved, under-sampling the major class, lies in selecting
the most informative examples from a pool of representatives of the NTC, so as
not to discard potentially useful information.

In [15] a new directed sampling algorithm called Non-Target Incremental
Learning (NTIL) was proposed. This algorithm contains the classifier which di-
rects the most discriminative NTC examples subset selection during the learning
stage. Due to the effectiveness of this method in solving the problem, it is used
in both Systems 1 and 2.

This paper is organized as follows. The heuristic solution NTIL to the imbal-
anced data set problem is shown in section 2. Section 3 gives a general description
of the ANN-based SV system. The experiments performed with the development
dataset are shown in section 4. The final system configuration and the results
achieved in the text independent cross-channel speaker verification task can be
seen in section 5. The conclusions are presented in section 6.

2 Non Target Incremental Learning Algorithm

To reduce notation, the NTC (impostor) samples used in classifier learning will
be called Training Subset (TS), and the pool of examples of the NTC used for
extracting the TS will be called the Candidates for Training Subset (CTS).

The proposed technique can be formulated as follows:

a) The size of the TS (MaxTS) and the ending criteria of the classifier training
(EndCri) are selected.

b) The classifier is trained using the true training sample/s and one of those
in the CTS until EndCri is reached. We begin with a preliminary, weak
classifier.

c) The score of the classifier S(X) is obtained for each of the remaining samples
of the CTS, and the N with the highest values are chosen as the most similar
(nearest) to the true model. If the classifier were used for classification,
these N samples would be those with the highest probability of producing
false acceptances. However, due to their discriminative capability, they are
selected to train the classifier in the next phase.

d) The N samples chosen in step c) are included in the TS and the classifier is
trained once again.

e) Steps c) and d) are repeated until MaxIT is reached.

The TS selection in each iteration of the previous technique can be seen,
although not in the strict sense, as the N “not yet learned” samples.

To avoid random initialization of the TS, even the first TS sample (step b) is
also heuristically selected as shown in [15].
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3 General Description of the ANN-Based SV System

An MLP is trained per target speaker, using an Error Backpropagation learning
algorithm. The general configuration of the system is as follows:

– Three layer MLP architecture, with 32 hidden units and one output unit.
– Non-linear sigmoid units are used in hidden and output layers.
– The desired outputs for input vectors belonging to the target speaker and

TS are 1.0 and 0.0, respectively.
– The values of the learning coefficient and momentum are 0.01 and 0.95,

respectively.
– The EndCri is to train the MLP over 75 epochs.

A more detailed description can be found in [17][16].
Although the assumptions to approximate the MLP output to a Bayesian

a posteriori probability are not fulfilled [10], given an input vector xi from a
test (speech) sample X = {x1, x2, ..., xM}, the output of the λC MLP, trained
to verify the C target speaker identity, can be seen as the estimation of the
membership degree of vector xi to the class λC . This value is represented as
Γ (λC/xi). Following this MLP output interpretation, in view of its meaning
and values, even though it is not a real probability, it can be treated as such.
Then, the “pseudo-probability” that a test sample X belongs to the speaker C
will be:

Γ (λC/X) =
M∏
i=1

Γ (λC/xi) (1)

This value can be very low. So, to avoid loss of accuracy in its codification, the
use of the logarithm is advisable:

log(Γ (λC/X)) =
M∑
i=1

log(Γ (λC/xi)) (2)

The result in eq. 2 is highly dependent on M . Additional use of the mean to
avoid this dependence also allows the result to be bounded. Thus, the final score,
S(X), of the system per test sample X will be:

S(X) =
1
M

M∑
i=1

log(Γ (λSc/xi)) (3)

In order to improve the system performance, the R262 rule [16] is used, modifying
the previous calculation of the final score as follows:

SR(X) =
1

NR

NR∑
i=1

log(Γ (λc/xi)) ∀xi/Γ (λc/xi) �∈ (0.2, 0.8) (4)

Where NR is the number of vectors xi that verify the rule in (4).
As different classifiers, trained for different target speakers, give different score

distributions, Z-Norm is accomplished to normalize these score distributions.
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4 Experiments with the Development Data

Here, the main experiments performed with the development data and the con-
clusions extracted are shown.

4.1 Development Data Sample

The 300 speakers included in the development data were split into the following
three different random subsets:

– Subset 1. Consisting of 100 speakers that will be used as true speakers. One
sample (file) is randomly selected to train the MLP for each speaker, and the
remaining ones (on average, approximately 6 samples) are used for testing.
From the other 99 subset speakers, 50 samples are also randomly selected to
be used as impostor trials.

– Subset 2. Consisting of 100 speakers that will be used as CTS. One random
sample (file) is selected from each speaker. Then, the size of the CTS is 100
samples, with an equalized composition in channel types.

– Subset 3. Consisting of 100 speakers that will be used to perform ZNorm.
One random sample (file) is selected from each speaker. Then, the size of
this subset is 100 samples, also with an equalized composition in channel
types .

To get conclusive results about the final system configuration, some of the
tests shown in the next section were performed with four different selections of
the previous subsets.

4.2 System Parameter Selection

Different experiments were performed to test the system performance with re-
gard to (some of these experiments were performed to confirm previous results
with the new data):

– The number of MLP training epochs. Tests were performed with 50, 75, 100
and 150 MLP training epochs.

– The number of NTIL iterations. The results with 1, 2, 3, 4 and 5 NTIL
iterations were achieved. The value of N in the NTIL algorithm was fixed to
get approximately twice the quantity of vectors to those in the true speaker
training set. That is, if, for example, the number of target speaker C training
vectors is 5,000, for each NTIL iteration, we choose the N samples of the
CTS with the highest scores, such that the sum of the vectors of these N
samples will be approximately equal to 10,000.

– Calculate the final system score with and without the application of the
R262 rule.

– The channel compensation scheme used. Two different parameter extractions
were tested:
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• Parameters1. Standard feature extraction is accomplished from each
speech sample through 19 mel-frequency cepstral coefficients (MFCC),
plus 19 ΔMFCC vectors. These are extracted from 32 ms frames, taken
every 16 ms with Hamming windowing. A pre-emphasis factor of 0.97 is
accomplished, and Cepstral Mean Subtraction (CMS) is applied as the
channel compensation scheme.

• Parameters2. This is the same as the above, but the RASTA technique
is also applied to compensate the channel influence.

– Train the MLP with and without normalization with regard to the true
training sample channel type. Where we call:

• Channel Type Normalized Training (CTNT), if the channel type
(“land” and “cell” in the development data) of the TS is the same as
that of the true speaker training sample.

• Channel Type Non-Normalized Training (CTNNT), if the chan-
nel type of the true speaker training sample is not taken into account to
select the TS.

The first three items show experiments performed to confirm previous results.
Only the conclusions of these experiments are shown, for the sake of clarity.

With regard to the number of MLP training epochs, the results showed that
75 epochs are enough. The use of fewer epochs results in a worse performance,
and the results are not better if more epochs are used and, in addition, the
training time is increased.

As in previous works, the number of optimal NTIL algorithm iterations is 4,
although the results are only a little better than those achieved with 3 iterations.

The advantages of using the R262 rule were also confirmed. Although the
performance improvement is not very big, between 5% and 15%, the simplicity
of the rule makes it interesting.
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Fig. 1. Results achieved with the different system configurations tested with the de-
velopment data
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Table 1. System performance with the different system configurations tested with the
development data, measured by means of DCF and EER, both in %

Par1 and CTNT Par1 and CTNNT Par2 and CTNT Par2 and CTNNT

DCF 9.1 14.8 11.4 12.0

EER 7.4 11.7 9.7 10.0

In fig. 1, the system performance can be seen with regard to the different
alternatives shown in the last two items of the previous list. The performance of
each system configuration, now measured by means of optimal Detection Cost
Function (DCF) and Equal Error Rate (EER), is shown in table 1. The DCF is
calculated as shown in the ISCSLP evaluation plan:

CDET = CMiss×PMiss×PTarget+CFalseAlarm×PFalseAlarm×(1−PTarget) (5)

Where, CMiss = 10, CFalseAlarm = 1 and PTarget = 0.05.
From the results, it is easy to see that the best system configuration is with

parameters1 and CTNT. But a new problem appears: the channel type is avail-
able in the development data, but is not available in the evaluation data. Then,
a channel classifier is necessary. This will be described in the next section,
where the influence of channel misclassification in the system performance is
also shown.

4.3 Channel Type Classifier

The channel type classification is also a two class classification problem, since
the channel types in the development set are two: “land” and “cell”. Then, the
same classifier, a discriminative MLP with the architecture shown in section 3,
was used.

The speech feature extraction is the same as that shown in the previous sec-
tion, but without channel compensation.

To train and test the classifier, the 300 speakers included in the development
data were then split into the following two randomly selected different subsets:

– Subset 1. Consisting of 250 speakers. One sample (file) with “land” channel
and another with “cell” channel were randomly selected for each speaker to
train the classifier.

– Subset 2. Consisting of 50 speakers, whose samples are used for testing.

The advantages of using CTNT are clear from the results, but what happens
if the sample is misclassified? Table 2 shows the high degradation of the system
performance if the true speaker training sample channel type and the TS channel
type are different.

As not enough data were available to get conclusive results, the following was
done to decrease the error probability in the final decision:
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Table 2. System performance when CTNT is used and when the true speaker training
sample channel type and the TS channel type are different (column miss in the table).
Parameters 1 are used.

CTNT miss

DCF 9.1 19.8

EER 7.4 18.1

1. Over 40 different classifiers were trained with different selections of the pre-
vious subsets.

2. The four with the best performance were chosen. The EER achieved in these
classifiers is about 2%-3%.

3. The final decision was based on the individual decision of each of the four
selected classifiers: only if three or all four classifiers classify a sample as
“cell” or “land” is this sample then finally classified as “cell” or “land”,
respectively; otherwise the final decision is “none”. What happens in this
situation is shown in the next section. The decision threshold was fixed at
the equal error point of each classifier.

5 Final Systems. Evaluation Results

Although the best system configuration is clear, it was decided to use two dif-
ferent systems, due to the uncertainty concerning the channel classifier perfor-
mance:

– System 1. If the channel classifier final decision is “cell” or “land”, then the
speech feature extraction is that shown in parameters1, and CTNT is used.
If the decision of the channel classifier is “none” the system configuration is
that shown in System 2.

– System 2. If the channel misclassification in the evaluation data was high,
then the system performance would be bad. Then, CTNNT is used in this
system to avoid this problem. The feature extraction is that shown in pa-
rameters2, since its performance with CTNNT is better than that with pa-
rameters1 (see fig. 1).

The same CTS used in the last experiment performed with the development
data was used as CTS in the evaluation.

Fig. 2 shows the performance of both systems by means of a DET curve. The
optimum DCF achieved is 10.91% with System 1 and 15.25% with System 2.
Although comparison with other participant results cannot be done, it can be
said that System 1 is the third best system. Although it is far from the first, it
is very close to the second.

The real DCF achieved is 10.8% with System 1 and 15.4% with System 2.
These values are very similar to the optimal ones.
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Fig. 2. Results achieved with the evaluation data

6 Conclusions

In this work not only the SV task has been approached, but also the channel
type classification task.

With respect to this second task, the difference between system 1 results and
that achieved with the evaluation data, where the channel type is known, is not
very high. Thus, it can be concluded that although the channel type classifier
proposed can be improved, it has a good performance. We believe it would be
easy to improve this system, since, due to the time limitation, the system used
is the first proposed, and other configurations or systems could not be tested.
Besides, the evaluation data is also available to improve the system.

With respect to the SV task, two systems have been proposed, the best being
that which uses CTNT (System 1). Although the results are not the best, from
the System 1 performance, it can be concluded that, in spite of the lack of
attention to the use of discriminative ANNs in the SV task, this kind of classifier
can be an interesting alternative.

Finally, we believe that another interesting result is that the optimum DCF
and the real DCF are very close. This implies that the behaviour of the systems
proposed is predictable, which is an interesting property for getting real SV
systems.
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Abstract. In this paper, we present the evaluation results of our pro-
posed text-independent speaker recognition method based on the Earth
Mover’s Distance (EMD) using ISCSLP2006 Chinese speaker recognition
evaluation corpus developed by the Chinese Corpus Consortium (CCC).
The EMD based speaker recognition (EMD-SR) was originally designed
to apply to a distributed speaker identification system, in which the fea-
ture vectors are compressed by vector quantization at a terminal and sent
to a server that executes a pattern matching process. In this structure,
we had to train speaker models using quantized data, so that we utilized
a non-parametric speaker model and EMD. From the experimental re-
sults on a Japanese speech corpus, EMD-SR showed higher robustness
to the quantized data than the conventional GMM technique. More-
over, it has achieved higher accuracy than the GMM even if the data
were not quantized. Hence, we have taken the challenge of ISCSLP2006
speaker recognition evaluation by using EMD-SR. Since the identification
tasks defined in the evaluation were on an open-set basis, we introduce a
new speaker verification module in this paper. Evaluation results showed
that EMD-SR achieves 99.3% Identification Correctness Rate in a closed-
channel speaker identification task.

Keywords: speaker identification, Earth Mover’s Distance, nonpara-
metric, vector quantization, Chinese speech corpus.

1 Introduction

In recent years, the use of portable terminals, such as cellular phones and PDAs
(Personal Digital Assistants), has become increasingly popular. Additionally, it
is expected that almost all appliances will connect to the Internet in the future.
As a result, it will become increasingly popular to control these appliances using
mobile and hand-held devices. We believe that a speaker recognition system will
be used as a convenient personal identification system in this case.

Q. Huo et al.(Eds.): ISCSLP 2006, LNAI 4274, pp. 539–548, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



540 S. Kuroiwa et al.

In order to meet this demand, we have proposed some speaker recognition
techniques[1,2,3] that focused on Distributed Speech/Speaker Recognition
(DSR) systems[4,5,6,7,8,9,10]. DSR separates the structural and computational
components of recognition into two components - the front-end processing on
the terminal and the matching block of the speech/speaker recognition on the
server. One advantage of DSR is that it can avoid the negative effects of a speech
codec because the terminal sends the server not a compressed speech signal but
quantized feature parameters. Therefore, DSR can lead to an improvement in
recognition performance. In speech recognition services, DSR is widely deployed
in Japanese cellular telephone networks[11]. On the other hand, in speaker recog-
nition, since a speaker model has to be trained with a little registration voice,
quantization poses a big problem, especially in case of using a continuation prob-
ability density function e.g. GMM[9,10].

To solve this problem, we propsed a non-parametric speaker recogniton
method that did not require estimating statistical parameters of the speaker
model[2]. We represented a speaker model using a histogram of speaker-
dependent VQ codebooks (VQ histogram). To calculate the distance between
the speaker model and the feature vectors for recognition, we applied the Earth
Mover’s Distance (EMD) algorithm. The EMD algorithm has been applied to
calculate the distance between two images represented by histograms 1 of mul-
tidimensional features[12]. In [2], we conducted text-independent speaker iden-
tification experiments using the Japanese de facto standard speaker recognition
corpus and obtained better performance than the GMM for quantized data. Af-
ter that, we extended the algorithm to calculate the distance between a VQ
histogram and a data set. From the results, we observed it achieved higher ac-
curacy than the GMM and VQ distortion method even if the data were not
quantized. We consider that the better results were obtained by the proposed
method, since it can compare the distribution of the speaker model with the
distribution of the testing feature vectors as is.

To evaluate the proposed method using a larger database, we have taken
the challenge of the speaker recognition evaluation organized by the Chinese
Corpus Consortium (CCC) for the 5th International Symposium on Chinese
Spoken Language Processing (ISCSLP 2006). In view of the characteristics of
the proposed method, we have chosen the text-independent speaker recognition
task from the five tasks provided by CCC. The method was originally designed
for the classical speaker identification problem that does not require a function
to reject out-of-set speaker voices. However, since the evaluation data includes
out-of-set speaker voices, we introduce a new speaker verification module in this
paper.

This paper will continue as follows. Section 2 explains the Earth Mover’s Dis-
tance and the originally proposed speaker identification method. Some modifica-
tions for ISCSLP2006 speaker recognition evaluation are also described. Section 3

1 In [12], EMD is defined the distance between two signatures. The signatures are
histograms that have different bins, so that we use “histogram” as a term in this
paper.
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presents speaker identification experiments using ISCSLP2006 speaker recogni-
tion evaluation corpus. Finally, we summarize this paper in section 4.

2 Nonparametric Speaker Recognition Method Using
EMD

In this section, we first provide a brief overview of Earth Mover’s Distance. Next,
we describe the distributed speaker recognition method using a nonparametric
speaker model and EMD measurement. Finally, we propose EMD speaker iden-
tification for unquantized data and a speaker verification module for identifing
out-of-set speaker voices.

2.1 Earth Mover’s Distance

The EMD was proposed by Rubner et al.[12] for an efficient image retrieval
method. In this section, we describe the EMD algorithm.

The EMD is defined as the minimum amount of work needed to transport
goods from several suppliers to several consumers. The EMD computation has
been formalized by the following linear programming problem: Let P = {(p1,
wp1), . . . , (pm, wpm)} be the discrete distribution, such as a histogram, where pi

is the centroid of each cluster and wpi is the corresponding weight (=frequency)
of the cluster; let Q = {(q1, wq1), . . . , (qn, wqn)} be the histogram of test feature
vectors: and D = [dij ] be the ground distance matrix where dij is the ground
distance between centroids pi and qj .

We want to find a flow F = [fij ], where fij is the flow between pi and qj (i.e.
the number of goods sent from pi to qj), that minimizes the overall cost

WORK(P , Q, F ) =
m∑

i=1

n∑
j=1

dijfij , (1)

subject to the following constraints:

fij ≥ 0 (1 ≤ i ≤ m, 1 ≤ j ≤ n), (2)
n∑

j=1

fij ≤ wpi (1 ≤ i ≤ m), (3)

m∑
i=1

fij ≤ wqj (1 ≤ j ≤ n), (4)

m∑
i=1

n∑
j=1

fij = min

⎛⎝ m∑
i=1

wpi ,
n∑

j=1

wqj

⎞⎠ . (5)

Constraint (2) allows moving goods from P to Q and not vice versa. Constraint
(3) limits the amount of goods that can be sent by the cluster in P to their
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weights. Constraint (4) limits the amount of goods that can be received by the
cluster in Q to their weights. Constraint (5) forces movement of the maximum
amount of goods possible. They call this amount the total flow. Once the trans-
portation problem is solved, and we have found the optimal flow F , the EMD is
defined as the work normalized by the total flow:

EMD(P , Q) =

∑m
i=1

∑n
j=1 dijfij∑m

i=1

∑n
j=1 fij

(6)

The normalization factor is the total weight of a smaller distribution, because
of constraint (5). This factor is needed when the two distributions of suppliers
have different total weight, in order to avoid favoring a smaller distribution.

2.2 The Recognition Flow of the Proposed Method

In the previous section, we described that EMD is calculated as the least amount
of work which fills the requests of consumers with the goods of suppliers.

If we define the speaker model as the suppliers and the testing feature vectors
as the consumers, the EMD can be applied to speaker recognition. Hence, we
propose a distributed speaker recognition method using a nonparametric speaker
model and EMD measurement. The proposed method represents the speaker
model and testing feature vectors as a histogram. The detail of the proposed
method is described as follows.

Fig. 1 illustrates a flow of the feature extraction process using the ETSI DSR
standard[5] and the proposed method. In the figure, dotted (˙) elements indi-
cate data quantized once and double dotted (̈ ) elements indicate data quan-
tized twice. As shown in the upper part of the figure, both registered utter-
ances and testing utterances are converted to quantized feature vector sequences,
V̇ A, V̇ B, . . ., and V̇ X , using the ETSI DSR front-end and back-end (NA, NB,
and NX are the number of frames in each sequence). In this block, ct is a feature
vector of time frame t that consists of MFCC and logarithmic energy; xt is a code
vector that is sent to the back-end (server); ċt is a decompressed feature vector;
and v̇t is a feature vector for use in the subsequent speaker recognition process.
Using V̇ A, V̇ B, . . ., and V̇ X , the proposed method is executed as follows.

(a) Speaker Model Generation. Using the registered feature vectors, the
system generates each speaker’s VQ codebook, {p̈sp

1 , . . . , p̈sp
m}, by using the LBG

algorithm with Euclidean distance, where sp is a speaker name, and m is a
codebook size. In order to make a histogram of VQ centroids, the number of
registered vectors whose nearest centroid is p̈sp

i is counted and frequency is set
to wsp

pi
. As a result, we get a histogoram of the speaker, sp, that is the speaker

model in the proposed method,

P sp = {(p̈sp
1 , wsp

p1
) . . . , (p̈sp

m , wsp
pm

)}. (7)

This histogram is used as the suppliers’ discrete distribution, P , described in
the previous section.
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Fig. 1. A block diagram of the feature extraction process and the proposed speaker
recognition method

(b) Testing data. A histogram of testing data is directly calculated from V̇ X

that was quantized by ETSI DSR standard. The quantized feature vectors consist
of static cepstrum vectors that have 646 possible combinations and their delta
cepstrum vectors, so that we consider they are a set of vectors, {q̇X

1 , . . . , q̇X
mx

},
where mx is the number of individual vectors. In order to make a histogram
of the set of vectors, occurrence frequency of the vector q̇X

i is set to wX
qi

. As a
result, we get a histogoram of the testing data,

QX = {(q̇X
1 , wX

q1
) . . . , (q̇X

mx
, wX

qmx
)}. (8)

This histogram is used as the consumers’ discrete distribution, Q, described in
the previous section.

(c) Identification. Using the speaker models, P sp, and the testing data, QX ,
speaker recognition is executed as in the following equation.

Speaker = argmin
sp

EMD(P sp, QX) (9)
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As the grand distance, dij , in EMD, we use the Euclidean distance between p̈sp
i

and q̇X
j . Since we utilize wsp

pi
and wX

qj
as the frequency of p̈sp

i and q̇X
j respectively,

fij is the number of vectors matched with p̈sp
i and q̇X

j (i.e. the number of goods
sent from p̈sp

i to q̇X
j ), that minimizes the overall cost by EMD.

2.3 Modification to Adapt to Unquantized and Out-of-Set Data

In order to apply the proposed method to unquantized data and to identify
out-of-set data, i.e. ISCSLP2006 speaker recognition evaluation corpus, we have
modified the recognition flow described in the previous section.

First, the “Compression” and “Decompression” blocks in Fig. 1 are skipped
and consequently feature vector sequences, V̇ A, V̇ B, . . ., and V̇ X , become un-
quantized feature vector sequences, V A, V B, . . ., and V X . In “Speaker Model
Generation”, the LBG algorithm can generate each speaker’s codebook from the
unquantized feature vector sequence without any modification of the algorithm.
On the other hand, we consider the set of the feature vectors of the testing utter-
ance to be a histogram in which the occurrence frequency of each vector is one.
By the above modification, we can calculate EMD between the speaker model
and the testing data.

Next, we have introduced an out-of-set identification module after “Speaker
identification using EMD” in Fig. 1. Although a candidate speakers list of each
testing datum is provided in the evaluation, we calculate EMDs between the
testing datum and all speaker models. After that, a confidence score of the
nearest speaker in the candidate list is calculated by the following equation,

score(s) = −(EMD(P s, QX) − min
sp�=s

EMD(P sp, QX)) + bias(s), (10)

where s is the nearest speaker in the candidate list, P sp is each of the speaker
model in a speaker recognition system, QX is the testing datum and bias(s) is
speaker-dependent bias to control False Rejection Rate (FRR) and False Accep-
tance Rate (FAR). If the score is equal to or greater than zero, it is recognized
as the testing data having been uttered by speaker s. If not, it is identified as
the out-of-set datum. In the experiments we used 400 speaker models that were
trained with all data for enrollment in the text-independent speaker recognition
task of ISCSLP2006 speaker recognition evaluation. The bias(s) is calculated by
the follwong equations,

Xs = argmin
X∈testset

EMD(P s, QX), (11)

bias(s) = EMD(P s, QXs) − min
sp�=s

EMD(P sp, QXs) + globalbias, (12)

where globalbias is one global value that controls the ratio of results for in-set
and out-of-set. We assumed that at least one speaker’s datum was contained in
the testset, and bias(s) is determined based on the score of this datum, i.e. the
nearest datum in the testset. We think this is a reasonable way, because in a
real application system, we can get each speaker’s utterances that are uttered
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to access the system and we can know the ratio of users for in-set and out-of-set
in a field trial phase of the system. Actually, we have a good example of this
technique, that is, the threshold values in the Prank Call Rejection System[13]
that was deployed by KDDI international telephone service from 1996 were de-
termined with this kind of process and still works effectively today.

3 Experiments

We conducted text-independent speaker identification experiments to evaluate
the proposed method using the ISCSLP2006 spaker recognition evaluation data
developed by Chinese Corpus Consortium (CCC).

3.1 Task Definition

In ICSLP2006, CCC has organized a special session on speaker recognition and
provided speech data to evaluate speaker recognition algorithms using the same
database. CCC provided several kinds of tasks, i.e, text-independent speaker
identification, text-dependent and text-independent speaker verification, text-
independent cross-channel speaker identification, and text-dependent and text-
independent cross-channel speaker verification. We chose the text-independent
speaker recognition task in view of the characteristics of the proposed method.
The data set of this task contained 400 speakers’ data for enrollment, and
2,395 utterances for testing. Each datum to enroll is longer than 30 seconds
and recorded over PSTN or GSM network. In testing data, the enrolled speaker
uttered over same kind of channels in this task. Each testing datum has a can-
didate speakers list and about half of the testing data were uttered by out-of-set
speakers who did not appear in the list. Therefore, the speaker identification
algorithm has to decide whether each testing datum is in-set or out-of-set also.

CCC also provided the development data that contained 300 speakers’ utter-
ances with speaker labels and channel conditions. We were able to decide the
various parameters of the algorithm using that data.

The performance of speaker identification was evaluated by Identification Cor-
rectness Rate, defined as:

%CorrectIdentif ication =
NumberOfCorrectlyIdentif iedData

TotalNumberOfTrialData
× 100%,

(13)
where “correctly identified data” means those data identified as the speaker
models they shoud be by the top-candidate output, if they are “in-set”, or “non-
match” if “out-of-set”.

3.2 Experimental Conditions

All data, sampled at 8kHz, were segmented into overlapping frames of 25ms,
producing a frame every 10ms. A Hamming window was applied to each frame.
Mel-filtering was performed to extract 12-dimensional static MFCC, as well as a
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Table 1. Evaluation results with the proposed method

Identification Correctness Rate 99.33 % (2379/2395)
False Acceptance Rate 0.42 % ( 10/2395)
False Rejection Rate 0.25 % ( 6/2395)
Recognition Error Rate 0.00 % ( 0/2395)

logarithmic energy (log-energy) measure. The 12-dimensional delta MFCC and
delta log-energy were extracted from the static MFCC and the log-enrgy, respec-
tively. After that, by omitting the log-energy, we constituted a 25-dimensional
feature vector (12 static MFCCs + 12 delta MFCC + delta log-energy). Cep-
stral Mean Subtraction (CMS) was applied on the static MFCC vectors. We
used HTK3.3[16] for the feature extraction.

In order to avoid an influence of non-speech sections and unreliable speech
frames, we employed a voice activity detector (VAD) that classifies each frame
into speech or background sound on a frame-by-frame basis. The VAD used
power threshold that was calculated from percentile levels based on each observed
speech signal. We used the following threshold in the experiments.

Threshold = (P95%tile − P10%tile) × 0.2 + P10%tile, (14)

Only the frames with higher power level than this threshold value were used
for speaker identification. This process reduced the number of frames by 10% to
50%.

In the experiment, we set the number of centroids of each speaker’s codebook
to 64, which gave the best accuracy in experiments using the development data.
The speaker dependent threshold for detecting the out-of-set data was also set
up using this data and the previous information that the ratio of testing samples
for in-set and out-of-set cases would be about 1:1.

3.3 Experimental Results

Table 1 shows the Identification Correctness Rate (ICR), False Acceptace Rate
(FAR), False Rejection Rate (FRR), and Recognition Error Rate (RER). RER
is the rate which identified the utterance of one speaker in the candidate list
as another speaker’s utterance. The table shows the proposed method achieved
extremely high performance in the open-set manner. This result is the best
ICR in the “speaker identification task” under the closed-channel condition of
ISCSLP2006 speaker recognition evaluation. On the other hand, the proposed
algorithm required much computation time. Actually, it took about four min-
utes to identify one utterance with an Intel Pentium 4 3.2GHz processor in the
experiments.

When we investigated the data of FAR and FRR, the word sequences of
several testing data were included in the training data of the other speaker and
was not included in the training data of the correct speaker. The use of automatic
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speech recognition will improve the speaker identification performance for these
data[1,14], although it will turn into a language dependent system.

Although we did not compare the proposed method with the conventional
speaker identification techniques in this paper, we think it outperforma than
GMM and VQ distortion techniques. Because the proposed method directly cal-
culates the distance between data set, while both of the VQ distortion and GMM
methods calculate the distance by totaling the VQ distortion or the likelihood of
each frame. The proposed method can compare the distribution of the training
feature vectors with the distribution of the testing feature vectors. Actually, we
observed better performance with the proposed method in a Japanese corpus.

4 Summary

In this paper, we have presented evaluation results of a novel speaker recognition
method based on a nonparametric speaker model and Earth Mover’s Distance
(EMD) using ISCSLP2006 speaker recognition evaluation corpus provided by
the Chinese Corpus Consortium (CCC). The proposed method was originally
designed to apply to a distributed speaker recognition system. We have improved
the method to be able to handle unquantized data and reject out-of-set speakers
in this paper.

Experimental results on the ISCSLP2006 text-independent speaker identifica-
tion task under the closed-channel condition in the open-set manner, showed that
the proposed method achieved 99.33% Identification Correctness Rate, which is
the best score in this task. This result suggests that the proposed method would
be effective also in speaker verification. On the other hand, the proposed method
needed much computation time. We also confirmed the errors of the proposed
method depended on the contents of utterances.

In future work, we will accelerate the distance calculation process in the pro-
posed algorithm and apply the method to speaker verification. Furthermore,
we will consider use of speech recognition to improve the speaker identification
accuracy.
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Abstract. This paper investigates the effectiveness of integrating com-
plementary acoustic features for improved speaker identification perfor-
mance. The complementary contributions of two acoustic features, i.e.
the conventional vocal tract related features MFCC and the recently pro-
posed vocal source related features WOCOR, for speaker identification
are studied. An integrating system, which performs a score level fusion of
MFCC and WOCOR with a confidence measure as the weighting param-
eter, is proposed to take full advantage of the complementarity between
the two features. The confidence measure is derived based on the speaker
discrimination powers of MFCC and WOCOR in each individual identifi-
cation trial so as to give more weight to the one with higher confidence in
speaker discrimination. Experiments show that information fusion with
such a confidence measure based varying weight outperforms that with
a pre-trained fixed weight in speaker identification.

1 Introduction

Speaker recognition is an identity authentication process which automatically
identifies individuals with the intrinsic characteristics conveyed by their voice.
The state-of-the-art speaker recognition systems typically employ the Mel-
frequency cepstral coefficients (MFCC) as the representative acoustic features
[1], [2]. The MFCC features (with an appropriate pattern matching technique,
e.g. Gaussian Mixture Model, GMM) have achieved very high recognition per-
formances in laboratory conditions. However, the recognition accuracy degrades
dramatically in real-world applications. Therefore, many efforts have been de-
voted to developing new acoustic features or high-level features to supplement
the MFCC for improved speaker recognition performances [3, 4, 5, 6].

We have recently proposed a new feature, called the wavelet octave coefficients
of residues (WOCOR), for speaker recognition [7]. As known, human speech can
be modeled as the convolutional output of a vocal source excitation signal and
the impulse response of the vocal tract filter system [8]. The MFCC parameters
are derived mainly to represent the spectral envelope, or the formant structure
of the vocal tract system [9]. The WOCOR parameters, on the other hand, aim
at characterizing the spectro-temporal characteristics of the vocal source excita-
tion [7]. These two features contain complementary speaker-specific information
since they characterize two physiologically different information sources in speech
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production. The experiments presented in [7] have shown that a system combin-
ing MFCC and WOCOR achieves better performance than that using MFCC
only in both speaker verification and identification.

The performance of the combining system, however, is highly relied on the
effectiveness of the fusion technique selected. Generally, the information fusion
can be done at (i) feature level, (ii) score level, or (iii) decision level. This paper
proposes a score level fusion technique for combining MFCC and WOCOR for
speaker identification. Score level fusion is preferred because the matching scores
are easily obtained and contain sufficient information for distinguishing different
speakers. In multimodal person authentication systems, which employ multiple
biometric information to recognize a person, it is very important to apply effi-
cient information fusion technique because the reliability of decision scores from
different classifiers may vary significantly. There have been a number of works
on developing information fusion technique for biometrics systems [10, 11, 12].
This paper proposes a confidence measure based fusion technique for the fusion
of MFCC and WOCOR. The confidence measure is estimated from the matching
scores, given by MFCC and WOCOR respectively, in each identification trial.
The motivation for using such a confidence measure is that the distributions
of matching scores show significant difference between the correct and incor-
rect identification trials. The confidence measure provides an optimized fusion
score by giving more weight to the score with higher confidence to give a correct
identification. Speaker identification experiments show that this system achieves
better performance than that with a fixed weight scores fusion.

2 MFCC and WOCOR Feature Extraction

2.1 MFCC

The extraction of MFCC parameters follows the standard procedures as de-
scribed in [9]:

1) Short-time Fourier transform is applied every 10 ms with a 30 ms Hamming
window.

2) The magnitude spectrum is warped with a Mel-scale filter bank that con-
sists of 26 filters, which emulates the frequency resolution of human auditory
system. Log-magnitude of each filter output is calculated.

3) Discrete cosine transform (DCT) is applied to the filter bank output.
The MFCC feature vector has 39 components, including the first 12 cep-

stral coefficients, the log energy, as well as their first and second order time
derivatives.

2.2 WOCOR

WOCOR parameters are generated based on pitch-synchronous wavelet trans-
form of the linear predictive (LP) residual signal of voiced speech.

1) Detect the voiced speech and its pitch periods with the Robust Algorithm
for Pitch Tracking (RAPT) algorithm [13]. Only voiced speech is kept for sub-
sequent processing.
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2) Generate the linear predictive (LP) residual signal by LP inverse filtering,
i.e.,

e(n) = s(n) −
12∑

k=1

aks(n − k) (1)

where the filter coefficients ak are computed on every 30 ms. speech with Ham-
ming window using the autocorrelation method [8]. To reduce the intra-speaker
variation, the amplitude of e(n) is normalized to the interval [-1, 1].

3) Pitch bursts of the residual signal are detected. The residual signal is di-
vided into short segments with Hamming window. Each window covers exact
two pitch cycles and synchronizes with the pitch bursts.

4) Apply wavelet transform on each Hamming windowed residual singal eh(n)

w(a, b) =
1√|a|

∑
n

eh(n)Ψ∗(
n − b

a
) (2)

where Ψ(n) is the 4th-order Daubechies wavelet basis function, a and b are the
scaling parameter and the translation parameter respectively [14]. Six scaling
parameters a = {2k|k = 1, 2 · · · , 6} is selected for multi-resolution analysis. As
a result, there are six octave groups of wavelet coefficients, i.e.,

Wk =
{
w(2k, b) |b = 1, 2, · · · , N

}
, k = 1, 2, ..., 6 (3)

where N is the window length.
5) Each Wk is divided into 4 subgroups, i.e.,

WM
k (m) =

{
w(2k, b)

∣∣∣b ∈ ( (m−1)N
4 , mN

4 ]
}

m = 1, · · · , 4
(4)

The WOCOR feature vector with 24 parameters is generated as

WOCOR =
{

‖Wk(m)‖
∣∣∣∣m = 1, 2, · · · , 4
k = 1, 2, · · · , 6

}
(5)

where ‖ · ‖ denotes the 2-norm operator.
To summarize, given a speech utterance, a sequence of WOCOR feature vec-

tors are obtained by pitch-synchronous wavelet transform of the LP residual
signal. Each feature vector consists of 24 components, which captures useful
spectro-temporal characteristics of the residual signal.

3 Info-fusion with Confidence Measure

A simple and widely applied score fusion is the fixed weight linear combination,
i.e.

s = wtsM + (1 − wt)sW (6)

where sM , sW and s are the matching scores obtained from MFCC, WOCOR
and the fused score, respectively. The fusion weight wt can be pre-trained and is
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fixed the same for all the identification trials. A major problem of such a fixed
weighting scheme is that it ignores the different contributions of MFCC and
WOCOR in individual trials. For example, consider two types of identification
trials as given in Table 1, in which MFCC and WOCOR give different contribu-
tions to speaker identification. With fixed weight fusion, though correct results
are obtained for the Type I trials, incorrect decisions are made for Type II trials
which have been correctly identified by MFCC only. To avoid this problem, an
ideal solution should be capable of distinguishing the two cases and give null
weight to MFCC for Type I trials and to null weight to WOCOR for Type II
trials. Although such an ideal solution is not available in real-world applications,
in the follows, we demonstrate that a confidence measure based fusion method
with varying weights in different trials can avoid most of this kind of errors.

Table 1. Different contributions of MFCC and WOCOR in two types of trials

Type I Type II

MFCC incorrect correct

WOCOR correct incorrect

Fixed weight fusion correct incorrect

Analysis of the matching scores shows that, generally, in a correct identifica-
tion, the difference of the scores between the identified speaker and the closest
competitor is relatively larger than that in an incorrect identification. The score
difference can therefore be adopted for measuring the discrimination power, i.e.

D =
max

i
{si} − secondmax

i
{si}∣∣∣max

i
{si}

∣∣∣ (7)

where si is the matching score of the i-th speaker. The normalization of the
difference over max{si} reduces the effect of the dynamic range of s.

Figure 1 shows the histogram of D of MFCC and WOCOR. It is clear that
a correct identification is generally associated with a larger D than an incor-
rect identification. Therefore, a larger D implies that the corresponding feature
has higher confidence for speaker identification. Obviously, it is preferable to
taking into account D for score fusion in each identification trial instead of us-
ing the fixed weight. Although the optimal way to fuse the two scores with the
knowledge of the discrimination power is not known, we found that a confidence
measure (CM) including the discrimination ratio into the sigmoid function offers
improvement to the identification performance. CM is then defined as

CM = − log
1

1 + e(−α·(DR−β))
(8)

where DR = DM/DW is the discrimination ratio of MFCC and WOCOR, α
and β control the slope of the mapping contour from DR to CM , as illustrated



Integrating Complementary Features with a Confidence Measure 553

 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

2

4

6

8

10
incorrect identification
correct identification

(a) MFCC

 

0 0.01 0.02 0.03 0.04
0

2

4

6

8

10
incorrect identification
correct identification

(b) WOCOR

Fig. 1. Histogram of the speaker discrimination power D of the MFCC (a) and
WOCOR (b) features

in Fig. 2. The solid line curve in Fig. 2 is used for the identification experiments
described in Section 4. The corresponding parameters α = 0.2, β = −3 are
trained using the development data.

The score fusion with confidence measure for each identification trial is now
written as

s = sM + sW · CM (9)

With CM , the fused score combines better weighted sM and sW based on the
contributions of the corresponding features in that specific trial. As illustrated
in Fig.2, when DR is large, CM tends to zero; the final decision will not be
heavily affected by the score obtained from WOCOR. Contrarily, a small DR
corresponds to a large CM , which will introduce more impact of score obtained
from WOCOR for final decision.

4 Experiments

4.1 Experimental Setup

The UBM-GMM method [2] is adopted for training the speaker models. For
each set of features, a universal background model (UBM) is first trained using
the training data from all speakers. Then a Gaussian mixture model (GMM)
is adapted from the UBM for each speaker using the respective training data.
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Although in real applications, the testing utterances could come from the unreg-
istered impostors. In these experiments, we only deal with the close-set speaker
identification. That is, all the testing utterances must come from one of the in-
set speakers. The one whose GMM gives the highest matching score is marked
as the identified speaker.

The speaker identification experiments are conducted on a subset of the CU2C
database, which is a Cantonese speech database created in the Chinese Univer-
sity of Hong Kong for speaker recognition applications [15]. In the experiments,
there are 50 male speakers, each having 18 sessions of speech data with 10 ut-
terances in each session. The first 4 sessions are used for training the speaker
models. Sessions 5-8 are used as development data for training the weighting
parameters for the score level fusion of MFCC and WOCOR. Each speaker has
100 identification trials from the last 10 sessions. All the utterances are text-
independent telephone speech with matched training and testing conditions (the
same handset and fixed line telephone network). The speech data of each speaker
are collected over 4 ∼ 9 months with at least one week interval between the
successive sessions. Therefore, the challenge from the long-term intra-speaker
variation for speaker recognition can be addressed by the database.

4.2 Identification Results

Table 2 illustrates speaker identification results of the 4 systems use (i) WOCOR
only, (ii) MFCC only, (iii) score fusion with fixed weight, and (iv) score fusion
with confidence measure. The identification error rate (IDER) is defined as

IDER =
Number of incorrrect identif ication trials

Number of total identif ication trials
× 100% (10)
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Table 2. Speaker identification performances

systems MFCC WOCOR Fixed weight fusion Fusion with CM

IDER (in%) 6.80 27.04 4.70 4.10

As illustrated, the identification performance of WOCOR is much worse than
that of MFCC. Nevertheless, as expected, the fusion of these two complementary
features gives better performance than that using MFCC only. For example,
the IDER is reduced from 6.80% to 4.70% with fixed weight score fusion, and
is further reduced to 4.10% with confidence measure based score fusion. As a
whole, the proposed system provides an improvement of 40% over that using
MFCC only.

4.3 Analysis of the Identification Results

Table 3 elaborates how the integration of the two complementary features af-
fects the identification performances. The identification trials are divided into 4
subsets according to the performances of MFCC and WOCOR: (i) correct iden-
tification with both MFCC and WOCOR (McWc), (ii) incorrect identification
with both MFCC and WOCOR (MiWi), (iii) incorrect identification with MFCC
while correct identification with WOCOR (MiWc), and (iv) correct identification
with MFCC while incorrect identification with WOCOR (McWi). The number
of identification errors with MFCC, WOCOR and the integrated systems of each
subset are given in the table.

Table 3. Number of errors of 4 identification subsets by different systems

Subsets McWc MiWi MiWc McWi

Numbers of trials 3328 244 95 1333

MFCC 0 244 95 0

WOCOR 0 244 0 1333

Fixed weight fusion 0 163 7 65

Fusion with CM 0 167 19 19

We are only interested in the last 3 subsets, which have errors with at least
one kind of features. For the second subset, although both MFCC and WOCOR
give incorrect identification results, the integrated system gives correct results
for some trials. For example, the number of identification errors is reduced from
244 to 163 with the fixed weight fusion and to 167 with the confidence measure
based fusion. That is, about one third of the errors has been corrected. Table 4
gives an example demonstrating how the score fusion can give correct result even
though both MFCC and WOCOR give error results. In this example, the true
speaker is S5. It is shown that although S5 only ranks at the 6th and the 2nd
with MFCC and WOCOR respectively, in the integration systems, it ranks at
the first and therefore is correct identified.
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Table 4. Ranking the speaker scores in an identification trial

Rank MFCC WOCOR Fixed weight fusion Fusion with CM

1 S7: -1.7718 S34:1.5732 S5:-0.4364 S5:-1.0903

2 S27:-1.7718 S5:1.5730 S27:-0.4445 S27:-1.0977

3 S10:-1.7722 S48:1.5640 S34:-0.4446 S7: -1.0984

4 S42:-1.7743 S35:1.5620 S41:-0.4448 S10:-1.1000

5 S1: -1.7756 S39:1.5619 S46:-0.4448 S41:-1.1005

6 S5:-1.7760 S46:1.5510 S7: -0.4452 S46:-1.1015

7 S41:-1.7788 S41:1.5561 S10:-0.4465 S42:-1.1027

The results of the two one-error identification subsets McWi and MiWc
demonstrate the superiority of the confidence measure for score fusion over the
fixed weight score fusion. For the fixed weighting system, although the number
of errors in the MiWc subset is significantly reduced from 95 to 7, there are
65 errors introduced to the McWi subset, which have been correctly identified
with MFCC only. For the confidence measure based fusion system, the number
of newly introduced errors is significantly reduced to 19, with only a slightly
increase of errors in MiWi and MiWc subsets. As a whole, the total error num-
ber is reduced from 399 with MFCC only to 235 with fixed weight fusion, and
further to 205 with confidence measure based fusion.

5 Conclusions

This paper presents an efficient information fusion technique to integrate two
acoustic features MFCC and WOCOR for speaker identification. Analysis of the
identification results shows that the two features have complementary contri-
butions to speaker identification. To take full advantage of the complementary
contributions of MFCC and WOCOR, a confidence measure derived from the
speaker discrimination ratio of the two features is adopted as the weighting
parameter for score level fusion of MFCC and WOCOR. In comparison with
the identification error rate of 6.80% obtained with MFCC only, an error rate
of 4.10% is obtained with the proposed information fusion system, that is an
improvement of 40%.
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Abstract. In conventional Gaussian Mixture Model – Universal Background 
Model (GMM-UBM) text-independent speaker verification applications, the 
discriminability between speaker models and the universal background model 
(UBM) is crucial to system’s performance. In this paper, we present a method 
based on heteroscedastic linear discriminant analysis (HLDA) that can enhance 
the discriminability between speaker models and UBM. This technique aims to 
discriminate the individual Gaussian distributions of the feature space. After the 
discriminative transformation, the overlapped parts of Gaussian distributions can 
be reduced. As a result, some Gaussian components of a target speaker model can 
be adapted more sufficiently during Maximum a Posteriori (MAP) adaptation, 
and these components will have more discriminative capability over the UBM. 
Results are presented on NIST 2004 Speaker Recognition data corpora where it is 
shown that this method provides significant performance improvements over the 
baseline system. 

Keywords: Discriminative Adaptation HLDA EM ML. 

1   Introduction 

The Gaussian Mixture Model – Universal Background Model framework [1] is widely 
used in most state-of-the-art text-independent speaker verification systems. In a 
GMM-UBM system, the UBM is a single, speaker-independent GMM with a large 
number of mixture components (512-2048) trained from a large amount of speech 
uttered by lots of speakers. Due to the limitation of training speech data from an 
enrolled speaker, a target speaker model is often derived from adapting the parameters 
of UBM using the speaker’s enrollment speech. Bayesian adaptation or MAP 
estimation is generally used for speaker adaptation [1]. In conventional MAP 
adaptation, a feature vector is used to update all Gaussian components in parallel. As 
the Gaussian distributions have overlapped parts, each feature vector is shared by 
several dominant components. With limited adaptation data, these components can not 
be adapted sufficiently, so the discriminative capability over UBM is reduced. This 
would impair subsequent verification performance. 

To address this problem, one solution is to discriminate the distribution of the 
mixture components, which will reduce the overlapped sections of the Gaussian 
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distributions. This idea is inspired by linear discriminative analysis, which is 
commonly used in pattern recognition. Linear discriminative analysis is to generate a 
“good” set of features from the observed data, and these features keep all class 
discriminating information. Features containing no information are removed since they 
will add computational and memory costs, and may degrade the classification results. 
In speech recognition, LDA [2] and HLDA [2,3] are often used. 

In this paper, discriminative transformation for sufficient adaptation (DTFSA) is 
implemented in conventional GMM-UBM speaker verification system. This 
transformation is calculated using HLDA, but without dimension reduction, and it is 
used to discriminate the Gaussian components in the feature space. The method is 
tested on NIST SRE04 evaluation corpora, experimental results show that after the 
discriminative transformation, speaker models derived from MAP adaptation have 
more discriminative capability over the UBM, and the system gains a significant 
improvement on verification performance. 

In the next section we will firstly review MAP adaptation and standard HLDA, and 
then describe using HLDA to get the discriminative transformation for sufficient 
adaptation in GMM-UBM system carefully. This is followed by a description of 
experiment data, design and results. Conclusion will be given at the end of this paper. 

2   Discriminative Transformation for Sufficient Adaptation 

2.1   MAP Adaptation 

In the context of a GMM-UBM system for text-independent speaker recognition, 
consider a UBM with M components in which the model parameters λ  are defined as 

{ }, , ; 1, ,m m mw m Mλ μ= Σ = , where mw , mμ  and mΣ  are the component weight, 

mean vector and covariance matrix of the m-th component respectively. The adapted 
speaker model via MAP is obtained by updating the background model parameters for 
mixture components using new statistics collected from the adaptation data 

{ }1, , TX x x= [1], i.e., (in our following discussion and experiments, we focus on 

mean adaptation only) 

( ) ( )ˆ 1 ,m m m m mE Xμ α α μ= + −  (1) 

where the new sufficient statistics are calculated as 

1

( )
T

m m
t

tγ γ
=

=  (2) 

( )
1

( ) .
T

m m t m
t

E X t xγ γ
=

=  (3) 

In the above equations, ( )m tγ  is the a posteriori probability of the m-th component 

given observation data tx , which is 
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The adaptation coefficient mα  which controls the weight of a priori information is 

defined as follows 

( ) ,m m m fα γ γ= +  (5) 

where f  is a fixed “relevance” factor (chosen to be 16 in all our experiments). 

2.2   Standard HLDA Projection 

Heteroscedastic linear discriminant analysis, which was first proposed by N.Kumar [2], 
is generally used in speech recognition. HLDA assumes n-dimensional original feature 
space can be split into two subspaces [2]: one subspace consists of p useful dimensions; 
the other subspace consists of another (n-p) nuisance dimensions. In the discriminative 
subspace, classes are well separated, while in the non-discriminative subspace, 
distributions of classes are overlapped, so they can not be separated completely. HLDA 
aims to find a projection matrix A , and use this matrix to map the original feature space 
to the new discriminative feature space. For a n-dimensional feature vector x , the 
transform can be written as 

[ ]

[ ]

[ ]

[ ]

p p

n p n p− −

= = =
A x x

x Ax
A x x

 (6) 

The distribution of class j is modeled by a Gaussian distribution in rotated space, 
which is 

( )

( )( ) ( ) ( )( )1
det( )

( ) exp
2(2 ) det( )

T
j j j

j
jn

p
μ μ

π

−− Σ −
= −

Σ

Ax AxA
x  (7) 

where ( )jμ  and ( )j are mean vector and covariance matrix of class j in rotated space. 

The maximum likelihood estimate of transformation A is given by Gales in [3]: 

1

1

( )

( )

k
k k k T

k k

N−

−=a c G
c G c

 (8) 

where kc is the k-th row of cofactor matrix of A. N is the total number of training 

vectors. And ( )kG is given by 
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Here, ( )jΣ  is covariance matrix of class j in original space. Σ  is global covariance 

matrix of all the classes in original feature space. jN is the number of training vectors 

belonging to class j . ( )2

ˆ j
kσ is the k-th element of maximum likelihood estimate of the 

diagonal covariance matrix in the rotated space in terms of fixed transformation A . 

2.3   Using HLDA to Get Discriminative Transformation for Sufficient Speaker 
Adaptation 

From the derivation in section 2.1, it can be seen clearly that mixture components with 
large amounts of adaptation data would rely more on the new statistics and be well 
adapted to the target speaker.  

But when using a GMM to model a speaker, Gaussian components of the model 
have cross sections, a given observation data tx will be shared by several components. 

This will lead to the statistics collected for these components are not sufficient, and the 
discriminative capability of each component is deteriorated. If the overlapped parts of 
the Gaussian components are diminished, we can obviously find that the statistics 
collected for some components will be more sufficient, so they will enhance the 
speaker model’s discriminative capability over the UBM. When an impostor test 
utterance is given, if the utterance has phonetic sounds corresponding to these well 
adapted components, the distance between distribution of the observation data and 
speaker model will increase, so the output impostor score will be smaller. This will 
improve system’s performance. 

As we mentioned before, heteroscedastic linear discriminant analysis (HLDA) [2, 3] 
is often used to discriminate different classes in feature space. In our method, HLDA 
without dimension reduction is used to find a series of new basis of the feature space 
that can minimize the overlapped sections of the Gaussian components.  

In a GMM-UBM speaker verification system, a GMM with a large number of 
components is used to model a speaker’s phonetic sound distribution, so we can assume 
each component stands for an individual acoustic class. Given transformation 
matrix A and model parameters, the distribution of the m-th component under the new 
basis can be written as: 

( )

( )( ) ( ) ( )( )1
det( )

( ) exp
2(2 ) det( )

T
m m m

m
mD

p
μ μ

π

−− Σ −
= −

Σ

Ax AxA
x
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For computation efficiently, diagonal covariance is often used. The optimal solution of 
transformation A  can be achieved using ML framework [3]. But unlike Gales, we do 
not split the feature space into useful sub-space and nuisance sub-space. The EM 
auxiliary function is given by 

( )( ) ( )( )1( )

( )1 1

det( )ˆ( , ) ( )log exp
2(2 ) det( )

T
m mm

T M diag
m D mt m

diag

x x
t tQ t

μ μ
λ λ γ

π

−

= =

− Σ −
= −

Σ

A AA  (11) 

where { }( ) ( ), ,m m
diag Aλ μ= Σ is the “old” parameter, and { }( ) ( )ˆˆ ˆˆ , ,m m

diag Aλ μ= Σ  is the 

“new” parameter optimized respected to the old parameter. Eq(11) has no close-form 
solution, but Gales’ scheme [3] can be used. Firstly, we can find the maximum 

likelihood estimate of ( )mμ  and ( )m
diagΣ  in terms of fixed transformation A  by 

differentiating eq(11): 

( ) ( )ˆ m m TA Aμ μ=  (12) 

( ) { }2( ) ( ) ( )ˆˆ m m T m
diag ddiag A A δΣ = Σ =  (13) 

where ( )mΣ is the covariance matrix of m-th Gaussian component in original feature space. 

Substitute the maximum estimation of ( )mμ  and ( )m
diagΣ into eq(11), and eq(11) can 

be rewritten as  

2
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In eq(14), da  is the d-th row of the transformation A . 

By differentiating eq(14) with respect to da  in terms of the fixed current estimates 

of variances ( )ˆ m
diagΣ , we can find the maximum likelihood estimate of da : 

1
1

ˆd d d T
d d d

T
a c G

c G c
−

−=  (15) 

where   

2

( )

( )
1

ˆ

mM
m

d
m

m
d

G
γ
δ=

Σ= . (16) 

and T is the total number of training vectors. mγ  is calculated by eq(2). 
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After the transformation, the overlapped sections of the Gaussian distributions in the 
feature space are reduced, this will make the speaker adaptation more sufficient for 
some components. As we show in section 3, this method will improve system’s 
performance. 

3   Experimental Results 

In this section, we report speaker verification experiments conducted on 1-side training, 
1-side testing (1conv4w-1conv4w) part of NIST 2004 speaker recognition evaluation 
dataset, which is a multi-language data corpus. The language of this data corpus 
contains Mandarin, English, Arabic, etc. This evaluation condition includes 616 speakers 
(248 male and 368 female). For each speaker, approximately 2.5 minutes of speech 
from a single telephone call is used for enrollment. Verification utterances are also 
about 2.5 minutes of speech from only one telephony conversation. There are totally 
1174 verification utterances. Each verification utterance is scored against a number of 
designated putative speaker models. There are totally 26224 verification trials. 

For our baseline system, 14-dimensional MFCC vectors are extracted from the 
silence removed speech signal every 10ms using 25ms window. Bandlimiting is 
performed by only retaining the filterbank outputs from the frequency range 
300Hz-3400Hz. Cepstral features are processed with RASTA [4] filtering and Feature 
Mapping [5] to eliminate channel distortion. Delta, acceleration and triple-delta 
coefficients are then computed over 2±  frames span and appended to the static 
coefficients, producing a 56 dimensional feature vector.  

The background model used for all targets is a gender independent 2048 mixture 
GMM trained using data from Switchboard II database. Target models are derived by 
Bayesian adaptation (a.k.a. MAP estimation) of the UBM parameters using the 
designated training data. Based on observed better performance, only the mean vectors 
are adapted. The relevance factor is set to 16. For Feature Mapping, gender and 
channel-dependent models are also adapted from the UBM. 

Results are presented using Histogram and Detection Error Tradeoff (DET) plots. 
Performance is computed after collecting all verification scores. Along with Equal 
Error Rate (EER), the minimum decision cost function (DCF), defined by NIST as 
DCF = 0.1 * Pr(miss) + 0.99 * Pr(false_alarm) [6], is also used as an overall 
performance measure. 

Fig.1 gives the histogram of target and impostor score for baseline system and 
DTFSA system. From this figure, it can be seen that the impostor scores of DTFSA 
system are obvious smaller than the baseline system, so the discriminability between 
target speakers and impostor speakers (modeled by UBM) is enhanced.  

In Fig.2, we show DET curves for baseline system and DTFSA system. We can see 
DTFSA produces significant gains over the baseline system. The EER of “DTFSA” 
reduces from 13.7% to 12.9%, while the minimum DCF value drops from 359.2 10−×  
to 353.7 10−× . 
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Fig. 1. Histograms of target and impostor scores for baseline system and DTFSA system 

 
 
 
 

 

Fig. 2. DET curves for baseline system and DTFSA system 
 
 

4   Conclusion 

A discriminative transformation for sufficient speaker adaptation based on HLDA is 
implemented in this paper. Standard MAP adaptation can not model speaker’s 
character well with limited training data due to the overlapped sections of individual 
Gaussian components. With the discriminative transformation, the overlapped sections 
of Gaussian components are reduced, so some components of target speaker model can 
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be adapted more sufficiently, this will increase speaker model’s discriminative 
capability over UBM. 

The experimental results using the NIST speaker recognition evaluation dataset 
show that better verification performance is obtained with models adapted through this 
new method. Further experiments with more extensive datasets are planned in future 
work. 

References 

1. D.A.Reynolds, T.Quatieri, R.Dunn.: Speaker Verification Using Adapted Mixture Models. 
Digital Signal Processing, Vol.10. (2000) 181-202  

2. N. Kumar.: Investigation of Silicon-Auditory Models and Generalization of Linear 
Discriminant Analysis for Improved Speech Recognition. Ph.d. thesis, John Hopkins 
University, Baltimore, USA (1997) 

3. M.J.F. Gales.: Maximum likelihood multiple projection schemes for hidden Markov models. 
Technical Report CUED/F-INFENG/TR.365, Cambridge University, UK (1999) 

4. H. Hermansky, N. Morgan.: RASTA Processing of Speech. IEEE Trans. on Speech and 
Audio Processing, vol.2. (1994) 578-589 

5. D.A.Reynolds.: Channel robust speaker verification via feature mapping. IEEE International 
Conference on Acoustics, Speech, and Signal Processing, Vol.2. (2003) 53-56 

6. The NIST 2004 Speaker Recognition Evaluation Plan. [Online]. Available: 
http://www.nist.gov/speech/tests/spk/ 



Q. Huo et al. (Eds.): ISCSLP 2006, LNAI 4274, pp. 566 – 577, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Fusion of Acoustic and Tokenization Features for 
Speaker Recognition 

Rong Tong1,2, Bin Ma1, Kong-Aik Lee1, Changhuai You1, Donglai Zhu1,  
Tomi Kinnunen1, Hanwu Sun1, Minghui Dong1, Eng-Siong Chng2, and Haizhou Li1,2 

1 Institute for Infocomm Research 
21 Heng Mui Keng Terrace, Singapore 119613 

tongrong@i2r.a-star.edu.sg 
2 School of Computer Engineering, 

Nanyang Technological University, Singapore 639798 
asechng@ntu.edu.sg 

Abstract. This paper describes our recent efforts in exploring effective 
discriminative features for speaker recognition. Recent researches have 
indicated that the appropriate fusion of features is critical to improve the 
performance of speaker recognition system. In this paper we describe our 
approaches for the NIST 2006 Speaker Recognition Evaluation. Our system 
integrated the cepstral GMM modeling, cepstral SVM modeling and 
tokenization at both phone level and frame level. The experimental results on 
both NIST 2005 SRE corpus and NIST 2006 SRE corpus are presented. The 
fused system achieved 8.14% equal error rate on 1conv4w-1conv4w test 
condition of the NIST 2006 SRE.  

Keywords: speaker recognition, cepstral feature, phonotactic feature, Gaussian 
mixture model, support vector machine, tokenization, fusion. 

1   Introduction 

In the past decade, much progress has been made in text-independent speaker 
recognition using acoustic features such as Gaussian Mixture Modeling (GMM) on 
amplitude spectrum based features [1] and Support Vector Machine (SVM) on Shifted 
Delta Cepstral (SDC) [2]. In recent years, some tokenization methods with higher 
level information have attracted great interests. These tokenization methods convert 
the speech into different levels of tokens, such as words, phones and GMM tokens. 
For example, lexical features based on word n-grams has been studied in [3] for 
speaker recognition; Parallel Phone Recognition followed by Language Modeling 
(PPRLM) [4] has been extensively adopted in language and speaker recognition; 
Gaussian Mixture Model Tokenization [5], [6] has been used with the tokens at the 
frame level for language and speaker recognition. 

Related works generally agree that the integration of features with different degrees 
of discriminative information can improve the performance of speaker recognition 
system and that the appropriate fusion technique is critical. 



 Fusion of Acoustic and Tokenization Features for Speaker Recognition 567 

The acoustic features, such as MFCC features, adopted in speech recognition 
systems have also used in speaker recognition. The Gaussian mixture modeling 
(GMM) based on MFCCs has demonstrated a great success for text-independent 
speaker recognition [1]. To model the out-of-set speakers, a universal background 
model (UBM) is used to normalize the likelihood scores from different speakers. The 
model of a specific speaker is obtained with Bayesian adaptation based on UBM by 
using the training data of that speaker [1]. Test normalization (Tnorm) [7] is the 
technique to align the score distributions of individual speaker models. The score 
mean and variance of multiple non-target speaker models are used to normalize the 
score of the target speaker models. To capture the long time dynamic information, we 
used temporal discrete cosine transform (TDCT) feature [8] in the GMM framework. 

Support vector machine (SVMs) is widely used in many pattern classification 
tasks. A SVM is a discriminative classifier to separate two classes with a hyperplane 
in a high-dimensional space. In [2], the generalized linear discrininant sequence 
kernel (GLDS) for the SVM is proposed for speaker and language recognition. The 
feature vectors extracted from an utterance are expanded to a high-dimensional space 
by calculating all the monomials. Past works [2] also show that the front-end with 
linear prediction cepstral coefficients (LPCCs) gives better performance than the 
front-end with MFCCs. We construct two SVM subsystems based on both MFCCs 
and LPCCs. 

Recently, researches using phonotactic features showed that it can provide 
effective complementary cues for speaker and language recognition. The phonotactic 
features are extracted from an utterance in the form of tokens. The tokens may be at 
different levels, words, phones and even frames. PPRLM [4] uses multiple parallel 
phone recognizers to convert the input utterance into phone token sequence and the 
sequence is processed by a set of n-gram phone language models. In this paper, 
instead of using n-gram phone language models, we propose to use vector space 
modeling (VSM) as the backend classifier [9]. For each phone sequence generated 
from the multiple parallel phone recognizers, we count the occurrences of phone n-
grams. Thus, a phone sequence is then represented as a high-dimensional vector of n-
gram occurrences known as Bag-of-Sounds (BOS) vectors. The SVM is used as the 
classifier. 

The tokenization can also be made at the frame level, such as Gaussian Mixture 
Model Tokenization [5] for language identification. Tokenization at the frame level 
captures another aspect of acoustic and phonetic characteristics among the languages 
and speakers. It also provides more tokens than the phone recognizers from the 
limited speech data. Similar to PPRLM, we use multiple parallel GMM tokenizers to 
improve speaker coverage in speaker recognition. We propose to use speaker cluster 
based GMM tokenization as one of the subsystems in our speaker recognition system 
that multiple GMM tokenizers are constructed according to the speaker 
characteristics. 

This paper is organized as follows. Section 2 introduces the speech corpora used. 
Section 3 describes our six subsystems and the score fusion strategy. Section 4 
presents the experimental results on the development data (NIST 2005 SRE) as well 
as on the NIST 2006 SRE data and section 5 presents our conclusions. 
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2   Our Submission and Speech Corpora 

The NIST 2006 SRE evaluation task is divided into 15 distinct and separate tests. 
Each of these tests involves one of the five training conditions and one of four test 
conditions [10]. The five training conditions are 10-second speech excerpt from a 
two-channel/4-wire (10sec4w), one conversation side of approximately five minutes 
total duration from a two-channel/4-wire (1conv4w), three conversation sides 
(3conv4w), eight conversation sides (8conv4w) and three conversation sides from a 
summed-channel/2-wire (3conv2w). The four test conditions are 10-second speech 
excerpt from two-channel/4 wire (10sec4w), one conversation side from a two-
channel/4-wire (1conv4w), one conversation side from a summed-channel/2-wire 
(1conv2w) and 1 conversation side recorded by auxiliary microphone (1convMic). 

The performance of the NIST speaker recognition system is evaluated by the 
detection cost function. It is defined as a weighted sum of miss and false alarm error 
probabilities:  

)1( argarg|argarg| etTetNonTFalseAlarmFalseAlarmetTetTMissMissDet PPCPPCC −××+××=  (1) 

In NIST 2006 SRE, 10MissC = , 1FalseAlarmC =  and arg 0.01T etP = . The 

experiment results presented in this paper are reported in Equal Error Rate (EER) and 
DET curves. EER is used to decide the operating point when the false acceptance rate 
(FAR) and false rejection rate (FRR) are equal. 

2.1   Our Submission for the NIST 2006 SRE 

Our speaker recognition system, IIR (Institute for Infocomm Research) speaker 
recognition system, participated in seven tests out of the 15 evaluation tasks. The 
tasks we participated involve 4 training conditions and 2 test conditions: 10sec4w-
10sec4w, 1conv4w-10sec4w, 3conv4w-10sec4w, 8conv4w-10sec4w, 1conv4w-
1conv4w, 3conv4w-1conv4w and 8conv4w-1conv4w.  Table 1 shows the available 
tasks in the NIST 2006 SRE and the 7 tests that we participated. 

There are six subsystems in our speaker recognition system for the NIST 2006 
SRE. These subsystems fall into three categories: (i) spectral features with SVM 
modeling including MFCC feature based spectral SVM (Spectral MFCC-SVM) and 
LPCC feature based spectral SVM (Spectral LPCC-SVM); (ii) spectral feature with 
GMM modeling including MFCC feature based GMM (MFCC-GMM) and TDCT 
feature [8] based GMM (TDCT-GMM); (iii) tokenization features with vector space 
modeling (VSM) including parallel phone recognizers based tokenization: Bag-of-
Sounds (BOS) and speaker clustering based multiple GMM tokenizers (GMM token). 
The first four subsystems capture the characteristics of spectral features while the last 
two tokenization subsystems capture the phonotactic information. Fig. 1 shows the 
system framework of our submission. The six subsystems scores are fused to make 
the final decision. 
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Table 1. The seven tests that we participated in the NIST 2006 SRE 

Test segment condition   
10sec 

2-chan 
1conv 
2-chan 

1conv 
summed chan 

1 conv 
aux mic 

10sec 
2-chan 

10sec4w- 
10sec4w 

   

1conv 
2-chan 

1conv4w-
10sec4w 

1conv4w-
1conv4w 

N.A. N.A. 

3conv 
2-chan 

3conv4w-
10sec4w 

3conv4w-
1conv4w 

N.A. N.A. 

8conv 
2-chan 

8conv4w-
10sec4w 

8conv4w-
1conv4w 

N.A. N.A. 

T
raining condition

 3conv 
summed-chan 

 N.A. N.A.  

 

Fig. 1. System framework of our submission for the NIST 2006 SRE 

2.2   Speech Corpora 

Table 2 shows the training and development data for each subsystem. The tokenizer 
training data are used to model the parallel phone recognizers or to model the parallel 
GMM tokeniers. Background speaker data are used to train UBM models or to train 
speaker background models.  Cohort data are used to make the Test normalization 
(Tnorm). The NIST 2005 SRE corpus is used to evaluate the performance of 
individual systems. The output scores of the six subsystems are used to train the score 
fusion to facilitate the final decisions on the NIST 2006 SRE data. We will describe 
each of these speech corpora in the next section together with the subsystems. 

Spectral  
MFCC 
SVM

Spectral  
LPCC 
SVM 

TDCT 
GMM 

MFCC 
G M M 

Bag-of- 
Sounds 

GMM 
Token 

Score 
Fusion

Speech

Decision 
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Table 2. Speech corpora for the training and development 

 
LPCC- 
SVM 

MFCC- 
SVM 

MFCC- 
GMM 

TDCT- 
GMM BOS GMM- 

Token 

Tokenizer 
training 

data 
N.A. 

1. IIR-LID corpus 
2. LDC Korean corpus 
3. MAT corpus 
4. OGI-TS corpus 

NIST 
2002 
SRE 
corpus 

Background 
speaker data 

(UBM) 

Switchboard corpora: 
sw3p1, sw3p2, 

sw2p2 and sw2p3 

NIST2004 
1side 

training 
files 

NIST2004 
1side 

training 
files 

NIST 2002 SRE 
corpus 

NIST 
2004 
SRE 

corpus 

Cohort data
(Tnorm) 

Evaluation set of the 
NIST 2004 SRE 

corpus 
N.A. 

Development 
/Test 

NIST 2005 SRE corpus 

3   System Description 

For the spectral SVM and GMM subsystems, an energy-based voice activity detector 
(VAD) is applied after feature extraction to remove non-speech frames. We train two 
GMMs with 64 mixture components to model the energy distributions of the speech 
frames as well as the non-speech frames by using the development set of the NIST 
2001 SRE corpus. A predefined energy threshold is used to make speech/non-speech 
frames separation. With such a VAD algorithm, about 38% speech and 62% non-
speech frames were detected in the NIST 2006 SRE corpus. 

For the Bag-of-Sounds and GMM token subsystems, the VAD algorithm chunks 
the long conversations into smaller utterances so that the tokenization methods can be 
applied to create phone or GMM token sequence for each of the utterances. The 
utterance based cepstral mean subtraction is performed to filter off the channel 
distortion. 

3.1   Spectral LPCC-SVM and Spectral MFCC-SVM Subsystems 

The support vector machine (SVM) is a two-class classifier, and for the speaker 
recognition task, it can be used to model the boundary between a speaker and a set of 
background speakers. The background speakers represent the population of imposters 
expected during recognition. We follow the work reported in [2] and [11] in which the 
generalized linear discriminant sequence kernel (GLDS) is used for speaker and 
language recognition. 

Two kinds of acoustic spectral features, the MFCC features and LPCC features, 
both with a dimension of 36, are used in the two SVM subsystems. For the MFCC 
front-end, we use a 27-channel filterbank, and 12MFCC + 12  + 12  coefficients. 
For the LPCC front-end, 18LPCC + 18  coefficients are used. 

The feature vectors extracted from an utterance is expanded to a higher 
dimensional space by calculating all the monomials up to order 3, resulting in a 
feature space expansion from 36 to 9139 in dimension. The expanded features are 
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then averaged to form an average expanded feature vector for each of the utterances 
under consideration. In the implementation, it is also assumed that the kernel inner 
product matrix is diagonal for computational simplicity. 

During enrollment, the current speaker under training is labeled as class +1, 
whereas a value of -1 is used for the background speakers. The set of background 
speaker data is selected from Switchboard 3 Phase 1 and Phase 2 (for Cellular data) 
and Switchboard 2 Phase 2 and Phase 3 (for landline telephone). We randomly select 
2000 utterances from each of the 4 datasets to form the background speaker database 
of 8000 utterances, with roughly equal amounts of male and female speakers. Each 
utterance in the background and the utterance of the current speaker under training is 
represented with an average expanded feature vector avb . These average expanded 

features are used in the SVM training. The commonly available toolkit SVMTorch 
[13] is used for this purpose. The result of the training is a vector w  of dimension 
9139 which represents the desired target speaker model [11]. During evaluation, an 
average expanded feature vector avb is formed for each of the input utterances, and 

the score is taken as the inner product between these two vectors, i.e, T
avw b .  

Test normalization (Tnorm) method [7] is adopted in the two subsystems. The 
NIST 2004 training data is used to form the cohort models. In particular, the speaker 
models in the NIST 2004 are used as the cohort models. The training condition of the 
cohort models and evaluation corpus are matched. For example, the trained models in 
the 1side of NIST 2004 are used as the cohort models for the target models in the 
1conv4w training condition of the NIST 2005 and 2006 SRE corpus. Similar concept 
is applied to 10sec4w, 3conv4w, and 8conv4w training conditions. 

3.2   MFCC-GMM and TDCT-GMM Subsystems 

Two kinds of spectral features are used in the two GMM modeling subsystems. One is 
the MFCC features same as those adopted for spectral SVM subsystem. Another one 
use the temporal discrete cosine transform (TDCT) features [8].  

The conventional MFCC features characterize the spectral character in a short-time 
frame of speech (typically 20~30 ms). Psychoacoustic studies [13] suggest that the 
peripheral auditory system in humans integrates information from much larger time 
spans than the temporal duration of the frame used in speech analysis. Inspired by this 
finding, the TDCT feature is aiming at capturing the long time dynamic of the spectral 
features [8].  

The MFCC feature vector in the MFCC-GMM system has 36 components 
comprising of 12 MFCC coefficients along with their first and second order 
derivatives. The TDCT feature vector has 108 in dimension. For both of the two 
GMM subsystems, the gender-dependent background models with 256 Gaussian 
mixtures are trained using the NIST2004 1-side training data subset. The target 
speaker models are adapted from these two background models. The background 
model having the same gender with the target speaker is used for adaptation. In the 
evaluation, the likelihood ratio between the target speaker model and the background 
model of the same gender is used as output score for the speaker.   
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3.3   Bag-of-Sounds Subsystem 

This system uses the front end that consists of parallel phone tokenizers, and vector 
space modeling as the back end classifier [9].  

Seven phone tokenizers of the following languages including English, Korean, 
Mandarin, Japanese, Hindi, Spanish and German. The English phone recognizer is 
trained from IIR-LID database [14]. The Korean phone recognizer is trained from 
LDC Korean corpus (LDC2003S03). The Mandarin phone recognizer is trained from 
MAT corpus [15]. And the other four phone recognizers are trained from OGI-TS 
corpus [16]. Each phone is modeled with a three-state HMM, and 39-dimensional 
MFCC features are used. Each HMM state of the English, Korean and Mandarin 
languages are modeled with 32 Gaussian mixtures, while the states in other languages 
are with 6 Gaussian mixtures due to the availability of training data. Phone 
recognition is performed with the Viterbi search using a fully connected null-grammar 
network of phones. 

For a given speech utterance, the tokenizers yield seven phone sequences. They are 
converted to a vector of weighted terms in three steps. Firstly, we compute unigram 
and bigram probabilities for each phone sequence, and then organize the probabilities 
into a vector. Secondly, each entry in the vector is multiplied by a background 
component [17], and finally, the vectors from each of the seven languages are 
concatenated to form the feature vector. 

In the SVM training process, a single vector of weighted probabilities is derived 
from each conversation side. We use a one-versus-all strategy to train the SVM model 
for a given speaker. The conversation side of the target speaker is labeled as class +1, 
while all the conversation sides in the background are labeled as class -1. The NIST 
2002 SRE corpus is used as background data.  During the evaluation, the input 
utterance is converted to the feature vector and a score is produced from the SVM 
model. The toolkit SVMTorch [12] with a linear kernel is used. 

3.4   GMM Token Subsystem 

This system uses multiple GMM tokenizers as the front end, and vector space 
modeling as the back end classifier [6]. Each GMM tokenizer converts the input 
speech into a sequence of GMM token symbols which are indexes of the Gaussian 
components that score the highest for each frame in the GMM computation. The 
GMM token sequences are then processed in the same way as the process of phone 
sequences in the bag-of-sounds approach, i.e., the sequences are converted to a vector 
of weighted terms and then recognized by a speaker’s SVM model. 

Inspired by the finding of PPRLM in language recognition where multiple parallel 
single-language phone recognizers in the front-end enhance the language coverage 
and improve the language recognition accuracy over single phone recognizer, we 
explore multiple GMM tokenizers to improve speaker characteristics coverage and to 
provide more discriminative information for speaker recognition [6]. By clustering all 
the speakers in the training set into several speaker clusters, we represent the training 
space in several partitions. Each partition of speech data can then be used to train a 
GMM tokenizer. With each of these parallel GMM tokenizers, a speech segment is 
converted to a feature vector of weighted terms. The multiple feature vectors are then 
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concatenated to form a composite vector for SVM modeling. The NIST 2002 SRE 
corpus is used for the training of speaker cluster based GMM tokenizers, and the 
NIST 2004 SRE corpus is used as the background data. 10 parallel GMM tokenizers, 
each having 128 mixtures of Gaussian components, are constructed. 

3.5   Score fusion of Subsystems 

The score of the six subsystems described above are combined using SVM classifiers 
as shown in Fig. 2. For a given speech utterance and the reference speaker, a 6-
dimensional score vector is derived from the six subsystems. The score vectors are 
first normalized to zero mean and unit variance. Then the polynomial expansion of 
order 1, 2 and 3 are applied to the normalized score vectors. Three sets of expanded 
score vectors with dimension 7, 28 and 84 are obtained. Each set of the expanded 
score vectors are used to train a SVM model. The final decision is made according to 
the averaged value of three SVM scores. 

The NIST 2005 SRE evaluation corpus is used as the training data for these three 
SVMs. The score vectors generated from the genuine utterances are labeled as class 
+1, and the score vectors generated from the impostor utterances are labeled as class -
1. The thresholds estimated from the NIST 2005 SRE corpus are used for final 
True/False decision on the NIST 2006 SRE. The toolkit SVMTorch [12] with a radial 
kernel is used. 

Fig. 2. Score fusion of the six subsystems 

4   Experiment Results 

The NIST 2005 SRE evaluation set is used to evaluate the performance of the six 
subsystems before the system is finalized for the NIST 2006 SRE competition. It is 
also used as the development set to estimate the thresholds of the score fusion which 
provides the genuine/impostor decision for all the trials in the NIST 2006 SRE. Table 3 
shows the equal error rates (EER %) of the six subsystems as well as the score fusion 
on seven test conditions in the NIST 2005 SRE. 
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Table 3. EER% of subsystems and fusion on the NIST 2005 SRE evaluation set (for the test 
conditions, the first part refers to training, the second part refers to testing, e.g, 1conv4w-
10sec4w means training with 1conv4w, testing with 10sec4w) 

Test / System LPCC- 
SVM 

MFCC-
SVM 

MFCC-
GMM 

TDCT-
GMM BOS GMM- 

Token Fusion 

10sec4w-10sec4w 29.41 31.28 28.72 30.39 41.80 40.35 24.62 

1conv4w-10sec4w 18.74 19.92 19.78 18.76 28.96 31.05 13.80 

1conv4w-1conv4w 10.55 11.32 13.55 13.81 19.31 22.38 7.82 

3conv4w-10sec4w 14.40 16.02 16.16 15.60 24.93 25.26 11.32 

3conv4w-1conv4w 6.87 8.07 10.26 9.97 14.32 16.11 5.67 

8conv4w-10sec4w 13.05 14.00 14.54 14.45 22.29 24.34 9.76 

8conv4w-1conv4w 5.73 7.17 9.42 9.11 12.22 17.27 4.56 

 
The results show that the four acoustic feature based subsystems outperform the 

two tokenization subsystems and the best subsystem is the LPCC-SVM system. 
Compared with the MFCC-GMM system, the TDCT-GMM system captures the 
longer time dynamic of the spectral features and it requires more training data. This 
explains why TDCT-GMM system achieves better accuracy than MFCC-GMM 
system when the amount of the training data increases. By combining the score of the 
six subsystems, the overall result improves significantly. 

With the six subsystems and the thresholds of the score fusion obtained from the 
NIST 2005 SRE corpus, the NIST 2006 SRE data are processed. Fig. 3 shows the 
performance of the seven test conditions of the NIST 2006 SRE. The DET curves and 
the EER% for all the seven test conditions are illustrated. In the DET curves, the 
points of Min C-det denote the best results we can achieve from all possible 
thresholds for the final decision. The points of the actual decision denote the results 
on our actual designed thresholds. 
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Fig. 3. Performance on the NIST 2006 SRE 
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Fig. 3. (continued) 
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To compare the contribution of each subsystem category to the final fusion, we use 
the best subsystem, the spectral LPCC-SVM as the baseline. Three other subsystems, 
MFCC-SVM, MFCC-GMM and Bag-of-Sounds (BOS), will be combined with 
LPCC-SVM subsystem individually to examine the performance of the fusion. The 
experiments are conducted on three test conditions of NIST 2006 SRE, 10sec4w-
10sec4w, 1conv-1conv4w and 8conv4w-1conv4w that involve three training segment 
conditions and two test segment conditions. Table 4 shows the results. The numbers 
in the bracket are relative EER reduction compared with the baseline system. 

Since more information is provided, the combinations generally give us better 
performance. For the short test segment (10sec4w-10sec4w), the MFCC-GMM 
subsystem contributed the best error reduction. Although both MFCC-GMM and 
LPCC-SVM use acoustic features, they model the spectral features with different 
method and can make good use of more discriminative information. Bag-of-Sounds 
subsystem uses phonotactic features that provide complementary information to 
acoustic features for the speaker recognition task. A relative EER reduction of 22.6% 
has been achieved based on the LPCC-SVM subsystem on the 8conv4w-1conv4w 
test. The combination of LPCC and MFCC features with SVM method also produce 
better results in all the three test conditions. 

Table 4. Performances (EER%) of different subsystem combinations on the NIST 2006 SRE, 
(for the test conditions, the first part refers to training, the second part refers to testing,               
e.g, 1conv4w-10sec4w means training with 1conv4w, testing with 10sec4w) 

Test/ 
System 

LPCC-SVM LPCC-SVM 
MFCC-SVM 

LPCC-SVM 
MFCC-GMM 

LPCC-SVM 
BOS 

10sec4w-
10sec4w 23.08 22.94 (0.6%) 21.27 (7.8%) 23.47 (-1.7%) 

1conv4w-
1conv4w 9.55 8.72 (8.7%) 8.44 (11.6%) 8.78 (8.1%) 

8conv4w-
1conv4w 6.33 5.18 (18.2%) 5.07 (19.9%) 4.90 (22.6%) 

5   Summary and Discussion 

We present our speaker recognition system for NIST 2006 SRE. The system consists 
of six subsystems that capture both acoustic features and phonotactic information. For 
the acoustic features, both GMM modeling and spectral SVM modeling are adopted. 
Besides the conventional features, such as MFCCs and LPCCs, we propose to use 
TDCT features to model the long time dynamic of the spectral information. To 
capture speaker discriminative information from the higher level, tokenization 
methods are used to create phone token sequence and GMM token sequence from 
each of the utterances. For a given utterance, all the n-gram probabilities of the token 
sequence are calculated and combined into an n-gram statistic vector. A high 
dimensional vector is obtained by concatenating multiple token sequences generated 
from parallel phone recognizers or parallel GMM tokeniziers. Vector space modeling 
method is adopted as the backend classifier to model these high dimensional n-gram 
statistic vectors.  
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The experimental results show that the acoustic features are more effective in 
speaker recognition. The phonotactic features also provide complementary 
information and can improve the system performance significantly on longer speech 
segments. The experiment results on the subsystem fusion showed that the 
appropriate combination of the discriminative features from multiple sources is an 
effective method to improve the speaker recognition accuracy. 
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Abstract. This study describes an approach to edit disfluency detection based 
on maximum entropy (ME) using contextual features for rich transcription of 
spontaneous speech. The contextual features contain word-level, chunk-level 
and sentence-level features for edit disfluency modeling. Due to the problem of 
data sparsity, word-level features are determined according to the taxonomy of 
the primary features of the words defined in Hownet. Chunk-level features are 
extracted based on mutual information of the words. Sentence-level feature are 
identified according to verbs and their corresponding features. The Improved 
Iterative Scaling (IIS) algorithm is employed to estimate the optimal weights in 
the maximum entropy models. Performance on edit disfluency detection and 
interruption point detection are conducted for evaluation. Experimental results 
show that the proposed method outperforms the DF-gram approach.  

Keywords: Disfluency, maximum entropy, contextual feature, spontaneous 
speech. 

1   Introduction 

In the latest decade, the research of speech recognition has been significantly 
improved in practice. Current speech recognition systems output simply a stream of 
words for the oral reading speech. However, the variety of spontaneous speech 
acutely degrades the performances of speech recognition and spoken language 
understanding. Interactive spoken dialog systems face new challenges for speech 
recognition. One of the most critical problems in spoken dialog systems is the 
prevalence of speech disfluencies, such as hesitation, false starts, self-repairs, etc. Edit 
disfluency uttered by the speakers is a mortal factor for spoken language 
understanding and should be detected and corrected for better understanding of the 
utterance's meaning [1].  

Edit disfluencies involve syntactically relevant content that is repeated, revised, or 
abandoned with the structural pattern composed of deletable region, interruption 
point, editing term (optional) and correction part. Deletable region is defined as the 



 Contextual Maximum Entropy Model for Edit Disfluency Detection 579 

portion of the utterance that is corrected or abandoned. Interruption point is the 
position at which point the speaker break off the original utterance and fluent speech 
becomes disfluent. Editing term is composed of filled pause, discourse marker, and 
explicit editing term.  

Edit disfluency are categorized as simple and complex edit disfluencies. Simple 
edit disfluencies are further divided into three categories, namely repetitions, 
revisions or repairs and restarts. Complex edit disfluecy represents that the corrected 
portion of one edit disfluency contains another disfluency and is composed of several 
simple edit disfluencies in the same sentence or utterance. Take the following fluent 
sentence as an example:  (I want to go to Taipei tomorrow.). The 
definition and example corresponding to each category of edit disfluency are 
illustrated as follows: 

(1) Repetition: the abandoned words repeated in the corrected portion of the 
utterance, as depicted in the following: 

Chinese sentence :  
English translation: (I want to go to Taipei tomorrow  *  tomorrow.) 
Correction        :  
(2) Revision or repair: although similar to repetitions, the corrected portion that 

replaces the abandoned constituent modifies its meaning, rather than repeats it. 
Chinese sentence:  
English translation: (I want to go to Taipei today  *  tomorrow.) 
Correction        : 

(3) Restarts or false starts: a speaker abandons an utterance and neither corrects it 
nor repeats it partially or wholly, but instead restructures the utterance and starts over. 

Chinese sentence:  
English translation: (I * I want to go to Taipei  tomorrow.) 
Correction        :  

where the dashed line “---” represents the corrected portion and the interruption point 
(IP) is marked with “*”.  

1.1   Related Works 

Much of the previous research on detecting edit disfluency has been investigated for 
improving performance of spoken language understanding. Coquoz found it is very 
useful for enriching speech recognition by processing edit disfluency especially for 
spontaneous speech recognition [2]. There are several approaches which can 
automatically generate sentence information useful to parsing algorithm [3] [4]. To 
identify and verify a speech act precisely, interference caused by speech repairs 
should be considered. Accordingly, a reliable model is desired to detect and correct 
conversation utterances with disfluency [5].  

For edit disfluency detection, several cues exist to suggest when some edit 
disfluency may occur and can be observed from linguistic features[6] , acoustic 
features [7] or integrated knowledge sources [8]. Shriberg et al. [9] outlined the 
phonetic consequences of disfluency to improve disfluency processing methods in 
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speech applications. Savova and Bachenko presented four disfluency detection rules 
using intonation, segment duration and pause duration [10]. IBM has adopted a 
discriminatively trained full covariance Gaussian system [11] for rich transcription. 
Kim et al. utilized a decision tree to detect the structural metadata [12]. Furui et al. 
[13] presented the corpus collection, analysis and annotation for conversational 
speech processing. Charniak and Johnson [14] proposed the architecture for parsing 
the transcribed speech using an edit word detector to remove edit words or fillers 
from the sentence string, and adopted a standard statistical parser to parse the 
remaining words. The statistical parser and the parameters estimated by boosting are 
employed to detect and correct the disfluency. Lease et al. later presented a novel 
parser to model the structural information of spoken language by Tree Adjoining 
Grammars (TAGs) [15-16]. Honal and Schultz used TAG channel model 
incorporating more syntactic information to achieve good performance in detecting 
edit disfluency [17]. The TAG transducer in the channel model is responsible for 
generating the words in the reparandum and the interregnum of a speech repair from 
the corresponding repair. Heeman et al. presented a statistical language model that 
can identify POS tags, discourse markers, speech repairs and intonational phrases [18-
19]. By solving these problems simultaneously, the detection of edit disfluency was 
addressed separately. The noisy channel model was proposed to model the edit 
disfluency [16] [20] [21]. Snover et al. [22] integrated the lexical information and 
rules for disfluency detection using transformation-based learning. Hain et al. [23] 
presented techniques in front-end processing, acoustic modeling, language and 
pronunciation modeling for transcribing conversational telephone speech 
automatically. Soltau et al. transcribed telephone speech using LDA [24]. Harper et 
al. utilized parsing approaches to rich transcription [25]. Liu et al. not only detected 
the boundaries of sentence-like units using the conditional random fields [26], but 
also compared the performances of HMM, maximum entropy [27] and conditional 
random fields on disfluency detection [28]. 

1.2   Methods Proposed in This Paper 

Berger et al. first applied the maximum entropy (ME) approach to natural language 
processing and achieved a better improvement compared to conventional approaches 
in machine translation [29]. Huang and Zweig proposed a maximum entropy model to 
deal with the sentence boundary detection problem [27]. Using the maximum entropy 
model to estimate conditional distributions provides a more principled way to 
combine a large number of overlapping features from several knowledge sources. In 
this paper, we propose the use of the maximum entropy approach with contextual 
features, containing word, chunk and sentence features, for edit disfluency detection 
and correction. Given labeled training data with edit disfluency information, 
maximum entropy is a statistical technique which predicts the probability of a label 
given the test data using the improved interactive scaling algorithm (IIS). The 
language related structural factors are taken as the features in the maximum entropy 
model.  
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1.3   Organization 

The rest of this paper is organized as follows. Section 2 introduces the framework of 
the edit disfluency detection and correction using maximum entropy model and the 
language features adopted in this model. The weight estimation using improved 
iterative scaling algorithm are also described in this section. Section 3 summarizes the 
experimental results, along with a discussion made of those results. In Section 4, we 
conclude the findings and the directions for future work. 

2   Contextual Maximum Entropy Models for Edit Disfluency 
Correction 

In this paper, we regard the edit disfluency detection and correction as a word labeling 
problem. That is to say, we can identify the edit disfluency type and the portion 
category of every word in the utterance and accordingly correct the edit disfluency. 
Herein, the edit disfluency type includes normal, repetition, revision and restart. The 
portion categories contain sentence-like units, deletable region, editing term and 
correction part. Since the interruption point (IP) appears in an inter-word position that 
speaker breaks off the original utterance, all the inter-word positions in an utterance 
are regarded as the potential IP positions. Therefore, as long as the labels of the words 
in the utterance are determined, the detected edit disfluency can be corrected. Fig. 1 
shows the example of an utterance with “revision” disfluency.  

For edit disfluency detection, the maximum entropy model, also called log-linear 
Gibbs model, is adopted, which uses contextual features and takes the parametric 
exponential form for edit disfluency detection: 

( ) ( ) ( )( )1
| , exp , ,

,i iw k k w
k

P PT W F f PT W F
Z W Fλ

λ=  (1) 

where 
iwPT contains the edit disfluency type and the portion category of word iw . iw  

denotes the i-th word in the speech utterance W. F is the feature set used in the 
contextual maximum entropy model. ( )kf ⋅  is an indicator function corresponding to 

contextual features described in the next section. kλ  denotes the weight of feature 

( )kf ⋅ . ( ),Z W Fλ  is a normalizing factor calculated as follows: 

( ) ( )( ), exp , ,
i

wi

k k w
PT k

Z W F f PT W Fλ λ=  (2) 

2.1   Contextual Features 

Since edit disfluency is a structural pattern, each word cannot be treated 
independently for the detection of edit disfluency type and portion category. Instead, 
the features extracted from the contexts around the word iw , called contextual  
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Fig. 1. The original utterance is . The corrected sentence  
 can be obtained from the highlighted words with disfluency type and portion category, in 

which the word with “deletable” portion category is deleted. 

features, should be considered for edit disfluency detection. The concepts derived 
from the primary features of the words defined in HowNet and co-occurrence of 
words are employed to form the contextual features for pattern modeling of edit 
disfluency. In order to consider the contextual information of a word, an observation 
window is adopted. The contextual features defined in this study are categorized bi-
directional n-grams and variable-length structural patterns. These two features are 
described in the following. 
 
(1) Bi-directional n-gram features are extracted from a sequence of words. 
Considering the words that follow and before the observed word iw , the right hand 

side n-gram and left-hand side n-gram are obtained. Therefore, the uni-gram feature is 
shown as equation (3) 

( ) ( )1  
, ,

0i

i j
k w o

if Class w category
f PT W F

otherwise

=
=  (3) 

Where jcategory  denotes the j-th taxonomy defined in HowNet. The right hand side 

n-gram and left hand side n-gram are shown in equations (4) and (5), respectively.  
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( ) ( ) ( )
111  

, ,
0

i n i

i

i n j i j
k w R

if Class w category Class w category
f PT W F

otherwise
+ −− + = ∧ =

=  (4) 

( ) ( ) ( )
111  

, ,
0

i i n

i

i j i n j
k w L

if Class w category Class w category
f PT W F

otherwise
+ −+ −= ∧ =

=  (5) 

The contextual feature set, employed in the proposed model, consists of uni-gram, 
right-hand side bi-gram, left-hand side bi-gram, right-hand side tri-gram, left-hand 
side tri-gram and right-hand side and left-and side n-grams. Editing terms containing 
fillers, discourse markers and negative words play important roles in edit disfluency 
detection using contextual features.  

 

Fig. 2. Illustration of left-hand side n-gram and right-hand side n-gram contextual features 

(2) Variable-length structural patterns are derived according to the characteristics of 
edit disfluencies. Since each word models only local information, structural 
information, such as sentences and phrases can be employed for syntactic pattern 
modeling. The units with variable length are considered to form the syntactic patterns 
using the sentences and chunks as the building blocks instead of words only. That is 
to say, we can extend the contextual scope by sentence and chunk n-grams to obtain 
better resolution of edit disfluency as shown in Fig. 3.  

 

Fig. 3. Illustration of the syntactic patterns with three kinds of units: word, chunk and sentence 

The sentence-level feature is identified according to the verbs and their 
corresponding necessary arguments defined in [30]. The chunk-level feature is 
extracted by the mutual information of the word sequence i jc c  according to co-

occurrence and term frequencies of ic and jc .  
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( ) ( )
( ) ( )2log

i j

i j

i j

P c c
Chunck c c I

P c P c
ξ≡ ≥  (6) 

Where ( )Chunck ⋅ denotes the function to determine if the word sequence is a  

chunk. ic and jc  can be a word or a chunk. ( )I ⋅  and ξ  are the indicator function and 

the threshold of mutual information, respectively. 

2.2   Parameter Estimation 

In maximum entropy modeling, improved iterative scaling algorithm (IIS) is 
employed to estimate the parameter kλ . The weight vector { }1 2, , , nλ λ λΛ ≡  is 

updated iteratively using IIS with the constraint that the expected values of various 
feature functions match the empirical averages in the training data. That is to say, the 
conditional log likelihood is also maximized over the training data. IIS algorithm is 
illustrated in Fig. 4. 

 
Algorithm Improved iterative scaling algorithm (IIS) 

Initial ( ) ( )0 0,0, ,0
TΛ =  

Do 

     Solve ( )t
iδ  according to ( ) ( ) ( ) ( )( ) ( )exp t

p i i i i
x i

E f p x f x f xδ= ×   

     ( ) ( ) ( )1t t tδ+Λ = Λ +  
Until converge 

Fig. 4. The Improved iterative scaling algorithm (IIS) algorithm for estimating the weight 
vector 

Where pE  is the expectation operator with respect to the empirical distribution. 

( ) ( ) ( ) ( ){ }1 2, , ,t t t t
nδ λ λ λ≡ Δ Δ Δ  represents the increment of weight vector ( )tΛ for the t-th 

iteration.  

3   Experiments  

3.1   Data Preparation 

The Mandarin Conversational Dialogue Corpus (MCDC) [31], collected from 2000 to 
2001 at the Institute of Linguistics of Academia Sinica, Taiwan, comprising 30 
digitized conversational dialogues numbered from 01 to 30 of a total length of 27 
hours, is used for edit disfluency detection and correction in this paper. The 
annotations described in [31] give concise explanations and detailed operational 
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definitions of each tag. Like SimpleMDE, direct repetitions, partial repetitions, overt 
repairs and abandoned utterances are considered as the edit disfluency and the related 
information are labeled in MCDC.  

Besides the subsyllable acoustic models, filler models [32] and discourse markers 
were defined for training using the Hidden Markov Model Toolkit (HTK) [33], and 
the recognized results were considered in language modeling. A speech recognition 
engine using HTK was built for syllable recognition using eight states (three states for 
the Initial part, and five states for the Final part in Mandarin syllable). The input 
speech was pre-emphasized with a coefficient of 0.97. A frame size of 32 ms (512 
samples) with a frame shift of 10.625 ms (170 samples) was used. The MAT Speech 
Database, TCC-300 [34] and MCDC were used to train the parameters in the speech 
recognizer.  

3.2   Experiments on Edit Disfluency Detection 

Edit word detection (EWD) detects the input speech containing the words in the 
deletable regions. One of the primary metrics for the evaluation of edit disfluency 
correction is the edit word detection rate defined in RT’04F. This method is defined 
as the average number of missed edit word detections and falsely detected edit words 
per reference IP: 

M EWD FA EWD
EWD

EWD

n n
Error

n
− −+

=  (7) 

where M EWDn −  is the number of deletable edit words in the reference transcription that 

are not covered by the deletable regions of the system-detected edits; FA EWDn −  denotes 

the number of reference words that are not deletable, yet are covered by deletable 
regions of the system-detected edits, and EWDn  represents the number of deletable 

reference edit words.  For assessing the performance of the proposed model, the 
statistical language model for speech disfluencies, proposed by Stolcke and Shriberg 
called DF-gram [35], is developed for comparison. The model is based on a 
generalization of the standard N-gram language model. The dynamic programming is 
used to compute the probability of a word sequence considering possible hidden 
disfluency events. Table 1 presents the results of the proposed method and DF-gram.  

Table 1. Results of the proposed maximum entropy model and DF-gram  

Missed False Alarm Error (ErrorEWD) 
Maximum Entropy 0.05 0.20 0.25 
DF-gram 0.13 0.16 0.29 

 
The missed and false alarm error rates for the proposed maximum entropy 

approach are 0.05 and 0.2 respectively. The proposed contextual maximum entropy 
approach outperforms the DF-gram, especially for missed edit word errors. There are 
two reasons leading to disappointing results in false alarm: the insertion error of 
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speech recognition and the misclassification of restart. These results indicate that the 
proposed model can handle repetition and revision disfluencies very well. However, it 
did not perform as well as expected for “restart” detection, where the improvement 
was less pronounced than that for other edit disfluency categories. 

3.3   Experiments on Contextual Features  

Since the feature set plays an important role in maximum entropy model, this 
experiment is designed for obtaining optimum size of the observation window. The 
right-hand side and left-hand side contextual features are selected symmetrically to 
form the feature set used in the proposed model. According to the number of units 
within the observation window, we can obtain the n-gram features based on words 
chunks and sentences. For example, if the number of words within the observation 
window is one, the feature set contains only the uni-gram feature. The determination 
of edit word depends only on the word itself in the observation window. If the 
observation window size is five, the right-hand side bi-gram, right-hand side tri-gram, 
left-hand side bi-gram, left-hand side tri-gram and uni-gram are included in the 
feature set. Table 2 shows the results for edit word detection with various observation 
window sizes. 

Table 2. Edit word detection results for various observation window sizes to form the feature 
set. ErrorEWD(I) and ErrorEWD(O) represent the error rates for inside and outside tests, 
respectively. 

Observation  
Window Size 1 3 5 7 9 11 

ErrorEWD(I) 0.158 0.143 0.117 0.111 0.114 0.122 
ErrorEWD(O) 0.201 0.222 0.209 0.190 0.196 0.197 

 
Compared to observation window size of three, the feature set from that is one can 

provide comparable performance. The best result appears when the observation 
window size is seven. The performance of edit word detection task gradually declines 
as the observation window size increases. The reason is that the abandoned 
deteletable region usually contains few words. According to our observation, another 
finding of this experiment is the unit using sentence can provide significant 
improvement of the resolution between “restart” and fluent sentence. For example the 
fluent sentence “  (I heard that you want to go to Taipei)” is 
confused with the disfluent sentence “  (I go * you go to Taipei)” 
when the model with the word-based bi-directional n-gram features. By introducing 
sentence-level feature, these two sentences can be regarded as “ [S] (I heard 
[S])” and “ [S] (I go * [S])”. The verb “ (heard) can be followed by a 
sentence [S], while the verb “  (go)” should be followed by a noun. Considering the 
characteristics of verbs and sentence structural information, we can achieve 
significant improvement on detecting the “restart” disfluency. 
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3.4   Results Analysis on Corresponding Edit Disfluency Types 

As we have observed, there are different effects due to various edit disfluency types. 
For comparison, we also show the detection results of repletion, repair and restart by 
the proposed maximum entropy model and DF-gram in Table 3. 

Table 3. The results of different edit disfluency types in edit word error by the proposed 
maximum entropy model and DF-gram approaches 

 Repetition Repair Restart ErrorEWD 
ME 0.12 0.24 0.29 0.25 
DF-gram 0.15 0.28 0.34 0.29 

 
The result of maximum entropy model is better than that of DF-gram for three 

kinds of edit disfluencies especially the “restart”. In fact, “restart” is usually confused 
with two cascaded normal sentences. The performance of “restart” detection is 
improved significantly by introducing the features of chunk and sentence features. In 
addition, the number of verbs within contextual scope is also helpful to detect 
“restart”. 

4   Conclusion and Future Work 

This paper has presented a contextual maximum entropy model to detect and correct 
edit disfluency that appears in spontaneous speech. The contextual features of 
variable length are introduced for modeling contextual patterns that contain deletable 
region, interruption point, editing term and correction part. Improved iterative scaling 
algorithm is used to estimate the weight of the proposed model. According to the 
experimental results, we can find the proposed method can achieve an error rate of 
25% in edit word detection. Besides the word-level features, chunk-level and 
sentence-level features are adopted as the basic units to extend the contextual scope 
for capturing not only local information but also structural information. The results 
show that the proposed method outperforms the DF-gram.  

For the future work, prosodic features are also beneficial for interruption point and 
edit disfluency detection. In addition, tagging training data is labor intensive and bias 
due to personal training, automatic or semi-automatic annotation tools should be 
developed to help the transcription of dialogs or meeting records.  
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Abstract. In this paper we present our study on detecting tone mis-
pronunciations in Mandarin. Both template and HMM approaches are
investigated. Schematic templates of pitch contours are shown to be im-
practical due to their larger pitch range of inter-, even intra-speaker
variation. The statistical Hidden Markov Models (HMM) is used to gen-
erate a Goodness of Pronunciation (GOP) score for detection with an
optimized threshold. To deal with the discontinuity issue of the F0 in
speech, the multi-space distribution (MSD) modeling is used for build-
ing corresponding HMMs. Under an MSD-HMM framework, detection
performance of different choices of features, HMM types and GOP mea-
sures are evaluated.

1 Introduction

During the past few years, much progress has been made in the area of computer-
assisted language learning (CALL) systems for nonnative language learning.
Automatic speech recognition (ASR) technology by defining a proper Good-
ness of Pronunciation (GOP) measure is applied to grade the pronunciation
quality at both speaker and sentence levels [4][5][6]. To improve the feedback
quality, precise knowledge of the mispronunciation is required. Detection of mis-
pronunciation in a speaker’s utterance have been developed and achieved good
performance[7][8][9].

CALL systems for Mandarin are also desired. What is more,the proficiency
test of Mandarin for Chinese (PSC) becomes more and more popular recently.
Phonetic experts are required during the test as judgers, which makes the test
costly, time-consuming and not absolutely objective. So automatic assessment
of Mandarin is very necessary.

As we know, Mandarin is a tonal language. Compared with finals and initials,
tones are more difficult to be pronounced correctly because they are much easily
influenced by the dialect of a speaker. In PSC, the goodness of tone pronunciation
is one of the most important factors to be used to grade the testing speaker.
� Join this work as a visiting student at MSRA.
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However, in previous works [1][2][3], assessment of tone pronunciation has not
been taken into consideration. In addition, studies before mostly focused on
rating in the sentence level and speaker level. In contrast to existing works, we
focus on the automatic detection of tone mispronunciation.

In this paper, some analysis of tone mispronunciations occurred in PSC is
first given in Section 2. Based on the analysis, two kinds of detection methods
are proposed: template based method and statistical models. Section 3 describes
the template methods. Section 4 investigates the statistical methods based on
multi-space distribution Hidden Markov Models (MSD-HMM) under different
setups such as model types, feature combinations and GOP measures. Section
5 demonstrates the experiment results and analysis. Conclusions are given in
Section 6.

2 Some Analysis About Tone Mispronunciations in PSC

There are five tones in Mandarin Chinese and first four tones are widely used.
Although many factors affect the characteristics of tones, pitch is considered as
the most discriminative factor. In phonetics theory, pitch range is usually divided
into 5 levels, naming 1 to 5 and level 5 corresponding to the highest. Traditional
description of Mandarin tones is shown in Table 1.

Table 1. Tones of Mandarin

Chinese Pronunciation Tone Symbol Tone Description

Tone1 55 high level

Tone2 35 high rising

Tone3 214 low falling

Tone4 51 high falling

According to the experts’ experience in PSC, rules to evaluate tone pronun-
ciations are also based on the 5-level description. General mispronunciations
of tone are discussed below. Typical examples with tone mispronunciations in
our database are plotted in Figure 1. Pitch is extracted by the entropic signal
processing system (ESPS).

The first tone (55): it is sometimes pronounced unevenly as shown in Figure
1a. Another representative mistake is that pitch values are not high enough, such
as 44 or even lower value. This kind of mistakes always exist in the pronunciations
of people living in south-north of China.

The second tone (35): it is easily confused with the third tone when the
descending part of the contour lasts long enough to be perceived, as shown in
Figure 1b.

The third tone (214): a rising trend is required at the end of the pitch contour
for isolated syllables, which is not strict in the continuous speech. Some speak-
ers ignore such requirement and pronounce as 21 (Figure 1c). Some speakers
pronounce it as 35 that becomes the second tone (Figure 1d). Another mistake
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Fig. 1. F0 contours of examples with tone mispronunciations

is beginning value is so high to be comparable with or even higher than the
ending’s, such as 313 or 413 and so on. Figure 1e is an example of 413.

The fourth tone (51): the beginning is sometimes pronounced not high enough.
Speakers whose pitch ranges are not wide enough are more possible to make such
mistakes, as shown in Figure 1f.

According to these analysis, we present two kinds of methods for the detection
of tone mispronunciations.

3 Automatic Detection Methods Based on Template

The expert’s judgement agree with most of results from analysis of pitch contours
in our experiments. It seems that just analyzing pitch contours can make the
detection. The third tone is more prone to be pronounced incorrectly and it
covers more than 80% mistakes or defectiveness occurred in our database. In
addition, there are lots of variant mispronunciations for tone 3. Therefore, we
will use tone 3 as the studying case to investigate the template method.

3.1 Methods Based on Five-Level Description

The most typical mispronunciation of tone 3 are 21, 35, 313, 413 and so on.
A method to detect these mispronunciations is firstly partitioning the testing
speaker’s pitch range into five levels according to his pitch contours; then de-
scribing his pitches using them. If the description is not 214, it is judged to be
incorrect.

This method seems reasonable and very simple. However, it is very difficult to
partition the pitch range into five levels, for they are just relative and regions of
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neighbor levels always have overlap. Figure 2 shows range of 1st and 5th levels
of a male speaker, who speaks Mandarin very well. Surprisingly, the 5th level
decided by range of the first tone (55) even have an overlap with the 1st level
decided by the ending values of the fourth tone (51) in this case. Range within
a level are also very wide. These reasons make the partition too difficult to be
implemented.
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Fig. 2. Examples of pitch contour for tone1 and tone4 from a single speaker

3.2 Methods Based on Pitch Value Comparison

Considering the fact of existing big overlap among 5-value quantization of pitch
range as shown in last sub-section, we can also check the relative value of pitch
for a given tone contour as shown in Figure 3. For example, we can detect the
mispronunciations like 21 and 35 by just counting the durations of ascending
and descending parts of a contour. Through comparing the values of beginning
and ending parts, we can detect the mistakes such as 313,314 and so on.

However, it is also not practical: firstly, there are usually elbows at the beginning
and ending of pitch contours that make the detection of the beginning and ending
segment unreliable. Duration estimation based on segmentation results becomes
more unreliable; secondly, there are too many threshold parameters to be prede-
fined or tuned and some of them are even beyond expert’s perceiving resolution.

Comparing with the template methods above, there are fewer threshold to be
predefined in statistical methods such as HMMs and more features combinations
in addition to pitch can be applied flexibly in such framework.

4 Automatic Detection Methods Based on Statistic
Models

In this section statistical methods based on HMMs are discussed. A brief in-
troduction is given first: syllables pronounced by golden speakers are used to
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Fig. 3. Flow chart for the template method

train the speaker independent HMMs and phone set [10] is used, in which each
tonal syllable is decomposed into an initial and a tonal final. After forced align-
ment, GOP scores are computed within the segment. Finally, with the help of
a threshold, detection is operated. Detailed descriptions about choice of model
types, feature vectors and GOP measures are given in the following subsections.

4.1 Experimental Corpora

The total corpora of the experiment contain 100 speakers, each speaker reads
1267 syllables. Among them we chose 80 speakers (38 male and 42 female) as the
training set. The rest 20 speakers(10 female and 10 male) are used for testing.
Randomly 100 syllables from each of these 20 speakers and totally 2000 sylla-
bles are selected for expert’s evaluation. Expert with national level scores each
pronunciation correct or not and points out where the problem is, such as tone
mispronunciation if there is.

4.2 Choice of Models

Studies have indicated that F0 related features can greatly improve tone recog-
nition accuracy. For F0 there is no observation in the unvoiced region and some
methods have been proposed to deal with it[11][12][14]. Among them, multi-space
distribution (MSD) approach, first proposed by Tokuda [13] for speech synthesis,
have also achieved good performance in tonal language speech recognition[14].
The MSD assumed that the observation space can made of multiple subspaces
with different priors and different distribution forms (discrete or continuous
pdf)can be adopted for each subspace. We have adopted two kinds of mod-
els to solve the problem of discontinuity of F0 feature in speech: MSD models in
which the observation space are modeled with two probability spaces, discrete
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one for unvoiced part and continuous one (pdf) for voiced F0 contour, and the
other model in which random noise is interpolated to the unvoice region to keep
the F0 related feature continuous during the whole speech. Their performance
in terms of tone recognition error rate are compared in our experiments.

Acoustic feature vector contains 39-dimensional spectral features (MFCC-E-
D-A-Z), and 5-dimensional F0 related features, consisting of logarithmic F0, its
first, second order derivatives, pitch duration and long-span pitch[15]. In MSD
models, we separate the features into two streams: one is MFCC-E-D-A-Z, the
other is 5 dimensional F0 related features and only one stream of 44-dimension
is used in conventional models.

We compare their performance in Table 2. MSD models perform better than
conventional models in both monophone and triphone cases, so MSD models are
more proper for the detection of tone mispronunciation. In addition, tied state
triphone models are better than monophone models in terms of recognition. We
also compare their performance in the detection.

Table 2. Comparison of tone recognition error rate between conventional HMMs and
MSD HMMs

Model Type Model Size Tone Error Rate (%)

HMMs, monophones 187*3(states), 16(mixtures/state) 18.05

MSD-HMMs, monophones 187*3(states), 16(mixtures/state) 8.85

HMMs, triphones 1500(tied states), 16(mixtures/state) 15.85

MSD-HMMs, triphones 1506(tied states), 16(mixtures/state) 7.81

4.3 Choice of Features

Spectral features such as MFCC can improve tone recognition accuracy in ASR
systems. However, the most discriminative feature for tone is F0. To check
whether MFCC are beneficial to the detection of tone mispronunciation, we
use two kinds of feature vectors: F0 related features and its combination with
MFCC-E-D-A-Z in our experiments.

Pitch ranges vary greatly for speakers and normalization is needed. Two nor-
malization are proposed: pitch value is divided by the average of nonzero values
within a syllable and logarithm of F0.

4.4 Choice of Goodness of Pronunciation Measures

We compare three types of scores for tone pronunciation: recognition scores, log-
likelihood scores and log-posterior probability scores, all of which are computed
within the HMM paradigm.

Recognition Scores. A simple measure for tone mispronunciation is just based
on tone recognition results. If the tone is recognized correctly, its pronunciation
is judged as correctand otherwise it will be judged as one with mistakes or de-
fectiveness. Such kind of measure will be highly dependent on the pronunciation
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quality of the training data that used to generate the HMM models. For exam-
ple, if one speaker mistakenly pronounce A to B and such case are observed a lot
in training data and the decoding result may be still correct even for the wrong
pronunciations.

Log-likelihood Scores. The log-likelihood score for each tonal segment is de-
fined as:

li =
1
di

·
ti+di−1∑

t=ti

log(p(yt|tonei)) (1)

where,

p(yt|tonei) =
Ji∑

j=1

p(yt|f inalj, tonei)P (f inalj |tonei) (2)

p(yt|f inalj, tonei) is the likelihood of the current frame with the observation
vector yt. P (f inalj|tonei) represents the prior probability of the f inalj given
that its corresponding tone is tonei. d is the duration in frames of the tonal
final, t0 is its starting frame index, and Ji is the total number of the final phones
with tonei. Normalization by the number of frames in the segment eliminates
the dependency on the duration.

Log-posterior Probability Scores. Log-posterior probability scores perform
better than log-likelihood scores in most CALL systems[6]. We also modify its
formula in our case.

First, for each frame within the segment corresponding to tonei, the frame-
based posterior probability p(tonei|yt) of tonei given the observation vector yt

is computed as follows:

p(tonei|yt) =
p(yt|tonei)P (tonei)∑4

m=1 p(yt|tonem)P (tonem)
(3)

=

∑Ji

j=1 p(yt|f inalj, tonei)P (f inalj|tonei)P (tonei)∑4
m=1

∑Jm

j=1 p(yt|f inalj, tonem)P (f inalj|tonem)P (tonem)
(4)

P (tonem) represents the prior probability for tonem. Then, the log-posterior
probability for the tonei segment is defined as:

ρi =
1
di

·
ti+di−1∑

t=ti

log(p(tonei|yt)) (5)

5 Experiments and Results

The training and testing database for detection are the same as Section 4.1.
MSD method is used to model golden pronunciations of tone. Performance of
different model types, feature vectors and GOP measures are evaluated.
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5.1 Performance Measurement

To evaluate performance of different setups, four decision types can be defined:

– Correct Acceptance(CA): A tone has been pronounced correctly and was
detected to be correct;

– False Acceptance(FA): A tone has been pronounced incorrectly and was
detected to be correct;

– Correct Rejection(CR): A tone has been pronounced incorrectly and was
detected to be incorrect;

– False Rejection(FR): A tone has been pronounced correctly and was detected
to be incorrect.

Given a threshold, all these decision types can be computed. Scoring accuracy
(SA) defined as CA + CR is always plotted as a function of FA for a range of
thresholds to evaluate the performance of a detection system. The SA-FA curves
are plotted for different setups in next sections.

5.2 Results for Different Model Types

Basic setups and tone recognition error rate of all models in our experiments are
listed in Table 3.

Table 3. Tone recognition error rate of different model sets

Model Type Feature Vector Tone Error Rate (%)

Monophones LogF0 (5) 11.20

Monophones MFCC-E-D-A-Z, LogF0(5) 8.85

Monophones MFCC-E-D-A-Z, Normalized F0(5) 7.75

Triphones LogF0 (5) 9.25

Triphones MFCC-E-D-A-Z, LogF0(5) 7.10

Triphones MFCC-E-D-A-Z, Normalized F0(5) 6.05

Firstly we compared the performance of monophone and tied state triphone
models. In all the experiments below, logF0 related 5 dimensional features men-
tioned are the same as [15] and we use ”LogF0 (5)” for short. Table 3 shows that
triphone models always perform better than monophone models for tone recog-
nition. It is obvious that context information modeled by triphones is helpful for
recognition.

Performance of these models on detection are shown in Figure 4. Log-posterior
probability scores are chosen as the GOP measure. Triphone models achieve a
little better performance than monophone models for the detection. Triphones
model the context between initial and final in our case and tone also has a
relationship with initial, which may be a reason why triphone models are bene-
ficial for tone detection. However, the affection of initial on tone is very limited
compared with final and it is why the advantage is not so much.
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Fig. 4. Scoring accuracy versus false acceptance for monophones and triphones

5.3 Results for Different Features

In this section, we evaluate performance of different features. The basic setups
and tone recognition error rate of the models are in Table 3. Log-posterior prob-
ability scores are still used as the GOP measures.

Figure 5 indicates that spectral features such as MFCC are useful for tone
recognition as shown in Table 3,however, they seem not beneficial for the detec-
tion. The reference of detection is provided by the phonetic experts. We inferred
that phonetic experts judge the quality of tone pronunciation probably mainly
based on pitch contours as discussed in Section 2 and they are consistent with
F0 related features. It is why MFCC features are probably of little helpful to
improve the agreement.

Table 3 and Figure 6 show that normalization of F0 is more effective than
logarithm for both recognition and detection. The reason is that normalization
can reduce the pitch values into smaller range than logarithm, which makes
models more independent of speakers.

5.4 Results for Different GOP Measures

GOP measure is another key factor for detection. In this section, we compare
the performance of three different measures mentioned in Section 4.3.

Figure 7 shows log-posterior probability scores achieve the best performance
among these measures. The assumption behind using posterior scores is that the
better a speaker has pronounced a tone, the more likely the tone will be over the
remain tones. The experiment results indicates such assumption is reasonable.
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Fig. 7. Scoring accuracy versus false acceptance for different GOP measures

6 Conclusions

In this paper we present our study on automatic detection of tone mispronun-
ciations in Mandarin. After the subjctive evaluations of tone mispronunciations
occurred in PSC, two approaches to automatic detection of mispronunciations
are presented: tempalted-based and HMM-based. Templates based on 5-level
schematic characterization of a tone or the relative comparison with a pitch
contour, are proved to be impractical. Statistical MSD-HMM are shown to be
more effective and flexible than the template-based approach. Under the HMM
framework, different experiments on feature combinations, model types and GOP
measures have been compared in terms of recognition and the mispronunciation
detections. We observed that MFCC is not as effective for mispronunciation de-
tection as for recognition and the normalization of fundamental frequency in a
segment is more useful. Among various GOP measures, log-posterior probability
shows the best performance.
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Towards Automatic Tone Correction in

Non-native Mandarin

Mitchell Peabody and Stephanie Seneff

Computer Science and Artificial Intelligence Laboratory,
MIT, Cambridge, MA 02139, USA
{mizhi, seneff}@csail.mit.edu�

Abstract. Feedback is an important part of foreign language learning
and Computer Aided Language Learning (CALL) systems. For pronun-
ciation tutoring, one method to provide feedback is to provide examples
of correct speech for the student to imitate. However, this may be frus-
trating if a student is unable to completely match the example speech.
This research advances towards providing feedback using a student’s own
voice. Using the case of an American learning Mandarin Chinese, the
differences between native and non-native pronunciations of Mandarin
tone are highlighted, and a method for correcting tone errors is pre-
sented, which uses pitch transformation techniques to alter student tone
productions while maintaining other voice characteristics.

1 Introduction

Feedback is essential in foreign language learning, and can take many forms,
depending on the particular aspect of speech production being taught. A simple
conversation involving teacher feedback is illustrated here:

1 Student “ni3 hao3! wo3 jiu3 mi2 zhi4.”
2 Teacher “bu2 shi4 jiu3. shi4 jiao4.”
3 Student “ni3 hao3! wo3 jiao3 mi2 zhi4.”
4 Teacher “wo3 jiao4 mi2 zhi4.”
5 Student “ni3 hao3! wo3 jiao1 mi2 zhi4.”
6 Teacher “jiao4. si4 sheng1.”
7 Student “jiao4.”
8 Teacher “hao3.”
9 Student “ni3 hao3! wo3 jiao1 mi2 zhi4.”

In this simple conversation, the student, whose primary language is American
English, is attempting to say, “Hello! My name is Mitch,” using Mandarin Chi-
nese. The word pronounced incorrectly is presented in bold. In this case, there
are two aspects of the pronunciation that are incorrect: the phonetic aspect and
the tone aspect.

� This research was funded by the Industrial Technology Research Laboratory and by
the Cambridge MIT Institute.

Q. Huo et al.(Eds.): ISCSLP 2006, LNAI 4274, pp. 602–613, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In order to correct the student’s pronunciation, the teacher provides a correct
template, in the form of their voice, for the student to imitate. The first correction
is to change “jiu” which has the wrong segmental form to “jiao.” The second
correction is to change the tone of the word from tone 3 to tone 4. The student
is immediately able to correct the segmental part of his speech (changing “jiu”
to “jiao”), however has trouble correcting the tonal aspect of his speech. In this
example, the student unsuccessfully tries to correct his tone within a sentence. He
then produces the tone correctly in isolation, but immediately fails to incorporate
this change in a sentential context.

One problem is that the student does not know how his voice should sound
and only has one reference to base his pronunciation on. The student’s anxiety
about correctly producing the language may be increased if he is unable to
imitate the teacher’s voice or identify what the teacher feels is lacking in his
pronunciation [1, 2]. Because Mandarin is a tonal language, and the student’s
primary language, English, is not, the student may have trouble perceiving the
distinctions between the tones [3, 4].

A major problem not illustrated by the example is that a teacher is not
always available to give the student practice and guidance. However, a Computer
Aided Language Learning (CALL) system can support practice at any time, in
a non-threatening environment, and can provide feedback when a teacher is
unavailable. CALL systems, which are designed to facilitate learning a foreign
language using a computer, have three essential elements: speaking practice,
hearing and understanding practice, and feedback.

A number of methods can be employed to provide the student with correct
examples of speech. One method, largely employed by pronunciation dictionaries,
is to pre-record native versions of speech being corrected. While this provides
very high quality samples of speech for the student to emulate, it suffers from
two major flaws. First, it is not scalable in that it is impossible to predict the
full range of sentences that could be corrected. Second, the same problem that
exists with the teacher is present: a student may still be unable to perceive and
correct problems with their own speech. An alternative is to provide samples of
speech using a speech synthesizer. This eliminates the scalability problem, but
retains the problem of the student’s inadequate perception of the error source.
It also introduces the additional challenge of providing very high quality speech
synthesis, which is very difficult.

If a step back is taken and the target language is considered, another method
presents itself. Mandarin is a tonal language which means that tone quality and
phonetic quality can be considered independently. Focusing on only the tonal
aspect of Mandarin, we propose a method that modifies the tonally incorrect
portions of student speech to sound correct. We wish to do this in a contextually
sensitive manner for entire sentences by predicting an overall pitch contour based
on native models. The advantages of this method are that a large database of pre-
recorded speech is not required, a speech synthesizer is not utilized, the number
of phrases that can be corrected is virtually unlimited, and the feedback is in the
student’s voice. Furthermore, by listening to two minimally different versions of
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their spoken utterance, students can tune in to the perceived differences, which
pertain directly to tonal aspects.

In this research, a number of questions need to be addressed. What are some
characteristics of natively produced tones? How are these different from those
produced by non-native speakers? What, if any, variations occur with respect to
sentence position? How can the corrections be realized? How can the tone of the
speech be modified such that the result has few artifacts? How can the quality
of the tones that are produced be tested?

Section 2 provides a brief overview of modern CALL systems that utilize
dialogue interaction to allow for student practice. Section 3 gives a brief overview
of native Mandarin tones and discusses differences between native and non-native
productions of tones. Section 4 discusses our approach to correcting non-native
tone errors. Section 5 presents some results and Section 6 summarizes the main
points of this paper and provides directions for future work.

2 Background

A common approach to learning in a foreign language classroom is the task-
based method. Task-based language learning is a communicative approach in
which the student participates in a dialogue with another student, teacher, or
native speaker on a particular topic with a specific end goal in mind [5, 6].

Feedback pertaining to various aspects of language learning is given either
during or after the conversation. The idea is that, by encouraging the student
to come up with sentences and phrases on their own, even if they are imperfect,
learning will take place. Feedback may be given to correct major problems, but
other problems are allowed to slide.

In recent years, CALL researchers have attempted to enable this form of
foreign language learning using dialogue systems. In contrast to tapes or CDs,
a computer system has the ability to dynamically create dialogues based on a
given scenario for a student. By highly restricting the domain of a lesson to those
one might find in a language book, it is feasible to construct dialogues that are
dynamic in content and flow.

The Tactical Language Tutoring System (TLTS) [7, 8] immerses a student in
a 3D world using the Unreal Tournament 2003 [9] game engine, where he is
instructed to accomplish missions by interacting with characters in the environ-
ment using speech and non-verbal communication. Speech recognition is done
on highly restricted sets of sentences using the Cambridge Hidden Markov Model
Toolkit (HTK) [10] augmented with noisy-channel models to capture mispronun-
ciations associated with English speakers learning Arabic [11].

Raux and Eskenazi [12] adapted a spoken dialogue system [13] to handle
non-native speech through adaptation techniques [14] using a generic task-based
dialogue manager [15]. Another key feature of the system is the use of clarification
statements to provide implicit feedback through emphasis of certain parts of a
student’s utterance [16] allowing feedback to be given as part of the dialogue.
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Our general approach to CALL [17] is also modeled on the task-based ap-
proach. For all of our experiments, we have focused on the Mandarin/English
language pair. A prototype system created by Lau [18] was able to carry on
short conversations with a student about simple topics such as family relation-
ships. LanguageLand [19] was developed as a multi-modal system intended to
help students learn to give directions in a foreign language.

It is within the task-based learning pedagogical framework that we wish to
provide feedback. An overview of general pronunciation feedback in CALL can
be found in [20]. Our focus here is on feedback as it pertains to pitch, for which a
number of strategies have been previously attempted. An oscilloscope system [21]
from the early 1960s provided direct visual feedback to the student through a
real-time pitch display. A more recent example comes from [22], where a student
received feedback in the form of a video game. A simple car driving game indi-
cated to the student the quality of their feedback by how well the car remained
in the center of a twisting and curving road.

Instead of explicitly indicating problems with pitch, which only hint at ways
to correct the errors, some methods of feedback involve presenting the student
with a corrected version of their own voice. For example, the WinPitchLTL [23]
program provides visual feedback to the student in the form of pitch contours
that can be compared against teacher provided models. The program has the
additional capability of transforming the pitch of the student’s speech to train on
aspects such as intonation, stress, or tone. This functionality is obtained through
a manual editing process. An automatic method was introduced in [24] where
the prosody of isolated words was repaired using Pitch Synchronous OverLap
and Add (PSOLA) [25–27]. Reference pronunciations were provided by recorded
teacher utterances or by KTH’s text-to-speech system [28]. Experiments in [29]
generated a pitch contour for phrases using linear regression and ToBI [30] tran-
scriptions. The generated contour was compared against a reference contour to
show improvement. A similar technique was used in [31] where the authors at-
tempted to repair intonation structure with a focus on stress patterns.

We propose repairing non-native tonal errors in a sentence by producing a
model pitch contour based on native data. We examine Chinese tones to de-
termine properties that can be incorporated into this model contour. We also
examine differences in tone production between native and non-native speakers.

3 Tone Studies

In this section, we investigate speech data from three corpora: the Yinhe [32]
corpus, the Lexical Tone (LT) [33] corpus, and the Defense Language Institute
(DLI) corpus. The Yinhe data consists of 5,211 Mandarin utterances spoken by
native speakers interacting with a dialogue system that provides information
about flights and weather. The LT data consists of 497 Mandarin utterances,
also in the weather domain, spoken by Americans in their first or second year of
studying Mandarin at a college level. The DLI data consists of 5,213 utterances
taken from oral proficiency interviews at DLI.
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Fig. 1. Canonical forms of f0 for tones produced in isolated syllables

A tonal language uses pitch, the perception of fundamental frequency (f0), to
lexically distinguish tones. Mandarin Chinese is a tonal language in which every
syllable is marked with a tone. Syllables in Chinese are composed of two parts:
an initial and a final. The initial phone is either a consonant or the null initial
(silence). The final portion of the syllable is composed of vowels and possibly a
post-vocalic nasal. The final also functions as the tone bearing unit of a Chinese
syllable [34]: the portion of the syllable where pitch differentiates tones.

Mandarin has 5 official tones, of which the first four are the most important for
understanding. The fifth is often referred to as the neutral tone. Tonal languages
lexically distinguish tones using pitch, or f0 perception, in two main ways: by
shape or by absolute height (register). Mandarin tones are mainly distinguished
by shape, though there are other perceptual cues [35].

When pronounced in isolation, tones 1 through 4 have shapes that ideally
look like those seen in Fig. 1 (tone 5 has no canonical shape, and is not shown).
When pronounced as part of a word, phrase, or sentence, the pitch of the tones
is altered in complex ways that depend on such factors as left and right contexts,
anticipation [36], pitch declination [37], or tone sandhi rules [38].

In general, speakers of a non-tonal language who are learning Mandarin as
a foreign language have difficulty both perceiving and producing tone (see, for
example [4]). The major preceptual cue for distinguishing Mandarin tones is
pitch shape, which makes it a natural starting point for comparison between
native and non-native speakers. In order to make meaningful comparisons of
shape, the f0 of the data must be normalized.

Fig. 2a is a histogram of the average f0 for all voiced portions of speech over
the entire Yinhe corpora. The bimodal distribution is due to gender differences
in average f0. Fig. 2b shows the f0 contours for three randomly selected speakers
from the Yinhe corpus: two female and one male. The obvious difference in the
average f0 of the male and females is one of the main reasons for normalization.

The normalization process has three main steps. First, an overall f0 value is
obtained for the entire Yinhe corpus. For each utterance in both the Yinhe and
LT corpora, the f0 values of each syllable are adjusted to be close to the utterance
mean f0. This step effectively removes tilt due to f0 declination. Finally, each
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Fig. 2. Illustrating the need for normalization of f0 contours
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Fig. 3. Comparison of native vs non-native normalized f0 contours

f0 in the utterance is scaled by a constant factor to make the utterance mean f0

equal to the corpus mean f0 (189.75Hz). This moves the mean utterance f0 for
each utterance to the same f0 location as the overall mean for the Yinhe data.

After normalization, native and non-native pitch contours can be compared
directly. Fig. 3a shows the f0 contours for the same three speakers from the
Yinhe corpus after normalization. The most important aspect to note is the
consistency of the shapes for the native speakers, when contrasted with contours
from three random non-native speakers from the LT corpus shown in Fig. 3b. It
is evident that these non-native speakers have difficulty producing the contours
correctly. For instance, there is very little contrast between the shapes of tone 1
and tone 3 for the non-native speakers.

It is also apparent from analysis of the Yinhe data that Mandarin tones differ
in their mean f0 values, although sentence declination effects must be accounted
for to effectively exploit this feature. Averaged over all speakers, tones 1, 2,
3 and 4 have mean f0 values of 203.73Hz, 179.37Hz, 178.05Hz, and 196.3Hz
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Fig. 4. Separation of tones 3 and 4 by relative f0
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Fig. 5. Relative f0 declination separated by tone

respectively. Thus, tones 1 and 4 have relatively greater mean values, and tones
2 and 3 have relatively smaller mean values.

Intonation, which encodes phrase level and sentential structure, interacts with
tone production in complex ways that are not fully understood. It is known, how-
ever, that Mandarin pitch has a generally negative downward slope throughout
phrases. This effect, known as pitch declination, must be accounted for explicitly
in order to effectively exploit the intrinsic mean f0 property of tones.

Quantitatively, we can define relative f0 to be the ratio of f0, averaged over
the duration of the syllable final, over the mean f0 of the sentence. Fig. 4a shows
two histograms illustrating the distribution of relative f0 for tones 3 and 4, for
data over all syllable positions in the sentence. Fig. 4b shows the same plots,
but restricted to syllable position 5. It is evident that the two distributions are
much better separated when the data are restricted to a single syllable position.

If the relative f0 of each tone is plotted as a function of syllable position,
an interesting picture emerges. Fig. 5a plots the relative f0 of native Mandarin
speakers vs syllable position, and clearly shows that the separation between tones
by relative f0 persists throughout the duration of an utterance. This means that
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Fig. 6. Corrected contour for the sentence “luo4 shan1 ji1 xing1 qi1 si4 feng1 da4 bu2
da4” (English: “Will it be windy in Los Angeles on Thursday?”)

a pitch generating algorithm needs to adjust f0 for declination based on both
syllable position and tone assignment. Intonation generally plays a large role in
the quality of pronunciation [39]. As with tone shape, non-native speakers have
poor control over the interplay of tone relative f0 and intonation, as illustrated
by Fig. 5b.

4 Approach

Our general approach to providing tonal corrections in sentences is to modify a
waveform of the student’s speech. This is done in a two stage process. The first
stage generates a pitch contour from native tone models. The second stage alters
the pitch in the student waveform to match the generated contour.

In the first stage, we assume that an aligned transcription of the correct initials
and finals for each syllable in a waveform of student speech is available. The pitch
contour is extracted from the original speech using a dynamic programming
algorithm described in [40].

For each syllable, the tone assignment for the final portion is determined
from the transcription. A series of f0 values in the shape of the tone is generated
over the duration of the final. The f0 values are adjusted to be appropriate for
the current syllable position according to a declination model. For those time
segments in which there is no final (and hence, no tone), the f0 values are linearly
interpolated to make the contour continuous.

Tone shapes are represented by four coefficients from the discrete Legendre
transform as described in [41]. The model f0 contour can be reconstructed from
the first four coefficients. Parametrically characterizing the pitch contour of the
tones has two benefits: pitch contours for different syllable durations can be
easily generated, and less training data is required for each tone model.

The intonation declination models are linear equations derived from a regres-
sion on the first 10 syllables of the relative f0 for each tone. For each tone, this
gives a parametric model that can be used to adjust the f0 values for a given
tone at a given syllable position.

An example of a corrected utterance can be seen in Fig. 6. Normalization
for speaker f0 range and for sentence declination have been incorporated into
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the connected contour plot, and thus it has a very flat declination and correctly
shaped tones.

In this example, there are very evident changes in the shapes of the tone
contours. For example, in syllable position one, the syllable “luo4” is seen. This
tone should have a falling pitch, but the speaker produced it with a rising pitch.
The generation algorithm has produced a contour that is qualitatively closer to
the correct native contour.

In the second stage, the pitch contour of the original speech and the generated
pitch contour are both available. The speech in the student waveform is processed
so that the pitch at each time interval is adjusted according to the generated
version. The adjustments are done using a phase vocoder as described in [42, 43],
which allows pitch to be adjusted up or down depending on a real-valued factor.

The advantage of using a phase vocoder is two-fold: it can produce very high
quality pitch transformations and it can do these transformations by manipu-
lating the waveform itself; no pitch extraction and resynthesis is required. In
previous usage, the phase vocoder had adjusted the pitch of speech by a con-
stant factor, but for this application, the pitch needs to be adjusted by a different
factor for each time frame.

The end result of this algorithm is to produce a version of the student wave-
form that has been corrected for tone. The voice can still be identified as origi-
nally belonging to the speaker, but the tones will sound closer to native quality.

Table 1. Classification accuracy for original and generated contours

Dataset # Utts Original Predicted
LT 497 41.3% 92.2%
DLI 5213 29.0% 81.3%

5 Results

To evaluate the quality of the generated tone contours, we used a tone classifier
trained on native data to classify tones from both original pitch contours and
from the corresponding generated contours. The reasoning is that, if the gener-
ated pitch contour is closer to native quality, then the classification accuracy for
a given utterance should be much better than for the original pitch contours. The
choice of using a classifier to evaluate quality was motivated by the expectation
that, in the future, this research will be incorporated into a larger CALL system
that has automatic tone evaluation. We wished to establish that any corrective
guidance regarding tone would be detectable by such a method.

The native training data used was the Yinhe data with normalized f0. This
normalization corrected for both syllable position and speaker pitch range. The
feature vector used to train the classifier models was composed of the four Leg-
endre coefficients that parameterize the tone shapes. Each tone model in the
classifier was composed of 16 Gaussian mixture models.

Pitch contours were generated, as described in Section 4, for each utterance
in the LT and DLI corpora, which contain non-native data. Table 1 shows the
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accuracy of the classifier on the original pitch contours and on the generated
pitch contours. For both the LT and DLI corpora, there is a large increase in
classification accuracy.

6 Summary and Future Work

This paper proposes a novel method for pronunciation feedback for learners of
Mandarin by providing students with a corrected version of their own speech.
An examination of native and non-native productions of tone revealed that non-
native speakers have difficulty producing Mandarin tones. Based on native Man-
darin speech, models for tones and phrase declination were built that were used
to generate a pitch contour for a given utterance spoken by a non-native speaker.
The results indicate that this generated pitch contour produces tones that are
much closer to native quality than the original non-native speech.

In order to correct the student’s speech we need to reintroduce the sentence
declination into the generated pitch contour, and then apply the phase vocoder
technique to instantiate it. Implementation of this portion of the algorithm is
planned for the immediate future. While the generated contours were found to
be much closer to native quality than the original contours; there is not yet
any indication that there is correlation with human perception. The utterances
produced by the phase vocoder need to be evaluated for improved tone quality
through listening tests conducted by native speakers of Mandarin.

The tone models represented the lexical tones averaged over all left and right
contexts; however contextual variations should be accounted for explicitly in the
models. Modeling these contextual variations into account will also help capture
prosodic phenomena such as tone sandhi rules. To do this will require more non-
native data, as context specific models will experience data-sparseness issues.

This research dealt explicitly with feedback with the assumption that all tones
were produced incorrectly by the non-native speakers. Most likely, though, only
some of the tones will be produced incorrectly. In the near future, data will be
marked by a fluent Mandarin speaker for tone quality. Based on feature com-
parisons between native and non-native speakers, methods for detecting which
tones are produced incorrectly will be explored. This will allow for more selective
feedback to be given.
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Abstract. This paper presents a corpus-based approach for cooperative  
response generation in a spoken dialog system for the Hong Kong tourism do-
main.  A corpus with 3874 requests and responses is collected using Wizard-of-
Oz framework.  The corpus then undergoes a regularization process that simpli-
fies the interactions to ease subsequent modeling.  A semi-automatic process is 
developed to annotate each utterance in the dialog turns in terms of their key 
concepts (KC), task goal (TG) and dialog acts (DA).  TG and DA characterize 
the informational goal and communicative goal of the utterance respectively.  
The annotation procedure is integrated with a dialog modeling heuristic and a 
discourse inheritance strategy to generate a semantic abstraction (SA), in the 
form of {TG, DA, KC}, for each user request and system response in the dialog.  
Semantic transitions, i.e. {TG, DA, KC}user {TG, DA, KC}system, may hence be 
directly derived from the corpus as rules for response message planning.  Re-
lated verbalization methods may also be derived from the corpus and used as 
templates for response message realization.  All the rules and templates are 
stored externally in a human-readable text file which brings the advantage of 
easy extensibility of the system.  Evaluation of this corpus based approach 
shows that 83% of the generated responses are coherent with the user’s request 
and qualitative rating achieves a score of 4.0 on a five-point Likert scale. 

Keywords: Natural language generation (NLG), Response generation, Corpus-
based approach. 

1   Introduction 

Continual advancements in speech and language technologies have brought usable 
spoken dialog systems (SDS) within reach.  SDS typically supports goal-oriented 
human-computer conversations regarding restricted application domains, e.g. asking 
for a restaurant recommendation, planning a trip, etc.  SDS integrates technologies 
including speech recognition (SR), natural language understanding (NLU), dialog 
modeling, information/database access and text-to-speech synthesis.  An indispensa-
ble component that facilitates effective two-way, human-computer interaction is natu-
ral language generation (NLG) of cooperative system responses that tailor to the 
user’s information needs and linguistic preferences.  NLG is defined as the process of 
transforming a semantic specification from the dialog model (DM) into a semantically 
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well-posed and syntactically well-formed message.  The message can be presented to 
the user as on-screen text and/or synthesized speech.  The demarcation between the 
DM and NLG may vary from one system to another.  Some (earlier) systems do not 
distinguish between the two processes.  In this work, the demarcation is drawn 
whereby the DM provides discourse-inherited semantics for the NLG.  The NLG aims 
to compose a well-posed and well-formed message that can serve as a cooperative 
system response.  To compose a well-posed message, the NLG needs to select content 
pertinent to the current dialog turn and cast the content in a message plan that is co-
herent and succinct.  To compose a well-formed message, the NLG needs to select 
syntactic and elements for textual/audio realization of the response message.  We 
divide NLG problem into two sub-problems – (i) message planning formulates a well-
posed message plan (MP) based on relevant semantics; and (ii) message realization 
generates a well-formed linguistic realization from the MP. 

Previous approaches in NLG generally fall within a continuum between the non-
linguistic template-based approach and the fully linguistic approach [1,2].  The tem-
plate-based approach has been widely adopted due to ease of development, mainte-
nance and predictability [3].  However, handcrafting templates for every application 
domain is a tedious process with low portability.  It is often impossible to handcraft 
templates that fully cover the combinatoric space of communicative goals and dis-
course contexts.  Hence templates offer limited variety and the approach becomes 
untenable as the application domain grows.  Fully linguistic approaches mostly origi-
nate from research in NLG of monologs (e.g. reports, summaries, etc.) and incorpo-
rate a huge amount of linguistic knowledge [4,5].  Adapting these approaches for 
dialogs in restricted domains and achieving real-time performance may be difficult 
[6]. Recent efforts in NLG research strive to strike a balance between the non-
linguistic and fully linguistic ends of the spectrum, by using simple rules/grammars 
augmented with corpus-based statistics.  This can reduce the need for a full linguistic 
characterization and can also introduce variety into the NLG output [7].  A represen-
tative example is the use of stochastically combined dialog acts to form surface reali-
zations and these are then selected by a filter trained on a human-graded corpus [8]. 

In this paper, we present an approach where message planning strategies and mes-
sage realization templates are derived from a dialog corpus.  This approach can vastly 
reduce the human effort that needs to be devoted to authoring rules and templates.  
We collected a dialog corpus by means of a Wizard-of-Oz setup, where the “wizard” 
attempts with best effort to answer to the user’s inquiries in a systematic and succinct 
way.  The collected data then undergoes a manual “regularization” process for simpli-
fication in order to ease subsequent modeling.  We also designed a semantic abstrac-
tion of each user’s request and system’s response, in terms of key concepts, tasks 
goals (i.e. the informational goals) and dialog acts (i.e. communicative goals).  Hence 
we may capture the message planning strategies found in the corpus through semantic 
transitions of a pair of request/response turns.  For a given message plan, we may also 
refer to the corpus to derive message realization templates.  This corpus-based ap-
proach eases development of the NLG component and may enhance portability across 
languages and applications.  In the following, we present the details of corpus devel-
opment, semantic abstraction and annotation, message planning, message realization 
as well as evaluation results. 
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2   Corpus Development 

2.1   Information Domain 

The information domain is specific to Hong Kong tourism, as defined by the Tour-
ism Board’s website – Discover Hong Kong.1  The domain covers information rang-
ing from scenic attractions, shopping attractions, transportation, fare prices, events, 
tours, etc.  This diversity is useful for our current research in natural language  
generation. 

Based on the website, we also developed a database covering 349 attractions. Re-
lated information constituents that are tagged with XML (eXtensible Markup Lan-
guage) include name, type, description, routing, time, url, etc.  An example is shown 
in Table 1 for illustration. 

Table 1. An example of XML-tagged data entry in the Hong Kong tourism domain 

<ATTRACTION> 
<NAME> </NAME>    (translation: Disneyland) 
<TYPE> </TYPE>    (theme park) 

<DESCRIPTION> 
…… 

</DESCRIPTION>    (the Hong Kong Disneyland is an exciting place...) 
<ROUTE> </ROUTE>   (take the mass transit railway
(MTR) to Sunny Bay station and transit to the Disney line) 
<TIME> 10 8 </TIME>    (opening hours...) 
<PRICE> 295 210 170</PRICE>    (fares for adults, children and seniors) 

<URL>http://hongkongdisneyland.com</URL> 
</ATTRACTION> 

2.2   Eliciting Interactions Using a Wizard-of-Oz Data Collection 

In order to elicit interactions in the selected domain, we use a Wizard-of-Oz (WoZ) 
data collection setup to elicit interactions from a group of thirty invited subjects.  
Each subject and the wizard sat in different rooms, and interacted through a multimo-
dal and multimedia interface through networked computers.  The subjects can issue 
inquiries using speech, typed text and/or pen gestures.  The wizard can refer to the 
Discover Hong Kong website during the entire data collection process and always 
tries to respond to the user’s inquiries with best effort.  All interactions were logged 
by the system.  As a result of this data collection process, we have a series of dialogs 
that contain rather free-form wizard-generated responses for the subjects’ inquiries.  
These enable us to define the major informational goals (or task goals, TG) of the 
subjects, dialog acts (DA) that characterize the course of dialog interactions and re-
lated key concepts (KC) that may come from the current interaction (dialog turn) or 
inherited from previous interactions. 

                                                           
1 http://www.discoverhongkong.com 
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2.3   Data Regularization Process 

As mentioned earlier, the wizard’s responses as logged from the WoZ data collection 
procedure is relatively free form.  It contains many disfluencies such as filled pause, 
word order reversal due to spontaneity in interaction and tagged information indicat-
ing responses in alternative modalities, e.g. highlighted points on a map, urls, etc.  In 
order to ease the subsequent process of modeling the dialog responses, we devised a 
manual procedure of data regularization where the collected data are simplified into 
short sentences/utterances with straightforward structures.  This paves the way of 
easing the development of message templates for verbalization of relevant informa-
tion content.  In total, we have regularized the entire dialog corpus, which consists of 
1500 dialog turns, each with two to five utterances.  Overall, there are 3874 request 
and response utterances.  Table 2 shows a simple dialog interaction before and after 
the data regularization process. 

Table 2. An example dialog between the Wizard (W) and the User (U) before (Original data) 
and after (Refined data) the data regularization process 

Original data Refined data 
W0

(Where would you like to go on the second day?)
U1 Er (I would like to visit theme park)
W1

(Would you like to visit Ocean Park or Disneyland?)
U2 Um

(Let me think. I prefer Disneyland.)
W2

<url>
(Here is the informa-

tion about Disneyland, please have a look.)
U3 <point: pictures>

(How could I get here from Central?)
W3 Er

(From Central to Disneyland, you can take the
MTR to Sunny Bay station and transit to the Disney line.)

U4 Er
(Is there any introduction about Ocean Park?)

W4
<url>

(This is the informa-
tion about Ocean Park, please have a look.)

U5 (Bye-bye.)
W5 (Have a good trip!)  

3   Semi-automatic Corpus Annotation of Semantic Constituents 

A critical stage in corpus development is the annotation of major semantic constitu-
ents in the collected data.  These semantic constituents must characterize: (i) what are 
the types of questions asked; (ii) what kinds of content are necessary for answering 
these questions (i.e. response message planning); and (iii) how such content should be 
expressed (i.e. response message realization).  As mentioned above, we believe that 
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the major semantic constituents needed include the key concepts (KC) in a verbal 
message; the domain-specific task goal (TG) underlying the message; as well as the 
communicative role of the message in the course of the dialog, as symbolized by the 
dialog act (DA) [9,10].  We have devised a semi-automatic method of annotating such 
semantic constituents.  The objective is to reduce the manual effort needed, speed up 
the annotation process, as well as to enhance consistency in the annotations. 

3.1   Tagging Key Concepts (KC) 

We defined approximate 800 grammar rules (in the form of regular expressions) from 
analyzing the collected data for tagging concepts.  Examples are shown in Table 3. 

Table 3. Example of grammar rules for tagging key concepts (KC) 

attraction →  |  |  | … (Disneyland | Ocean park | Theme park |..) 
how →  |  | …                    (These Chinese tokens  mean “how to”) 
go →  |  …                                 (These Chinese tokens mean “go or walk”) 
origin →  [attraction]                    (from [attraction]) 
destination →  [attraction]            (to [attraction]) 
directions → [how] [go] 

3.2   Task Goals and Dialog Acts 

The task goal (TG) symbolizes the information goal of the user’s request and is do-
main-specific.  The dialog act (DA) expresses the communicative goal of an expres-
sion in the course of a dialog and bears relationships with the neighboring dialog 
turns.  The DA is largely domain-independent.  We defined 12 TGs based on the 
collected corpus, as shown in Table 4.  We also included 17 DAs, adapted from 
VERBMOBIL-2 [9], as shown in Table 5. 

Table 4.  12 Hong Kong tourism domain specific task goals (TGs) 

ATTRACTION, DURATION, FEE, LOCATION, PHONE, ROUTE, SHOPING, HOURS, 
TOURING, FOOD, HOTEL, RESERVATIONS 

Table 5.  17 domain independent dialog acts (DAs) 

APOLOGY, BYE, BACKCHANNEL, CLOSE, CONFIRM, DEFER, GREET, SUGGEST, 
THANK, FEEDBACK_NEGATIVE, FEEDBACK_POSITIVE, REQUEST_SUGGEST, 
REQUEST_COMMENT, REQUEST_DETAILS, REQUEST_PREFERENCE, 
INFORM_GENERAL, INFORM_DETAILS 

3.3   Semi-automatic Annotation Process 

Each dialog turn in the regularized corpus is segmented into individual utterances 
such that each utterance corresponds to only one TG and one DA.  For example, the 
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second user’s request (U2) “ (Let me think. I prefer 
Disneyland.)” (see Table 2) is segmented into two utterances as shown in Table 7 – “

 (Let me think.)” followed by “  (I prefer Disneyland.)”. 

Table 6.  Division of the Corpus into four data subsets 

Data subset #1 #2 #3 #4 
Number of utterances 948 939 986 1001 

Table 7. Results of annotation, based on the example presented earlier in Table 2 

W0  
KC: {ask_where= } 
TG: ATTRACTION      DA: REQUEST_PREFERENCE 

U1  
KC: {attraction= } 
TG: ATTRACTION      DA: INFORM_DETAILS 

W1  
KC: {attraction= , attraction= } 
TG: ATTRACTION      DA: REQUEST_COMMENT 

U2  
KC: {think= } 
TG: ATTRACTION      DA: DEFER 

U2  
KC: {attraction= } 
TG: ATTRACTION      DA: INFORM_DETAILS 

W2  
KC: {attraction= } 
TG: ATTRACTION      DA: INFORM_GENERAL 

U3  
KC: {origin= , destination= , directions= } 
TG: ROUTE                  DA: REQUEST_DETAILS 

W3  
KC: {origin= , destination= , route= ..} 
TG: ROUTE                  DA: INFORM_DETAILS 

U4  
KC: {attraction= } 
TG: ATTRACTION      DA: REQUEST_DETAILS 

W4  
KC: {attraction= } 
TG: ATTRACTION      DA: INFORM_GENERAL 

U5  
KC: {bye= } 
TG: ATTRACTION      DA: BYE 

W5  
KC: {good_trip= } 
TG: ATTRACTION      DA: CLOSE 
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We divided the corpus into four subsets, as shown in Table 6.  The annotation pro-
cedure is incremental.  We first hand-annotate data subset #1 in terms of TG and DA.  
KCs are tagged by the regular expressions mentioned above.  All annotations (KC, 
TG and DA) are checked by hand and are used to train a suite of Belief Networks 
(BNs) [11] that can accept a series of input KCs from an utterance and output the TG 
and DA labels for the utterance.  These BNs are used to label data subset #2 which 
then undergoes a pass of manual checking.  Thereafter, both data subsets #1 and #2 
are used to retrain the BNs and these are subsequently used to label data subset #3, 
which again undergoes a pass of manual checking.  Thereafter, all three data subsets 
are used to retrain the BNs and these are evaluated based on data subset #4.  The BNs 
achieve an accuracy of 79% for TG and 77% for DA labeling in data subset #4.  Table 
7 illustrates an example of the end result of this annotation process.  Every utterance 
in a dialog turn may thus be annotated with KCs, TG and DA. 

4   Message Planning and Realization in Response Generation 

The annotation procedure described in the previous section is applied to every user’s 
request and system (wizard) response in the regularized corpus.  In addition, our dialog 
model (DM) incorporates a heuristic that the TG of the ensuing response is assumed to 
be identical to the user’s request since the system (wizard) is generating cooperative 
responses.  The DM also incorporates a selective discourse inheritance strategy [12] to 
enhance the completeness of the semantic representation of an utterance.  For example, 
if the user first asks “ ” (How can I get to Ocean Park?), followed 
by “ ” (How about Disneyland?), the second question must inherit 
appropriate concepts from the previous question in order to have a self-complete 
meaning.  We have developed a set of context-dependent inheritance rules [12] that 
govern the inheritance of TG or KC from previous dialog turns.  The extensions of the 
heuristic and discourse inheritance raised the TG and DA label accuracies to over 90% 
in data subset #4.  Sequential processing by the semi-automatic annotation process and 
the DM transforms every user request and system (wizard) response in the collected 
corpus into a succinct semantic representation, in terms of {TG, DA, KC}.  Such se-
mantic abstraction (SA) of user’s request and system’s responses are useful for deriv-
ing strategies of response message planning as well as methods of response message 
realization.  We will describe the two procedures in the following. 

4.1   Strategies for Response Message Planning 

Parsing for the TG, DA and KC in a regularized user request or system (wizard) re-
sponse message automatically generates a semantic abstraction (SA) representation 
{TG, DA, KC}.  Pairing up the SAs of a user’s request with its system response in the 
subsequent dialog turn automatically derives message planning strategies in the form 
of semantic transitions, i.e.: 

{TG, DA, KC}user  {TG, DA, KC}system. 
In other words, each pair of user-system interactions in the 3,874 utterances in our 
corpus offer one instance of message planning by the wizard in the context of the 
dialog system. Hence, our strategies for message planning are automatically derived 
in a data-driven manner. 
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We analyzed these instances and noted several features: 

(i) A user’s dialog turn may contain multiple utterances and each has its own SA 
representation.  In such situations, the semantic transition rule is based only on 
the last utterance and its SA representation.  This is because our corpus suggests 
that the last utterance can fully characterize the user’s dialog turn.  For example, 
the second user turn in Table 7 will only derive the SA representation of {AT-

TRACTION, INFORM_DETAILS, attraction}user. 
(ii) It is possible for different {TG, DA, KC}user to transit to the same {TG, DA, 

KC}system.  For example, in Table 7 the pair of dialog turns (U2, W2) produces 
{ATTRACTION, INFORM_DETAILS, attraction}user {ATTRACTION, INFORM_GENERAL, 
attraction}system; while the pair of dialog turns (U4, W4) produces {ATTRACTION, 
REQUEST_DETAILS, attraction}user {ATTRACTION, INFORM_GENERAL, attrac-
tion}system. 

(iii) It is also possible for a given {TG, DA, KC}user to transit to several possible {TG, 
DA, KC}system.  For example, in Table 7, the pair of dialog turns (U1, W1) pro-
duces {ATTRACTION, INFORM_DETAILS, attraction}user {ATTRACTION, RE-

QUEST_COMMENT, attraction}system.  However, the pair of dialog turns (U2, W2) 
produces {ATTRACTION, INFORM_DETAILS, attraction}user {ATTRACTION, IN-

FORM_GENERAL, attraction}system.  This presents the need for devising a set of 
rule selection conditions in message planning.  An illustration is presented in 
Table 8, where Rules 1 to 4 are all possible transitions originating from the same 
{TG, DA, KC}user .  It should be noted that these rule selection conditions are in-
serted manually upon analysis of the corpus.  However, as illustrated in Table 8, 
these simple conditions should be generalizable to other information domains. 

Table 8.  An example of semantic transition rules which constitutes the message planning 
strategies for cooperative response generation.  Rule selection conditions may be applied if 
there are multiple possible message plan options.  These conditions may contain key concepts 
(denoted by ‘#’) whose values are obtained either from database retrieval results (denoted by 
database#concept) or from the parsed user request (denoted by request#concept). 

Semantic Transition Rule Format 
{TG, DA, KC}user {TG, DA, KC}system 
Rule 1 
{ATTRACTION, INFORM_DETAILS, attraction}user  
            {ATTRACTION, REQUEST_COMMENT, place}system 
Rule 2 
{ATTRACTION, INFORM_DETAILS, attraction}user  
            {ATTRACTION, INFORM_GENERAL, attraction}system 
Rule 3 
{ATTRACTION, INFORM_DETAILS, attraction}user  
            {ATTRACTION, INFORM_DETAILS, attraction}system 
Rule 4 
{ATTRACTION, INFORM_DETAILS, attraction}user  
            {ATTRACTION, APOLOGY, sorry}system 
Control Conditions for the above Rules Selection 
IF ({database#result_number}>1) THEN select Rule 1 
ELSEIF ({database#result_number}==0) THEN select Rule 4 
ELSEIF ({request#detail}!=null) THEN select Rule 3 
ELSEIF ({database#url}!=null) || ({database#picture}!=null) THEN select Rule 2 
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The introduction of rule selection conditions adds context-dependent variability in 
cooperative response generation.  Referring to the dialog in Table 7 and the condi-
tions in Table 8, the various conditions are: 

• For the user request U1 in Table 7, the system finds several matching attractions 
related to the concept “attraction=  (theme park)” in the database.  Hence 
the first rule selection condition {database#result_number}>1 in Table 8 is satis-
fied and Rule 1 is used as the message plan.  Hence the system presents all match-
ing options to the user in the generated response (W1) and seeks the user’s input by 
the dialog act REQUEST_COMMENT. 

• The user’s feedback in U2 of Table 7 sets the concept value of  “attraction=
 (Disneyland)”.  The system can only find one matching entry in the database 

which comes with URL information.  Hence the fourth rule selection condition in 
Table 8 {database#url}!=null is satisfied and Rule 2 is used as the message plan.  
This generates the response W2 under the dialog act of INFORM_GENERAL. 

• If the user were to follow up with an utterance such as “
” (Give me more details about Disneyland), which sets the concept value 

“detail=  (details)”, then the third rule condition in Table 8 is satisfied and 
Rule 3 will be used as the message plan. 

• If the user requested an attraction which cannot be found in the database, then the 
second rule selection condition in Table 8 is satisfied and Rule 4 will be selected as 
the message plan.  As a consequence, the system will apologize for not being able 
to offer relevant information. 

4.2   Response Message Realization Using Corpus-Derived Templates 

The semantic transitions above generates a message plan for generating the system 
response, in the form of semantic abstraction (SA) {TG, DA, KC}system.  Analysis of 
our regularized corpus also suggests that each of these SA may be verbalized in a 
variety of ways.  These verbalization methods found in the corpus are encoded in a set 
of 89 message realization templates with labels, e.g. GENERAL_INFO, PICTURE_INFO, 
GOOD_TRIP, etc., as shown in Table 9. 

Table 9.  Examples of message realization templates derived from the regularized corpus 

Text Generation Templates: 
Template Label: GENERAL_INFO 
Contents: {request#attraction}  
(translation:  here is the information about {request#attraction}). 

Template Label: PICTURE_INFO 
Contents: {request#attraction} {database#picture} 
(translation:  you may refer to these pictures {database#picture} of {request#attraction}). 

Template Label: GOOD_TRIP 
Contents:  
(translation:  have a good trip) 
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A given {TG, DA, KC}system may correspond to one or more message realization 
templates.  In cases where there are multiple options, we devise a set of template 
selection rule based on the regularized corpus.  This is illustrated in Table 10, where 
the system response with SA {ATTRACT ON, NFORM_GENERAL, attraction}system may be 
verbalized by the templates GENERAL_ NFO or P CTURE_ NFO, depending on whether 
database retrieval can provide a picture, i.e. {database#picture}!=null).  All system 
reponses with the dialog act of BYE, regardless of the task goal, will be realized by the 
template GOOD_TR P. 

Table 10. Illustration of a template selection rule among possible message realization templates 
that correspond to a given {TG, DA, KC}system.  The asterisk (*) is a wildcard that matches all 
task goals (TG). 

Semantic Abstraction of the System’s Response: 
{ATTRACTION, INFORM_GENERAL, attraction}system 
Associated Text Generation Templates: 
Option 1: GENERAL_INFO 
Option 2: PICTURE_INFO 
Template Selection Rule: 
IF ({grammar#picture}!=null) THEN select Option 2 
ELSE select Option 1 
Semantic Abstraction of the System’s Response: 
{*, BYE, bye}system 
Associated Text Generation Templates: 
GOOD_TRIP 

5   Evaluation 

To evaluate the quality of responses generated by the NLG component, we recruited 
15 subjects and asked them to play the role of a tourist in Hong Kong and make re-
lated inquiries. The subjects first attend a briefing session where they are presented 
with the knowledge scope of the system and the supported informational goals (i.e. 
the 12 task goals in Table 4).  The subjects are then instructed to interact with the 
system textual input and output.  The entire interaction is logged and the subjects are 
subsequently asked to refer to the logged responses (1230 in total) and evaluate each 
generated response in two ways: 

(i) Task Completion Rate – A task is considered complete if the appropriate mes-
sage exists in the response.  For example, if the subject’s question is: “

?” (What is the price of a ticket for Disneyland?) and the system’s re-
sponse is:  “ 295 210 170” (Ticket prices for 
Disneyland is 295 for adults, 210 for children and 170 for seniors) – the response is 
considered complete.  If the subject’s question is: “ ” 
(How much is children’s ticket for Disneyland?)  and if the system provides the same 
answer, the task is also considered complete because the response contains the ex-
pected information “ 210” (210 for children). The specificity of the answer is 
dependent on the current design of the database.  It is possible that more specific 
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answers can be generated if the database supports finer granularities in knowledge 
engineering.  Overall 83% of the generated response turns are considered relevant for 
the task goals based on the user’s request turns. 

(ii) Grice’s Maxims and User Satisfaction – with reference to our previous work 
[13], we also conducted qualitative evaluation based on Grice’s maxims [14] as well 
as overall user satisfaction.  The qualitative evaluation uses a five-point Likert scale 
(very poor / poor / average / good / very good).  Each subject is asked rate the overall 
quality of the generated responses during his/her interaction with the system, by an-
swering the following questions in a questionnaire: 

• Maxim of Quality, i.e. system responses should be true with adequate evidence - 
“Do you think that the answers are accurate and true?” 

• Maxim of Quantity, i.e. system should give sufficient information - “Do you think 
that the answers are informative?” 

• Maxim of Relevance, i.e. system responses should be relevant to the ongoing 
conversation - “Do you think that the answers are relevant to the conversation?” 

• Maxim of Manner, i.e. system responses should be brief and clear, with no obscu-
rity or ambiguity - “Do you think that the answers are clear?” 

• Overall User Satisfaction - “To what extent are you satisfied with the overall 
performance of the system in responding to your questions?” 

Table 11 shows the average scores and standard derivations (in brackets) of the 
evaluation results.  A t-test shows that our results are significantly better than average 
(Likert score 3) at =0.06. 

Table 11. Evaluation results of our response generation system in terms of Grice’s Maxims and 
user satisfaction 

Quality Quantity Relevance Manner Satisfaction
4.0 (0.7) 4.1 (0.8) 3.8 (0.7) 3.9 (0.8) 4.0 (0.6) 

Analysis of the evaluation logs indicated one common error which accounted to 
10% of the incomplete tasks.  For example, we found that if the discourse history 
involved an inquiry with the task goal (TG) of ROUTE, as in the question “

” (How to I get to Ocean Park?) followed by a general question that does 
not have an obvious TG, e.g. “ ” (What’s there in Ocean Park?) ; 
then the discourse inheritance mechanism will inherit the TG of ROUTE to the 
current question, thereby leading to the generation of an incoherent response.  Based 
on the comments offered by the subjects after the evaluation exercise, this kind of 
error was the main cause of dissatisfaction during the interaction. 

6   Conclusions and Future Work 

This paper presents a corpus-based approach for cooperative response generation in a 
spoken dialog system for the Hong Kong tourism domain.  A corpus with 3874 re-
quests and responses is collected using Wizard-of-Oz framework. The corpus then 
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undergoes a regularization process that simplifies the interactions to ease subsequent 
modeling.  A semi-automatic process is developed to annotate the each utterance in 
the dialog turns in terms of their key concepts (KC), task goal (TG) and dialog acts 
(DA).  TG and DA characterize the informational goal and communicative goal of the 
utterance respectively.  The annotation procedure is integrated with a dialog modeling 
heuristic and a discourse inheritance strategy to generate a semantic abstraction (SA), 
in the form of {TG, DA, KC}, for each user request and system response in the dialog.  
Semantic transitions, i.e. {TG, DA, KC}user {TG, DA, KC}system, may hence be di-
rectly derived from the corpus as rules for response message planning.  Related ver-
balization methods may also be derived from the corpus and used as templates for 
response message realization.  All the rules and templates are stored externally in a 
human-readable text file which brings the advantage of easy extensibility of the sys-
tem.  Evaluation of this corpus based approach shows that 83% of the generated re-
sponses are coherent with the user’s request and qualitative rating achieves a score of 
4.0 on a five-point Likert scale.  Future work will be devoted towards response gen-
eration of semantic-dependent expressive markups for text-to-speech synthesis. 
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Abstract. This paper proposes a novel approach towards a video-
realistic, speech-driven talking face for Cantonese. We present a tech-
nique that realizes a talking face for a target language (Cantonese) using
only audio-visual facial recordings for a base language (English). Given
a Cantonese speech input, we first use a Cantonese speech recognizer
to generate a Cantonese syllable transcription. Then we map it to an
English phoneme transcription via a translingual mapping scheme that
involves symbol mapping and time alignment from Cantonese syllables
to English phonemes. With the phoneme transcription, the input speech,
and the audio-visual models for English, an EM-based conversion algo-
rithm is adopted to generate mouth animation parameters associated
with the input Cantonese audio. We have carried out audio-visual sylla-
ble recognition experiments to objectively evaluate the proposed talking
face. Results show that the visual speech synthesized by the Cantonese
talking face can effectively increase the accuracy of Cantonese syllable
recognition under noisy acoustic conditions.

1 Introduction

With the recent advances in multimedia technologies, animated characters, such
as talking faces/heads, are playing an increasingly important role in human-
computer communication. Talking faces can be driven by input text or input
speech[1]. While text-driven talking faces employ both synthesized voices and
faces, constituting text-to-audiovisual speech (TTAVS); speech-driven talking
faces involve synthesizing visual speech information from real speech. A speech-
driven talking face may serve as an aid to the hearing-impaired as the visual
speech signal can effectively augment the audio speech signal (eg. by lip-reading)
in order to enhance clarity in speech perception. The timing information needed
for visual speech synthesis must be synchronized to the input audio speech signal.
Such timing information may be obtained by means of a speech recognizer.
Hence, speech-driven talking face synthesis is an interesting and feasible research
problem [1].

Q. Huo et al.(Eds.): ISCSLP 2006, LNAI 4274, pp. 627–639, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Block Diagram of the Cantonese Talking Face System

During the last decade, various talking faces have been proposed, pursuing
either a natural 3D facial mesh [2] or video-realistic effects [3]. These talking
faces are mostly driven by English phonetics (or visemes). Recently we also see
talking faces driven by Finnish [4], Italian [5], Chinese Mandarin (Putonghua)
and Cantonese [6]. A related problem is how to animate a talking face designed
based on phonetics in one language, with input audio speech in another (target)
language. For example, Verma et al. [7] have proposed a Hindi talking face based
on a translingual mapping between Hindi and English phonemes. In this paper,
we extend our previous work on an English talking face [8], such that it may be
driven by input Cantonese speech. Such translingual audio-visual associations
enhance the inter-operability between audio speech analysis and visual speech
synthesis.

The rest of the paper is organized as follows. The following section describes
the block diagram of our talking face system. In Section 3, the translingual
audio-to-visual conversion scheme is presented in detail. Section 4 describes our
facial animation unit. In Section 5, experiments are carried out to evaluate our
Cantonese talking face. Finally conclusions are drawn in Section 6.

2 System Overview

Fig. 1 shows the block diagram of the proposed Cantonese talking face system.
The system is composed of four main phases—a Cantonese speech recognizer, a
translingual mapping unit, an expectation maximization (EM)-based audio-to-
visual (A2V) converter and a facial animation unit.
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The initial audio-visual model is developed based on English phonetics. In-
put English audio speech is fed into the A2V converter which generates mouth
animation parameters. This A2V converter adopts an EM-based conversion algo-
rithm which generates mouth parameters frame by frame under the maximum
likelihood (ML) sense, which is frame-synchronized to the audio input. These
generated mouth images are “stitched” onto a background facial image sequence
using a facial animation unit. Since this work presents a Cantonese speech-driven
talking face, we need to extend the existing framework to cover the target lan-
guage of Cantonese, as described below.

Different from our previous English talking face, in this work we use a Can-
tonese speech recognizer to generate a Cantonese syllable transcription for the
input audio. Subsequently, the translingual mapping unit is in charge of map-
ping the Cantonese syllable transcription into a reasonable English phoneme
transcription where each phonetic unit is associated with estimated timing infor-
mation. As the initializations, the corresponding visual model means associated
with the English phonetic string, together with the input Cantonese audio, is
fed into the A2V converter.

3 Translingual Audio-to-Visual Conversion

We have developed a translingual audio-to-visual conversion scheme that is ca-
pable of converting speech input in the target language (namely Cantonese) into
mouth animation parameters corresponding to the base language (i.e., English)
of the existing audio-visual model. This facilitates inter-operability between the
audio speech analysis component and the visual speech synthesis component.
In this way, we do not need to record a new visual database for visual speech
synthesis.

3.1 Audio-Visual Modelling in the Base Language of English

English is the base language of our audio-visual model since we have already
proposed a video-realistic talking face [8] that learned audio-visual associations
for spoken English from audio-visual facial recordings. These facial recordings
involve head-and-shoulder front-view videos of a female speaker uttering 524
TIMIT sentences.1 Each acoustic feature vector includes 12 MFCCs with log
energy and their first and second order derivatives (hence 39 dimensions in total).
The mouth region-of-interest (ROI) was first tracked, and encoded using the
principal component analysis (PCA). To achieve video-realistic animation, we
used PCA to get the visual features that capture mouth appearance in a low
dimension (30 PCA coefficients here).

We used multi-stream hidden Markov models (MSHMMs) [9] to model the
audio-visual articulation process in terms of context-dependent (CD) phoneme

1 For details on the AV recordings, please refer to http://www.cityu.edu.hk/rcmt/
mouth-synching/jewel.htm
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Table 1. Cantonese phonetic decomposition table (partial)

Initial Nucleus Coda E.g. Character

uk phn. string × u k

duration 0 0.5 0.5

bing phn. string b i ng

duration 0.2 0.4 0.4

baang phn. string b aa ng

duration 0 0.5 0.5

loeng phn. string l eo ng

duration 0.3 0.35 0.35

jyun phn. string j yu n

duration 0.25 0.375 0.375

Note: ‘×’ denotes a NULL phoneme.

models (triphones and biphones). We used two-stream, state-synchronous MSH-
MMs in audio-visual modelling, where two observation streams are incorporated
to describe audio and visual modalities respectively. In its general form, the class
conditional observation likelihood of the MSHMM is the product of the obser-
vation likelihoods of its single-stream components, where stream exponents are
used to capture the reliability of each modality.

Given the bimodal observation oav
t = [oa

t ,ov
t ] at frame t, the state emission

likelihood of a MSHMM is

P (oav
t |c) =

∏
s∈{a,v}

[
Ksc∑
k=1

ωsckNs(os
t ; μsck, usck)

]λsct

,
∑

s

λsct = 1 (1)

where λsct denotes the stream exponents, which are non-negative, and a func-
tion of modality s, the HMM state c, and frame t. The state dependence is to
model the local, temporal reliability of each stream. We set λsct = 0.5 for all s,
c and t supposing audio speech and visual speech have the same contribution.
Ns(os

t ; μsck, usck) is the Gaussian component for state c, stream s, and mixture
component k with mean μsck and covariance usck. In total we trained 423 MSH-
MMs for triphones, biphones and monophones. Each MSHMM has 3 emitting
states with 6 continuous density Gaussian mixtures.

3.2 Translingual Mapping

The current work aims to integrate Cantonese audio speech analysis and English
visual speech synthesis. This involves a translingual mapping of two levels:

– Symbols: Different languages have different phonological units, e.g. syllables
are commonly used for Cantonese and phonemes are commonly used for En-
glish. This also entails different contextual representations, e.g. initial-finals
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for Cantonese and triphones/biphones for English. The different symbolic
representations need to be bridged.

– Timing: Phonetic units of different languages may have different time du-
rations. The audio frame rates used in the recognizer may be different from
the video frame rate of the audio-visual models. Therefore, time alignments
must be considered along with the mapping across symbolic representations.

3.2.1 Mapping Across Different Symbolic Representation Systems
Previous work in Translingual speech-driven talking face has involved Hindi and
English[7]. These two languages are both Indo-European, and can be accom-
plished by simple phoneme-to-phoneme mapping. Our approach involves map-
ping between Chinese and English that their phonological architectures are quite
different [10].

The Chinese spoken languages (e.g. Cantonese) do not have explicit word
delimiters and a word may contain one or more characters. Each character is
pronounced as a syllable, and an utterance is heard as a string of momosyllabic
sounds with tones. If we ignore the tonal variations, the syllable unit is commonly
referred to as a base syllable. In general, there are about 600 base syllables in
Cantonese. Each base syllable is decomposed into an initial and a final, and
a final can be further subdivided into a nucleus and a coda. For example, the
syllable /nei/( ) is composed of a initial /n/, a nucleus /ei/ and a null coda. In
Cantonese, there are about 20 initials and 53 finals. If we categorize these units
(initials, nucleus, and codas) with the same (or similar) pronunciations into a
phonetic class, there are altogether about 28 “phonetic” classes. Recall that this
work needs to map symbolic representation of Cantonese phonetics to that of
English phonetics. Based on the above phonetic classifications, our approach
involves the following two steps.

– Decompose a base syllable into a sub-syllable string with an initial, a nucleus
and a coda, which constitutes a Cantonese “phonetic” string;

– Map the Cantonese “phonetic” string to an English phonetic string via a
translingual mapping table.

Table 1 and Table 2 show fragments of the Cantonese phonetic decomposition
table and the translingual mapping table respectively. Note that the phoneme
durations in Table 1 are obtained from Cantonese syllable samples, and also
some Cantonese phonemes are mapped to English phoneme pairs in Table 2. For
example, /yu/ is mapped to {/ih/, /uw/}.

In our approach, we used a homegrown Cantonese base syllable recognizer [11]
to transcribe input Cantonese speech. In this recognizer, the acoustic models
includes three-state HMMs for syllable initials and five-state HMMs for syllable
finals. These acoustic models are context-dependent HMMs, namely initial-final
models, with 16 Gaussian mixtures. They were initially trained with clean, read
speech from CUSENT, 2 and then adapted with studio anchor speech recorded
2 http://dsp.ee.cuhk.edu.hk/speech/cucorpora/
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Table 2. Cantonese-to-English phoneme mapping table (partial)

Cantonese Phoneme E.g. English Phoneme E.g.

b bou( ) b boy

m mei( ) m limit

h haa( ) hh hair

gw gwok( ) g-w grow-always

i si( ) ih hills

oe joeng ( ) er murder

yu jyun ( ) ih-uw hills-two

from the news broadcasts of the Hong Kong TVB Jade Channel. (about 40
minutes). The syllable recognition accuracy is 59.3%. Further details on the
recognizer can be found in [11].

We first collected the base syllable transcription for a Cantonese utterance,
and subsequently aligned the transcription to initial-final symbols via the Viterbi
algorithm [9]. The core sub-syllables, e.g., /F ei/ in /I g−F ei+I gw/,3 were
mapped to English phonemes via Table 1 and Table 2, as illustrated in Fig. 2
(a) and (b). Since we used context-dependent AV models (triphone and biphone
MSHMMs) to catch the coarticulation phenomena, we further expanded the
English phonemes to triphones or biphones by considering the nearest neighbors,
as shown in Fig. 2 (d). The triphones and biphones were selected from the 423
AV models. If a triphone (or biphone) match cannot be found in the model list,
a simple phoneme model is chosen.

3.2.2 Time Alignment
Previous research have shown that humans are quite sensitive to the timing
relations between audio and visual speech [3]. Therefore, we use the following
steps to capture reasonable time relations:

Step 1: If the sub-syllable is an initial (I *), its duration is directly obtained
from the alignment of the speech recognition against the recognized sub-syllable
units. If the sub-syllable unit is a final (F *), the durations of its nucleus and
coda are assigned via the durations defined in Table 1. Note that state durations
are merged to the model level. For example in Fig. 2 (a), the durations of initials
/g/ and /gw/ are directly obtained from the alignment result. The durations of
Cantonese “phonemes” /e/ and /i/ are obtained from Table 1. The durations of
the three states of /F ei−I gw+F ok/ are merged.

Step 2: Cantonese “phoneme” durations are directly assigned to English
phoneme durations. If the Cantonese “phoneme” is mapped to an English pho-
neme pair, the duration of each English phoneme is a half duration of the Can-
tonese “phoneme”. For example in Fig. 2 (b), the durations of /g/, /eh/, /ih/,
/ao/ and /k/ are directly obtained from /g/, /e/, /i/, /o/ and /k/, while the
durations of /g/ and /w/ are half durations of /gw/.

3 Where ‘I’ denotes Cantonese syllable initial, and ‘F’ denotes syllable final.
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Fig. 2. An example of the translingual mapping process. Label format: start time
end time phonetic label[state].
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Fig. 3. Time alignment result for a speech fragment. Up: Cantonese initial-final tran-
scription, Bottom: English context-dependent model state transcription.

Step 3: The duration of a state is 1/3 of that of a phoneme (or triphone,
biphone). For example in Fig. 2 (c), the duration of state /g[1]/ is 1/3 of that
of /g/.

Note that we directly use the the durations for initials generated from the
recognizer in Step 1 since they are more accurate for the specific utterance as
compared to the statistics from syllable samples. Fig. 3 shows a time alignment
result for a Cantonese speech fragment using the above steps.

Finally, the average values of visual Gaussian means associated with each
model states

ov
t =

∑
k

wθv
t kμθv

t k (2)

were used as the initializations of mouth animation parameters, where θv
t is the

mapped phonetic model state at t. These initialized values were fed into the
EM-based A2V converter.

3.3 EM-Based AV Conversion

We used an EM-based audio-to-visual conversion method [8] which directly re-
sulted in mouth parameters (i.e., estimated PCA coefficients) framewise under
the ML criterion. The EM-based conversion method has been shown robust to
speech degradations, resulting in decent mouth parameters [8].

Given the input audio data Oa and the trained MSHMMs λ, we seek the
missing visual observations (i.e. parameters) Ôv by maximizing the likelihood of
the visual observations. According to the EM solution of ML, we maximize an
auxiliary function:

Ôv = arg max
Ov

′ ∈Ov

Q(λ, λ;Oa,Ov,Ov′
), (3)

where Ov and Ov′
denote the old and new visual observation sequences in the

visual observation space Ov respectively.
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Fig. 4. The three-layer overlay process. (a) a jaw candidate, (b) a synthesized mouth,
(c) stitching to face and (d) a resultant frame.

By taking derivative of Q(λ, λ;Oa,Ov,Ov′
) respect to ov′

t to zero, we get [8]

ôv
t =

∑
qt

∑
k γt(qt, k)ωqtvku−1

qtvkμqtvk∑
qt

∑
k γt(qt, k)ωqtvku−1

qtvk

, (4)

where qt is the possible state of t, and the occupation probabilities γt(qt, k) can
be computed using the forward-backward algorithm described in the E-Step of
the EM algorithm. Since the EM algorithm converges to a local minimum, a good
parameter initialization is essential for accurate mouth parameters. Therefore,
we adopted the visual Gaussian means associated with the mapped English
phonetic transcriptions (see Eq. (2)) as the initializations.

4 Video-Realistic Facial Animation

The facial animation unit first smoothes the estimated mouth parameters (i.e.,
PCA coefficients) by a moving average filter (width=3) to remove possible jitters,
and then augments the fine appearance details through a performance refinement
process indicated in [12]. Mouth images are generated from the estimated PCA
coefficients by the PCA expansion process. Finally, the synthesized mouth frames
are overlaid onto a base facial video clip.

We used a three-layer overlaying process (see Fig. 4), where the synthesized
mouth, the corresponding jaw, and the face background snippet are sewed up
by the Poisson image editing technique [14]. We associated an appropriate jaw
from a jaw candidate set to each synthesized mouth according to the mouth
opening scale and the waveform energy [12]. To avoid jerky animation induced
by stitching coordinates errors, we used a facial feature tracking method [3] with
sub-pixel accuracy. Fig. 5 illustrates some snapshots from a synthesized talking
face video clip.

5 Evaluations

To evaluate the proposed Cantonese talking face, we carried out objective eval-
uations using audio-visual speech recognition (AVSR) experiments. This kind



636 L. Xie, H. Meng, and Z.-Q. Liu

Fig. 5. Some snapshots from a synthesized video

Table 3. Evaluation systems

System Features & Models Training & Testing

AO
MFCCs+Δ+Δ2 (39); CD-
HMMs with 16 mixtures

Training : Original audio (40 mins);
Testing : Original, 20db, 10dB (207
secs)

AV-nontrans

Audio: MFCCs+Δ+Δ2 (39);
Video: PCA Coefs. (30); CD-
MSHMMs with 16 mixtures for
audio and 6 mixtures for video;
Without translingual mapping

Training (Audio): Original audio
(40 mins); Testing (Audio): Origi-
nal, 20db, 10dB (207 secs)

AV-trans

Audio: MFCCs+Δ+Δ2 (39);
Video: PCA Coefs. (30); CD-
MSHMMs with 16 mixtures for
audio and 6 mixtures for video;
With translingual mapping

Training (Video): Estimated PCA
Coefs. from original audio (40
mins); Testing (Video): Estimated
PCA Coefs. from originial audio
(207 secs)

of lipreading test by machine was used to evaluate the quality of the mouth
animation (i.e. visual speech) in terms of the improvement in speech recogni-
tion accuracy of an AVSR system versus an audio-only ASR system. It provides
a way to evaluate the quality of visual speech synthesis by means of machine
perception.

5.1 Experiment Setup

We used the hand-transcribed anchor speech (about 40 minutes) from the Can-
tonese news broadcasts of the Hong Kong TVB Jade channel (described in Sec-
tion 3.2) as the training data, and another 207 seconds anchor speech were
used as the testing set. Speech babble noise (simultaneous speech from multiple
speakers collected from cafeteria environment) was added to the testing speech at
two signal-noise-ratio (SNR) conditions (20dB and 10dB). As a sanity check, we
also developed a talking face without the translingual mapping, where Cantonese
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Table 4. Experimental results

AO AV-nontrans AV-trans

Ori. 59.3 59.4 59.6

20dB 40.6 46.2 50.0

10dB 19.0 28.8 34.3

input speech was directly converted to an English phonetic transcription by an
English recognizer. The English recognizer was trained using the audio data from
the English audio-visual facial recordings described in Section 3.1. We carried
out syllable recognition experiments, and collected syllable accuracy rates for
an audio-only ASR system and two AVSR systems. In the AVSR systems, we
also adopted the state-synchronous context-dependent MSHMMs described in
Section 3.1 as the audio-visual modelling scheme, and the estimated animation
parameters (i.e., PCA coefficients) from the original speech were used as the
visual features. The stream exponents were selected by minimizing the syllable
error rate.

In the experiments, we also used the Cantonese syllable recognizer described
in Section 3.2 as the audio-only (AO) baseline system to benchmark the test.
The AO system was trained using the same training data. Experiments were
performed under mismatched training-testing conditions, i.e., the recognizer
was trained using original clean speech, while tested using contaminated speech
(10dB and 20dB SNR). Table 3 summarizes the system configurations.

5.2 Experimental Results

From results in Table 4, we can clearly observe that the AO system is heavily
affected by additive noise. When the SNR is decreased to 10dB, the syllable
accuracy is only 19.0%. The insertion errors contribute a lot to the accuracy
decrease. This also shows that training-testing mismatch can drastically affect
the performance of a recognizer. Not surprisingly, with the help of the visual
speech information provided by the talking faces, both the AV-nontrans and the
AV-trans systems significantly improve the accuracy rates at noisy conditions,
with the latter (with the translingual mapping) being superior, yielding a 3.8%
and a 5.5% absolute accuracy increase at 20dB and 10dB SNR respectively as
compared with the former (without the translingual mapping). These promising
results show that the visual speech synthesized by the proposed talking face
contains useful lipreading information that can effectively increase the accuracy
of machine speech perception under noisy conditions.

6 Conclusions

This paper presents a video-realistic, speech-driven talking face for Cantonese us-
ing only audio-visual facial recordings for English. We have developed a translin-
gual audio-to-visual conversion scheme, which is composed of a Cantonese speech
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recognizer, a translingual mapping scheme and an EM-based audio-to-visual
converter. The translingual mapping involves symbol mapping and also time
alignment from Cantonese syllables to English phonemes. With the help of the
translingual audio-to-visual conversion scheme, Cantonese speech is converted to
mouth animation parameters using audio-visual English phonetic models. The
mouth parameters are resembled to mouth images, and stitched onto a back-
ground facial image sequence. We have demonstrated that the visual speech
synthesized by the proposed Cantonese talking face can effectively improve the
syllable recognition accuracy of machine speech perception under noisy acous-
tic conditions, for example improving the syllable accuracy rate from 19.0% to
34.3% at 10dB SNR.

The promising results in this work have shown that given recorded facial video
clips for one language, it is possible to synthesize reasonable facial animation with
speech from another language. Since perceptual evaluations by human viewers
are more appropriate for visual speech synthesis, we are currently performing
subjective evaluations.
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Abstract. In this paper we described the architecture and key issues of the 
service enabling layer of a multi-modal system Ozone which is oriented for new 
technologies and services for emerging nomadic societies. The main objective of 
the Ozone system is to offer a generic framework to enable consumer-oriented 
Ambient-Intelligence applications. As a large multi-modal system, Ozone 
consists of many functional modules. However, spoken language played an 
important role to facilitate the usage of the system. Hence, we presented the 
design principle of the architecture of the system, the service enabling layer, and 
spoken language processing techniques in multi-modal interaction, etc. 

Keywords: Multi-modal, Ozone, MIAMM, Dialogue, Spoken Language, XML. 

1   Introduction 

Nowadays, the quality of human life has been improved by the pervasive network and 
communication framework which is expected to provide information and services to 
individuals from anywhere and at anytime. Offering users with an invisible but 
easy-to-use environment is currently a hot topic in the information and communication 
technology community. The Ozone project is to meet the increasing requirements in the 
consumer domain and support the mobile computing in the future. Now, several similar 
projects have been launched. MIT Oxygen [1], which is part of the USA Expeditions 
Initiative funded by the Advanced Research Project Agency, is aiming at the research 
and development of ambient intelligence applications and appliances oriented for 
professional IT users. MIAMM [2], which is to develop new concepts and techniques in 
the field of multi-modal dialogues to allow fast and natural access to multimedia 
databases and information, is supported and organized by Information Society 
Technologies (IST) [3] of EU, started in 2001.  

Ozone [4], which is also supported by IST of EU and started in 2002, intends to 
implement a generic architecture and framework that will facilitate the use and 
acceptance of ambient intelligence in the consumer domain. Therefore, the Ozone 
project aims at development of novel concepts, techniques and tools to provide 
invisible computing for the domestic and nomadic personal use of information 
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technology. One of the important concepts of Ozone is that the applications of the 
advanced technologies should support the user centric retrieval and consumption of 
information compared to the computer centric approach widely used in current 
practice. That requires the human-machine interfaces should be as easy and natural as 
possible for the average users. To improve the acceptability and usability, multi-modal 
interactions, i.e., speech, gesture, etc., must be supported. In this paper, we will present 
the overview architecture of Ozone and we will emphasize the design and 
implementation of the service enabling layer which manages the communication 
between users and middleware of the software layer. The integration of spoken 
language into Ozone system is focused on in this paper.  

2   Overview Architecture  

In the viewpoint of functionality, the architecture of Ozone system can be depicted as 
three layers, namely, the Service-Enabling layer, the Software-Environment layer and 
the Platform-Architecture layer. On top of these three Ozone layers, there is a layer of 
Applications and Services, which communicate with users and other systems. The 
Services are then divided into application-related services and external services.  

2.1   The Service Enabling Layer 

The Service-Enabling layer and the Software-Environment layer together form the 
middleware of the Ozone system. The Service-Enabling layer has the characteristics to 
enable context awareness, multi-modality, and security. The functions in this layer can 
be classified as context awareness and user interface, etc. 

2.1.1   Context Awareness 
Management for context awareness is essential in the Ozone system. This includes 
gathering and combining sensor services and their output, and reasoning about the 
implications, and making this available to other interested parties, via high-level 
context services for example, that provide access to the Context Model. Apart from this 
sensor-based context awareness, awareness of the history of activities, and the 
occurrence of other concurrent activities may be taken into account. Community 
Management: for supporting social groups of users, as a basis for sharing and 
communicating, possible based on the members' contexts. Also, Preference 
Management (both of end-users but also settings for devices and functionalities) is 
required. Finally, Profile Management (related to preferences, but more focused on 
‘what content’, than on ‘how’) is needed.  These functions may use the 
Knowledge-Store service for persistently storing their data. 

2.1.2   User Interface 
The user interface (UI) enables the natural man-machine interaction between the 
end-user and the system. It handle device-variety and enable multi-modality. 
Obviously, speech, vision and touch are very natural ingredients for a multi-modal 
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user-interface. Ideally, we want to decouple applications from the availability of 
interaction functionalities (like typing versus speech), which may vary over devices, 
and with time. The UI Management function is the intermediary for this. Depending on 
the dynamically available interaction functionality-control services, a set of 
Multi-Modal Widgets is offered to the application. For example, if the application 
expresses the abstract need for text-input, it may be offered a text-box widget for 
keyboard input, and a speech-to-text widget for speech input. Obviously, the most 
natural combination of choices should be offered, making use of the user’s context, 
preferences, profiles, et cetera. The latter (choosing) is the task of the Smart Agent. 

2.2   The Software Environment Layer 

The Software Environment layer has the characteristics to enable seamless operation, 
interoperability, and extendibility. The functions in this layer can be classified as 
platform infrastructure, service infrastructure, application and content infrastructure.  

2.2.1   Platform Infrastructure 
The functions in this class deal with the management of the devices themselves, the 
relation amongst the devices, the functionalities within the devices, and the network, all 
via the Ozone-compliant platform interface. All devices are able to boot autonomously, 
the Booting functions takes care of this. Then the devices discover each other in the 
network, adding plug-and-play functions, which are taken care of via the Device 
Discovery and Lookup, to access device-control services of other devices in the 
network.  

Device Management enables upgrading, extending, and patching the device with 
new hardware and software, throughout the lifetime of the device, via the 
device-control service.  Resource Management deals with sharing functionality-control 
services and underlying resources, and solving conflicts in simultaneous attempts to 
use a functionality-control service, when this is not possible.  Power Management 
deals with saving energy, by shutting down (or even shutting off) parts of the device 
and functionalities when they are not needed, again via the device- and 
functionality-control services. Network Mobility concerns support for hand-over of 
connections between multiple networks, allowing for increased mobility of the 
end-user. 

2.2.2   Service Infrastructure 
The devices themselves and the functionalities that they contain are encapsulated in 
device-control and functionality-control services as mentioned before, to make them 
available to the rest of the Ozone system. In addition, a number of other services are 
present in the system. This has been explained in the section on Services. The class of 
Service Infrastructure functions provides the basic mechanisms for all Ozone services 
to be installed, to discover and to be found, to communicate, et cetera. Service 
Discovery and Lookup allows services to advertise themselves, and other clients 
(services, applications) to find them. Often this is done via some registry mechanism. 
For this to work, Services need to be addressable via a name, which is unique within the 
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system. Therefore a Naming scheme for services is required. Also Services need to 
communicate, and communicated to, which is listed as service-control communication. 
Furthermore functions for Signaling Events and Transactions are provided. This 
concerns the interaction between all types of services and applications. Service 
Composition includes support for composing services based/aggregated from other 
existing services. 

2.2.3   Application and Content Infrastructure 
In the Ozone system, there is a decoupling between the reference to content (a unique 
name, therefore an Content Naming Scheme is required), and the actual instances of the 
referenced content on the distributed Storage functionalities. This mapping is 
performed by the Content Discovery and Lookup function. The appropriate or most 
suitable application is launched via some Application Startup function. Also, the 
Migration of Applications function supports follow-me applications for the end-user. 
For Applications to process the content, data streams will be set up from the source 
service of the content, to the sink services. The Stream Management function checks 
the possibility for and actually sets up these streams. Also, it includes 
stream-processing functionality-control services, like trans-coders, if required.  

The plug model, that allows for conceptually setting up streams between source 
services and sink services via some form of plug matching, is provided. Functionality- 
control services offer functionality plugs that have attributes like encoding (MPEG2) 
related to the content that will be transported via the connection. Device-control 
services offers device plugs that have attributes like protocol (http, RTP) related to the 
network connection for streaming between the devices. The function for the 
synchronization of content across the distributed storage functionalities is also 
essential, when replication and caching of content is done. 

2.3   The Platform-Architecture Layer  

The Platform-Architecture layer consists of the device-platform and the network 
connecting these devices, and has the characteristics to enable high performance, 
adaptability and re-configurability. This layer can be divided into two sub-levels: the 
lower part which is proprietary and exposed via the proprietary device-platform 
interface, and the higher-part, which makes the platform Ozone intra-device compliant, 
by abstracting from proprietary implementations through offering the ozone platform 
interface.  

3   The Multi-modal UI 

The Service-Enabling layer of Ozone system must communicate with users, 
applications and the middleware of the software-enabling layer. To make the 
human-machine interaction easier, the multi-modal UI using speech, vision, touch, etc., 
is offered in this layer. The detailed structure of the Service-Enabling layer is depicted 
as Figure 1. 
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Fig. 1. The structure of the Service-Enabling layer 

3.1   Interact with the User  

Dialog management, based on the requests of an Ozone application, plans the 
interactions with the user and uses the UI management to realize this plan. The role of 
the smart agent is to facilitate the communication between the user and the system, by 
taking into account the user preferences. Natural interaction with the user replaces the 
keyboard and windows interface with a more natural interface like speech, vision, 
touch or gestures.  

3.2   Model the User Behavior 

The user context stores all the relevant information concerning a user, automatically 
builds the user preferences from his past interactions and eventually abstracts the user 
profile to more general community profiles. 

3.3   Model the Ozone Context 

The Ozone context takes care of the world model in the context of Ozone. This 
essentially deals with the list of authorized users, available devices, active devices, state 
of the system, et cetera. 

3.4   Control Security Aspects 

The security module ensures the privacy and security of the transferred personal data 
and deals with authorization, key and rights management. 

A p p lic a t io n  s e r v ic e s  

O z o n e  a p p l ic a t io n s  &  s e rv ic e s  

S o f tw a re  E n v ir o n m e n t la y e r  

C o n te x t
A w a re n e s s  

U s e r  c o n te x t  

O z o n e  c o n te x t  

M u lt i-m o d a l  w id g e ts  

D ia lo g  m a n a g e m e n t  

S m a r t
a g e n t U s e r -

In te rfa c e  
M g m t  

P e rc e p
t io n  
Q o S

S e c u r i ty  

S p e e c h  
re c o g n it io n  

A n im a te d  
a g e n t  

U s e r - in te ra c tio n  m o d u le  

G e s tu re  
re c o g n it io n  

In te ra c t io n  s e rv ic e s  

V id e o  
b ro w s e r  

A u t h e n -  
t ic a t io n  

S e c u r i ty  
s e rv ic e s  

C o n te n t -a c c e s s  
p ro te c t io n  

e n c r y p t io n  



 The Implementation of Service Enabling with Spoken Language  645 

Multi-modality in Ozone is the abstraction of classical user-interface provided by 
graphical user interfaces. These multi-modal functions are then instantiated in the form 
of a sequence of actual user interactions by means of speech recognition, gesture 
interpretation, animated agent, video-browser actions and so forth. The Ozone 
framework support user interaction combining voice, pointer and keyboard selection. 
Furthermore, the Ozone framework provides matching output modalities, such as 
talking and gesturing virtual presenters. In particular, a humanoid modality is available 
by means of a virtual presenter to communicate understanding, expectations and 
readiness; a presenter can be personal or service-specific. 

4   UI Via Spoken Language 

Speech recognition (ASR) and text-to-speech (TTS) techniques provided a natural way 
to operate machines via spoken language [5,6,7]. Hence speech is used in Ozone as a 
choice among other UI means. The Ozone framework can offer user-independent 
speech recognition that is adaptive to the user’s specific situation (e.g., accounting for 
the environment noise as in the car). Dually, the Ozone framework supports speech 
synthesis by means of talking-head. To integrate the speech I/O action into the 
multi-modal UI, an XML-based description language is defined to clearly represent the 
interaction between speech I/O and dialogue manager. The figure 2 shows the 
communication between speech I/O module and the dialogue manager. 

 

Fig. 2. The UI via spoken language in Ozone 

As above figure 2 shown, the speech recognizer takes the raw speech signal as input, 
and generates a word lattice as output. The word lattice is represented by an 
XML-based description language and parsed by an action parser. The result (actions) of 
the parser is then sent to the dialogue to realize the corresponding acts. The figure 3 
shows the word lattice generated by the speech recognizer ESPERE. 

 

Fig. 3. word lattice decoding of the speech recognizer ESPERE 
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The word lattice shown in figure 3 is then represented by an XML-based language as 
the following (not complete): 

 
<Block num="0" defaultSpeakerInfoRef=""> 

<Node num="0" timeOffset="0"> 
<WordLink nodeOffset="25" probability="  0.50" word="0"/> 
<WordLink nodeOffset="25" probability="  0.50" word="5"/> 

</Node> 
<Node num="25" timeOffset="57"> 

<WordLink nodeOffset="9" probability="  1.00" word="10"/> 
</Node> 
<Node num="34" timeOffset="122"> 

<WordLink nodeOffset="11" probability="  1.00" word="22"/> 
</Node> 
<Node num="45" timeOffset="160"> 

<WordLink nodeOffset="8" probability="  0.33" word="23"/> 
<WordLink nodeOffset="11" probability="  0.33" word="23"/> 
<WordLink nodeOffset="12" probability="  0.33" word="23"/> 

</Node> 
<Node num="53" timeOffset="185"> 

<WordLink nodeOffset="17" probability="  1.00" word="24"/> 
</Node> 

<Node num="56" timeOffset="207"> 
<WordLink nodeOffset="14" probability="  1.00" word="32"/> 

</Node> 
<Node num="57" timeOffset="211"> 

<WordLink nodeOffset="13" probability="  1.00" word="29"/> 
</Node> 
<Node num="70" timeOffset="299"/> 

</Block> 

5   Applications 

The application based on Ozone architecture can be illustrated as follows. At the 
bottom, the device internals including five functionalities are depicted: a display 
functionality that drives an external screen, a speaker functionality that drives external 
set of speakers, a storage functionality that exposes in internal hard-disk drive, a 
decompression functionality that implements a (here: MPEG4) decoder purely in 
software on top of the proprietary RTE, and a network-interface functionality that 
drives a (here: wired Ethernet) network. 

The five device-related functionalities are exposed to the rest of the Ozone system as 
(in this case) two functionality-control services: an AV-render service that wraps the 
proprietary display plus speaker plus decompression functionality, and a content-store 
service that wraps the proprietary storage functionality, as indicated by the one-way  
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arrows. The Registry service is a middleware-related service that implements some 
form of service discovery and lookup. As an example of an application-related service, 
a videoconference service is depicted, together with the videoconference application on 
top. This videoconference service may serve as the meeting point for the multiple 
videoconference applications on the devices of the multiple end-user taking part in the 
videoconference. 

6   Summary 

We discussed the architecture and key issues in the implementation of the Ozone 
project which is a complicated system using multi-modality to facilitate human beings 
to use electric machines. In fact, there are still some issues ignored in this paper, such as 
gesture recognition, user profile, animation simulation, etc. We hope this paper can 
illustrate the state-of-the-art technology in the human-machine interaction by 
multi-modality. 
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Abstract. With an average of 17 Chinese characters per phonetic syl-
lable, correcting conversion errors with current phonetic input method
editors (IMEs) is often painstaking and time consuming. We explore the
application of spoken character description as a correction interface for
Chinese text entry, in part motivated by the common practice of describ-
ing Chinese characters in names for self-introductions. In this work, we
analyze typical character descriptions, extend a commercial IME with a
spoken correction interface, and evaluate the resulting system in a user
study. Preliminary results suggest that although correcting IME conver-
sion errors with spoken character descriptions may not be more effective
than traditional techniques for everyone, nearly all users see the potential
benefit of such a system and would recommend it to friends.

1 Introduction

The number of Chinese-speaking Internet users has quadrupled over the past 5
years to over 132 million today [1]. With more than 120 million instant messaging
users and 60 million bloggers projected in China alone by the end of 2006,
efficient Chinese text entry plays an ever increasing role in improving the overall
user experience for Chinese speakers [2,3].

Unlike text entry in English, the individual keys on the standard keyboard
do not map directly to Chinese characters. Instead, an input method editor
(IME) transcribes a sequence of keystrokes into characters that best satisfy the
specified constraints. Phonetic IMEs are a popular category of Chinese IMEs that
interpret the keystrokes as the pronunciations of the input characters. However,
in Traditional Chinese, more than a dozen homonym characters commonly share
a single pronunciation. Thus, the IME often leverages a language model (LM)
to select the character sequence that maximizes the sentence likelihood [4].

The process of converting phonetic input into the corresponding characters
is known as pinyin-to-character, phoneme-to-character, or syllable-to-character
conversion [4,5,6]. Popular phonetic alphabets include zhuyin (��), also known
as bopomofo (����), and pinyin (��). Recent advances in phoneme-to-
character conversion have improved the character conversion accuracy to above
95% on newspaper articles [6]. However, the accuracy is reduced on text with
mismatched writing styles and is significantly lower on out-of-vocabulary words
in the LM. Consequently, efficient text entry requires an effective correction
mechanism for users to change the incorrect homonyms to the desired characters.
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The Microsoft New Phonetic IME (MSIME) (��������) [7] is a pop-
ular IME for Traditional Chinese input. To correct a conversion error when using
the MSIME, the user first moves the cursor to the incorrect character and then
selects the desired character from a candidate list of homonyms with matching
pronunciations, as illustrated in Fig. 1. For errors far from the current cursor
position, navigating to the target position can be tedious. Since some pronuncia-
tions have more than 200 matching characters, the candidate list is often divided
into multiple pages. While the desired character often appears within the first
page and can be selected with a single keystroke, visually finding the correct
character can at times be painstaking given that characters are rendered with a
small font and sometimes differ only by their radicals.

(a) (b) (c) (d) (e) (f)

Fig. 1. Illustration of steps involved in correcting the character � in ��� to �.
After the phonetic sequence is entered in zhuyin (a,b), the user first highlights the
conversion error (c). Next, the user selects the desired character from the drop-down
candidate list (d) and commits the correction (e). Once all characters in the IME
composition window have been corrected, the user commits the composition (f).

In an e-mail survey conducted with 50 Chinese typists, 40% reported skipping
past the target character accidentally more than 5% of the time when scanning
the candidate list. Due to the frustrating nature of current correction interfaces,
56% admitted that they sometimes do not correct conversion errors, especially
in informal text conversations with close friends. With intelligent IMEs that
learn from the words and phrases entered by the user [7,8], leaving conversion
errors uncorrected further reinforces the errors and increases the likelihood of
the system making similar errors in the future.

In this work, we explore the use of a novel spoken correction approach to
address some of the shortcomings in current correction interfaces. Specifically,
leveraging users’ familiarity with describing the characters in their names when
making self-introductions, we support spoken correction via usage, structure,
radical, or semantics description of the desired character. For example, to correct
the IME composition ���, we can say the phrase ���� to specify the
desired character � from its usage ��.

In the following sections, we first provide additional background on Chinese
text entry and discuss related work. Next, we compute various statistics in-
volving Chinese homonyms and analyze how users disambiguate among them
using character descriptions. We then describe the design and implementation
of the spoken correction interface and evaluate the system through a user study.
Finally, we discuss observations from the user study and areas for future work.
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2 Background

2.1 Chinese Text Entry

Popular IMEs for Chinese text entry generally can be categorized as editors that
input characters by either compositional structure or pronunciation. While IMEs
based on character structures, such as Changjie (��), Boshiamy (���), and
Wubi (��), often allow for fast entry rates with infrequent conversion errors,
they typically require users to learn a set of decomposition rules that take time
to master. On the other hand, phonetic IMEs using phonetic alphabets, such as
New Phonetic (���) and Natural (��), require minimal learning for most
users, as they are taught phonetic spelling in school. Although phonetic meth-
ods generally do not involve more keystrokes than structural methods initially,
it incurs more conversion errors due to the large number of homonyms per sylla-
ble pronunciation. With each correction requiring a visual search for the desired
character and additional keystroke for navigation and target character selection,
the correction of even a small percentage of characters can account for a signifi-
cant portion of the overall entry time. Thus, the overall character entry rate of
experienced users of phonetic IMEs is typically lower than those using structural
input.

2.2 Related Work

Tsai et al. [9] applied spoken descriptions of characters to help resolve homonym
ambiguities in Chinese names for a directory assistance application. In addition
to generating character usage descriptions from automatically extracted words,
phrases, and names, a list of character descriptions for the most common last
names was manually collected. With 60,000 descriptions for 4,615 characters, the
character description recognizer achieved a success rate of 54.6% at identifying
the target character.

In this work, we apply the approach of using character descriptions for dis-
ambiguating among homonyms as a correction interface for Chinese text entry
using IMEs. We observe that in addition to describing characters by usage phrase
(e.g.����), descriptions using character radical (�����), compositional
structure (��	), and character semantics (����) are also fairly typical.
In addition, since these descriptions include the target character at the end, the
position of the desired character within the current IME composition can often
be unambiguously inferred from the character description. Furthermore, because
the pronunciations of the characters in the uncommitted IME composition are
known, we can limit the recognizer grammar to only accept descriptions for
characters with those pronunciations, reducing the grammar perplexity.

Leveraging these observations, we have extended the commercial MSIME with
the capability for users to correct errors in the conversion using spoken character
descriptions. Preliminary results from user studies suggest that with additional
refinements and improvements to recognition accuracy, spoken correction using
character descriptions has the potential to improve the correction experience for
a significant group of Chinese typists.
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3 Analysis

3.1 Homonym Statistics

Due to the obscurity of many characters and the continuous introduction of
new characters, the number of Chinese characters varies significantly depending
on the particular dictionary or computer character encoding. The CNS11643
standard, for example, defines over 48,000 characters, although many are unpro-
nounceable and the average person only uses around 5,000 characters [10]. The
distinction between traditional (��) and simplified (��) Chinese introduces
further complications as many character sets include characters from both styles.
In this work, we will only consider the set of characters that can be phonetically
entered via the MSIME.

We gathered two text corpora for frequency analysis and system evaluation.
The first corpus, CNA2000, consists of newswire articles from the Central News
Agency of Taiwan in the year 2000 [11]. Specifically, we considered only the
headline and core news content for the analysis. For the second corpus, Blogs,
we extracted text excerpts from 10,000 RSS feeds of randomly selected blogs
from a popular blogging website in Taiwan. For both corpora, we segmented
the content at punctuations, symbols, and other non-Chinese characters and
discarded segments containing character outside our character set. Although
blogs better match the informal style of most text entry scenarios, they are also
more likely to contain conversion errors that the writer neglected to correct. For
simplicity, we will treat both corpora as containing the correct reference text.

To gain insight into the homonym problem in Chinese, we computed, in
Table 1, various statistics relating characters to their pronunciations, specified
with and without tone. Although there are only 16.8 characters per pronuncia-
tion on average, the number of homonym characters with the same pronunciation
averaged over the character set is over 38. In the worst but not infrequent case,
the candidate list for the pinyin yi4 has over 207 items. Fortunately, through
the application of the language model to order the characters in the candidate
list, more than 96% and 95% of the target characters appear on the first page,
when correcting conversion errors in a simulated entry of the text from a random
subset of the CNA2000 and Blogs datasets, respectively.

Table 1. Statistics on the pronunciations of the 19,991 characters in the character set

(average / max) With Tone Without Tone

# Pronunciations 1387 408
# Characters per Pronunciation 16.8 / 207 54.4 / 383
# Homonyms per Character 38.2 / 206 101.4 / 382

Average Rank of Target Character

CNA2000 3.0 6.4
Blogs 3.0 6.2
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3.2 Character Description

To better understand how character descriptions disambiguate among homonym
characters, we asked 30 people to describe the characters in their Chinese name.
In a separate study with 10 participants, we requested descriptions for 50 ran-
domly selected characters from among the 250 most frequently confused char-
acters by the IME, displayed next to the incorrect homonyms. Most of the 587
character descriptions collected can be classified into one of the description types
listed in Table 2, where we also provided analogous English examples.

Table 2. Types of character descriptions with typical templates, Chinese examples,
and approximately analogous examples in English. The target character is in bold.

Description Typical Template Example Approximate English Analogy

Usage [usage phrase]�[char ] ������ lead as in lead paint
Structure [composition][char ] 	�


 rainbow, rain plus bow
Radical [radical name]�[char ] ������� dialog with the Greek root log
Semantics [meaning]�[char ] ������ red as in the color
Strokes Character-dependent 
������ H with 2 vertical and 1 horizontal strokes
Compound Speaker-dependent ������ psych as in psychology

[char ] usually omitted ���� (���) with an extra E at the end (psyche)

When describing by usage, the description is generally a word phrase, idiom,
or proper name, consistently in the form [usage phrase] �(’s) [target character ].
While most structural descriptions specify the character by its subcomponents,
a few users describe some characters by removing components from more easily
describable characters. For example, the character� can be described as���
�, �����. Furthermore, when the desired character differs from the incor-
rect character by a single component, it is often natural to base the description
on the current character. Thus, to change � to �, one might say �����
(� without �).

Character descriptions by radical generally can be derived from the radical
name and a few simple templates. However, some of the 214 radicals have com-
mon aliases, especially when appearing in an alternate form or in a particular
position within the character. For example, both � (take) and 	 (hit) share
the radical
 (hand), which can be described using the standard template 
�
�[�,	]. However, because the radical 
 appears in an alternate form in the
character 	, �
��	 is another popular description for 	.

Some characters, such as � (she) and � (nine) are most commonly associ-
ated with their semantics, rather than their usages, structure, or radical. For
these, special character-dependent descriptions are often used, such as ���
� (female’s she) and ���� (number’s nine). Although descriptions using
strokes are also character-dependent, they are specific and do not vary across
speakers.

In Table 3, we summarize the observed occurrences of each description type
for characters from last names (Last), first names (First), and the most frequently
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confused characters (Confused). Overall, descriptions using usage dominate all
other description types, except when describing last names. Since the characters
in last names differ significantly in distribution from the characters in first names
[12], it is not surprising that their description type distributions are also different.
However, in addition to the dependency on the specific character, character
descriptions also depend on the context. For example, whereas most people would
describe the last name � by its structure ���, in the context of a sentence,
many would describe the same character by its usage ���� instead.

Table 3. Occurrences of each character description type from user studies

Description Last First Confused

Usage 8 53 400
Structure 17 1 8
Radical 3 1 45
Semantics 0 1 25
Strokes 2 1 0
Compound 1 0 2
Others 0 0 19

To measure the variability across speakers in the descriptions of a character,
we computed the normalized entropy of the character descriptions for each char-
acter spoken by at least 5 participants. For a sample size of N , we define the
normalized entropy H0 as the entropy of the empirical distribution divided by
ln(N). Thus, if all samples have the same value, H0 = 0. If each sample has a
different value, H0 = 1. As shown in Table 4, the normalized entropy for most
characters are significantly less than 1. Although each character can be described
in numerous ways, only a few descriptions are commonly used across users in
general. Thus, an effective spoken correction system should not only accommo-
date the different description types, but also leverage the limited variability of
character descriptions across users to improve the speech recognition accuracy.

Table 4. Normalized entropy of character descriptions. For example, of the 7 descrip-
tion instances for the character �, there are 6 ��� and 1 ����. Thus, the
normalized entropy is H0 = − ( 6

7 log 6
7 + 1

7 log 1
7

)
/ log 7 = 0.21.

Norm. Ent. # Chars Example

0.0–0.2 9 �(0.00): ��� 7
0.2–0.4 7 �(0.21): ��� 6, ���� 1
0.4–0.6 19 �(0.41): ��
�� 5, ��
�� 4, ��	�� 1
0.6–0.8 9 �(0.66): ���� 3, ���� 2, ����� 1, ���� 1
0.8–1.0 7 �(0.83): ���� 2, ���� 1, ���� 1, ���� 1
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4 Design

To investigate the use of spoken character description as a correction interface
for Chinese text entry, we extended the MSIME with the capability to correct
homonym errors using the usage, structure, radical, or semantics description of
the desired character. With the Microsoft Speech API 5.1, we built a custom
context-free grammar (CFG) for the spoken character descriptions and used the
Microsoft Chinese (Traditional) v6.1 Recognizer as the speech recognizer [13,14].
The following sections describe the construction of the character description
grammar and the design of the correction user interface in more detail.

4.1 Grammar Construction

As observed in Sect. 3.2, character descriptions by usage, compositional struc-
ture, and radical generally follow specific templates, allowing for automatic gen-
eration. In the user study, the few users who initially deviated from the typical
templates showed no difficulty adjusting after being instructed on the expected
patterns. Unfortunately, character descriptions by semantics and strokes cannot
be generated automatically and required manual data collection. Thus, given
the constrained descriptions, we chose to build a language model consisting of a
finite state network of data-driven and manually collected character descriptions.

To build usage descriptions, we extracted all word phrases with 2 to 4 char-
acters from the CEDict Chinese-English Dictionary [15], for a total of 23,784
words (�), idiomatic phrases (��), and proper names (����). For each
character in each word phrase, we added to the grammar a usage description of
the form [word phrase]�[char ].

The Chinese Character Structure Database (�������) provides the
structure information for 7,773 characters in the IME character set [16]. From
this, we added simple compositional descriptions of the form [composition][char ].
We leave support for more complex structural descriptions to future work.

Most radicals can be described with a few template expressions. For example,
the radical	 may be described using	�,	��,	��, or	��. However,
some radicals also have additional aliases, such as �	� for the radical 	.
Thus, to build character descriptions using radicals, we manually identified a set
of template expressions appropriate for each radical and supplemented it with a
list of radical aliases obtained from the Table of Chinese Radical Names (��
�����) [17]. Finally, for each character in the IME character set and each
corresponding radical name, we added character descriptions of the form [radical
name]�[char ] to the grammar.

A single IME composition generally contains only a small subset of the 1,387
pinyin pronunciations. Since users only need to disambiguate among charac-
ters whose pronunciation appears within this subset, it suffices to dynamically
constrain the language model to only those character descriptions. Thus, when
building the CFG, we grouped the character descriptions by the pronunciation of
the target character and built a separate rule for each pronunciation. Depending
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on the IME composition, we selectively activated the appropriate grammar rules
to improve both recognition speed and accuracy.

To further speedup the recognition and reduce the grammar size, we optimized
the finite state network by merging all character arcs with the same pronuncia-
tion, in effect determining the network at the syllable level. To recover the target
character, we encoded it in the grammar as a property tag.

However, when reduced to syllables, not all character descriptions yield unique
characters. For example, the phrase���� actually shares the same phonetic
representation as���� and����. In Table 5, we summarize the statistics
on the number of character descriptions with identical pronunciations. Although
radicals are often the easiest to describe, they are also the most ambiguous on
average. Given the ambiguities associated with even character descriptions, an
effective correction user interface will need special handling for this condition.

Table 5. Statistics on character descriptions with the same pronunciation

(avg / max) # Descriptions / Pron Example
With Tone Without Tone

Usage 1.03 / 4 1.11 / 21 ��/��/�� (jiu4 shi4)
Structure 1.04 / 6 1.15 / 8 �/�/�/�/�/� (xi1)
Radical 1.34 / 10 1.82 / 16 �/�/�/�/�/�/�/�/�/� (yi4)

4.2 User Interface Design

To enable transparent switching between the traditional and the new spoken
correction interfaces, we reassigned the Control key while composing text with
the IME to act as a push-to-talk microphone button for the character description
speech recognizer. For each correction, the user may choose to select the target
character using the arrow keys as before or press the Control key to speak a
character description. To simplify end-point detection in the initial implementa-
tion, we require the microphone button to be depressed while talking.

After the microphone button is depressed, we enable the grammar rules cor-
responding to user-specified pronunciations in the current IME composition and
begin listening for a character description. Upon a successful recognition, we look
up the potentially multiple candidate characters matching the description. Typ-
ically, the recognized target pronunciation only corresponds to a single syllable
position in the IME composition. Thus, if the character description specifies a
unique candidate, we immediately replace the character at the matching position
with the user-described character, as illustrated in Fig. 2(b). If the character de-
scription matches multiple characters, a list containing the candidate characters
is displayed at the matching syllable position, as shown in Fig. 2(c). Ideally, the
list will be sorted by the language model likelihood. As an approximation, we
sort the list according to the ordering of these characters in the original IME
candidate list. Since users are unlikely to describe the currently hypothesized
character, it is explicitly moved to the bottom of the list, if included.
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Occasionally, the pronunciation corresponds to multiple candidate syllable
positions, requiring user intervention prior to making the correction. To allow
the user to select the syllable from among these candidate positions, we highlight
all candidate positions, display the filtered candidate list containing the matching
characters, and restrict the left/right arrow keys to navigate only among these
positions, as illustrated in Fig. 2(d). To reduce keystrokes, the candidate list is
initially displayed under the position corresponding to the single correction that
maximizes the language model likelihood.

(a) (b) (c) (d)

Fig. 2. Illustration of the steps involved in correcting conversion errors. Entering the
phonetic sequence for ������� yields the IME hypothesis ������
�� (a). The user depresses the microphone button and says ��� to correct �
with �. Since this character description uniquely identifies the character � and only
corresponds to a single position, the system automatically replaces the error � with
� (b). To describe�, the user speaks the usage phrase����. In this case, because
���� is acoustically identical to this character description, the system shows the
candidate list to allow the user to specify the desired character (c). Finally, the user
says �� to replace � with . Because two positions in the IME composition
contain the syllable xia4, the system highlights both candidate positions and selects
the one most likely to contain the error (d). In this case, the candidate list appears
under � since the first position already contains the specified character .

5 User Study

For evaluation, we conducted a user study with 10 students from Taiwan with
varying proficiency in Chinese text entry. The study included a questionnaire
on the participant’s experience with Chinese input, approximately 5 minutes of
speech recognition enrollment for acoustic model adaptation, and a collection of
50 spoken character descriptions. Participants were also asked to enter 2 distinct
sets of 20 Chinese sentence fragments with the IME, one using traditional key-
board correction, the other using spoken correction with character descriptions.
Sentences from both sets were manually selected from the Blogs corpus to contain
one or more conversion errors. The two sets were randomly alternated for each
participant to remove any bias resulting from differences between the two sets.

Table 6 summarizes the results from the study. Overall, the response to spo-
ken correction is positive, with half of the participants expressing interest in
using the system. Through the post-study questionnaire, we learned that of the
5 users expressing a neutral or negative opinion, 3 have memorized determinis-
tic key sequences of common characters for their respective IMEs. Thus, minor
improvements to correcting the sporadic errors that they encounter do not jus-
tify overcoming the learning curve of a new system and the need to set up a
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high-quality microphone whenever performing text entry. Interestingly, of these
5 users without definite interest in using the system themselves, 4 would still
recommend it to friends. As user J observed, “This system is very useful and
convenient for users less familiar with Chinese input. . . [However], frequent typ-
ists will still choose selecting characters [using the keyboard].” Thus, although
spoken correction may not be more effective for everyone, nearly all participants
saw the potential value of such a system, even with less than 10 minutes of usage.

Table 6. Summary of user study results. Prior to the survey, we asked participants
to estimate the average amount of time per week they spend entering Chinese text
and indicate the IME they use most frequently. After the study, in which the user
had a chance to enter text using both the traditional keyboard correction and spoken
correction, we asked users if they would consider using spoken correction in the future
and recommend the system to a friend.

User A B C D E F G H I J

Use Spoken Correction Y Y Y Y Y M M M M N
Recommend to Friends Y Y Y Y M M Y Y Y Y
Usage/Week (hr) 1 2 2 2 7 1 3 4 6 2
Typical IME NP NP NP N NP CJ HI P G NP

NP: New Phonetic ��� P: Phonetic (�)�� CJ: Changjie ��
N: Natural �� HI: Hanin �� (Mac)
Y: Yes N: No M: Maybe

6 Discussions

One concern with spoken correction is the cognitive load associated with identi-
fying an appropriate description for the target character. Unlike the characters
in their names, all users experienced some degree of difficulty describing certain
characters, such as � (possessive particle), that are not associated with com-
mon word phrases and are difficult to describe by radical or structure. However,
once a description for a difficult character is suggested, the participants did not
encounter any difficulty recalling the description the next time the character is
observed a few minutes later.

Many factors contribute to the difficulty of describing characters. As observed
in Sect. 3.2, users naturally describe characters by usage in a word phrase. How-
ever, this may not always be the most effective approach. Although less natural,
it is sometimes easier to identify a character by its compositional structure or
radical. For characters from a word phrase in the target sentence, many users
have the false notion that because the IME converted the character incorrectly,
using the same word phrase to describe the character will not fix the error. As
analyzed in [6], more than a third of conversion errors from a bigram-based
IME are due to segmentation errors. Thus, explicitly specifying the segmenta-
tion boundary through character descriptions can actually correct many of these
errors.
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Lastly, in the current design, users generally cannot attribute the cause of
misrecognitions to acoustic mismatch or unexpected character description, as
they have identical behavior. Using the preliminary grammar constructed for the
user study, out-of-grammar character descriptions account for 35% of the total
spoken corrections. Of the in-grammar descriptions, 16% contained recognition
errors. Thus, to improve the spoken correction system, we need to not only
improve the grammar coverage, but also mitigate the effect of recognition errors.

7 Conclusion and Future Work

In this work, we introduced a novel correction interface for Chinese text entry us-
ing spoken character descriptions. Specifically, we identified common approaches
people use to describe characters and constructed an automatically generated
character description grammar from various lexical corpora. Finally, we eval-
uated a preliminary implementation of the spoken correction interface system
through a user study that demonstrates the potential benefit of the spoken in-
terface to a considerable subset of Chinese typists.

As shown in Sect. 3.2, most users describe characters using a small subset
from among all potential descriptions. Thus, an effective approach to improv-
ing the recognition accuracy is to weigh the different character descriptions by
their likelihood of utilization. Furthermore, as observed with difficult-to-describe
characters, once users identify a successful description for a character, they tend
to reuse the same description again for future instances of the character. This
suggests that we can further improve the language model performance by em-
phasizing previously observed character descriptions.

For future work, in addition to incorporating more data to improve grammar
coverage, we would like to explore such language model adaptation techniques to
reduce the recognition error rate. We also hope to incorporate various feedback
from the user study participants to improve the user interface design. Finally, to
reduce the effort in evaluating changes to the system, we plan to simulate user
input and measure the overall system performance.

In this paper, we focused on applying spoken character descriptions to Chi-
nese keyboard IMEs. However, the approach generalizes to other East Asian
languages, such as Japanese and Korean and even to text entry via handwriting
and speech, where there are ambiguities in the resulting text. With the rapid
growth in text input on mobile devices, we would also like to study the applica-
tion of spoken correction to text entry interfaces using the keypad.
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Abstract. The purpose of extractive summarization is to automatically select 
indicative sentences, passages, or paragraphs from an original document 
according to a certain target summarization ratio, and then sequence them to 
form a concise summary. In this paper, in contrast to conventional approaches, 
our objective is to deal with the extractive summarization problem under a 
probabilistic modeling framework. We investigate the use of the hidden Markov 
model (HMM) for spoken document summarization, in which each sentence of 
a spoken document is treated as an HMM for generating the document, and the 
sentences are ranked and selected according to their likelihoods. In addition, the 
relevance model (RM) of each sentence, estimated from a contemporary text 
collection, is integrated with the HMM model to improve the representation of 
the sentence model. The experiments were performed on Chinese broadcast 
news compiled in Taiwan. The proposed approach achieves noticeable 
performance gains over conventional summarization approaches. 

Keywords: hidden Markov model, probabilistic ranking, relevance model, 
speech recognition, spoken document summarization. 

1   Introduction 

Due to the ever-increasing storage capability and processing power of computers, vast 
amounts of multimedia content are now available to the public. Clearly, speech is one 
of the most important sources of information about multimedia content, such as radio 
broadcasts, television programs, and lecture recordings, as it provides insight into the 
content. Therefore, multimedia access based on associated spoken documents has 
received a great deal of attention in recent years [1]. However, unlike text documents, 
which are structured with titles and paragraphs and are thus easier to retrieve and 
browse, associated spoken documents of multimedia content are only presented with 
video or audio signals; hence, they are difficult to browse from beginning to end. 
Even though spoken documents are automatically transcribed into words, incorrect 
information (resulting from recognition errors and inaccurate sentence or paragraph 
boundaries) and redundant information (generated by disfluencies, fillers, and 
repetitions) prevent them from being accessed easily. Spoken document 
summarization, which attempts to distill important information and remove redundant 
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and incorrect content from spoken documents, can help users review spoken 
documents efficiently and understand associated topics quickly [2]. 

Although research into automatic summarization of text documents dates back to 
the early 1950s, for nearly four decades, research work has suffered from a lack of 
funding. However, the development of the World Wide Web led to a renaissance of 
the field and summarization was subsequently extended to cover a wider range of 
tasks, including multi-document, multi-lingual, and multi-media summarization [3]. 
Generally, summarization can be either extractive or abstractive. Extractive 
summarization selects indicative sentences, passages, or paragraphs from an original 
document according to a target summarization ratio and sequences them to form a 
summary. Abstractive summarization, on the other hand, produces a concise abstract 
of a certain length that reflects the key concepts of the document. The latter is more 
difficult to achieve, thus recent research has focused on the former. For example, the 
vector space model (VSM), which was originally developed for ad-hoc information 
retrieval (IR), can be used to represent each sentence of a document, or the whole 
document, in vector form. In this approach, each dimension specifies the weighted 
statistics associated with an indexing term (or word) in the sentence or document. The 
sentences with the highest relevance scores (usually calculated as the cosine measure 
of two vectors) to the whole document are included in the summary. To summarize 
more important and different concepts in a document, the indexing terms in the 
sentence with the highest relevance score are removed from the document and the 
document vector is reconstructed accordingly. Then, based on the new document 
vector, the next sentence is selected, and so on [4]. The latent semantic analysis 
(LSA) model for IR can also be used to represent each sentence of a document as a 
vector in the latent semantic space of the document, which is constructed by 
performing singular value decomposition (SVD) on the “term-sentence” matrix of the 
document. The right singular vectors with larger singular values represent the 
dimensions of the more important latent semantic concepts in the document. 
Therefore, the sentences with the largest index values in each of the top L  right 
singular vectors are included in the summary [4]. In another example, each sentence 
in a document, represented as a sequence of terms, is given a significance score, 
which is evaluated using a weighted combination of statistical and linguistic 
measures. Sentences are then selected according to their significance scores [5]. In the 
above cases, if a higher compression ratio is required, the selected sentences can be 
further condensed by removing some less important terms. A survey of the above 
extractive summarization approaches and other IR-related tasks in spoken document 
understanding and organization can be found in [1]. 

The above approaches can be applied to both text and spoken documents. 
However, spoken documents present additional difficulties, such as recognition 
errors, problems with spontaneous speech, and the lack of correct sentence or 
paragraph boundaries. To avoid redundant or incorrect content when selecting 
important and correct information, multiple recognition hypotheses, confidence 
scores, language model scores, and other grammatical knowledge have been utilized 
[2, 6]. In addition, prosodic features (e.g., intonation, pitch, energy, and pause  
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duration) can be used as important clues for summarization; however, reliable and 
efficient ways of using these prosodic features are still under active research [7, 8]. 
Summaries of spoken documents can be presented in either text or speech format. The 
former has the advantage of easier browsing and further processing, but it is subject to 
speech recognition errors, as well as the loss of the speaker’s emotional/prosodic 
information, which can only be conveyed by speech signals. 

In contrast to conventional approaches, we address the issue of extractive 
summarization under a probabilistic modeling framework. We investigate the use of 
the hidden Markov model (HMM) [9] for spoken document summarization, whereby 
each sentence of a spoken document to be summarized is treated as an HMM for 
generating the document, and the sentences are ranked and selected according to their 
likelihoods. In addition, the relevance model (RM) [10, 11] of each sentence, 
estimated from a contemporary text collection, is integrated with the HMM model for 
better representation of the sentence model. The experiments were performed on 
Chinese broadcast news compiled in Taiwan. 

The remainder of the paper is organized as follows. Section 2 explains the 
structural characteristics of the hidden Markov model and the relevance model used in 
this paper. Section 3 presents the experiment setup and the evaluation metric used for 
spoken document summarization. The results of a series of summarization 
experiments are discussed in Section 4. Finally, in Section 5, we present our 
conclusions. 

2   Proposed Summarization Models 

2.1   Hidden Markov Model (HMM) 

In an ad-hoc IR task, the relevance measure of a query Q and a document Di can be 
expressed as )|( QDP i ; i.e., the probability that the document Di is relevant given 

that the query Q was posed. Based on Bayes’ rule and some assumptions, the 
relevance measure can be approximated by )|( iDQP . That is, in practice, the 

documents are ranked according to )|( iDQP . Each document Di can be interpreted 

as a hidden Markov model (HMM) composed of a mixture of n-gram probability 
distributions for observing a query Q [9]. Meanwhile, the query Q is considered as 
observations, expressed as a sequence of indexing terms (or words, or syllables), 

Jj wwwwQ ......21= , where wj is the j-th term in Q and J is the length of the query, as 

illustrated in Fig. 1. The n-gram distributions for the term jw , for example the 

document unigram and bigram models, )|( ij DwP  and ),|( 1 ijj DwwP − , are 

estimated directly from the document Di and linearly interpolated with the collection’s 
unigram and bigram models, )|( CwP j  and ),|( 1 CwwP jj − , estimated from a large 

text collection C. Then, the relevance score of a document Di and a query Q is 
calculated by 
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Fig. 1. An illustration of the HMM-based retrieval model 
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which can be viewed as a combination of information from a local source (i.e., the 
document) and a global source (i.e., the large text collection). The unigram and 
bigram models of the documents and the collection are usually estimated using the 
maximum likelihood estimation (MLE). The weighting parameters, 41,..,mm , can be 

optimized by the expectation-maximization (EM) or minimum classification error 
(MCE) training algorithms, given a training set of query examples with corresponding 
query-document relevance information [9].  

When the HMM is applied to extractive spoken document summarization, each 
sentence giS ,  of a spoken document Di is treated as a probabilistic generative model 

(or HMM) consisting of n-gram distributions for predicting the document, and the 
terms (or words) in the document Di are taken as an input observation sequence. In 
this paper, we only investigate unigram modeling for HMM; thus, the HMM model 
for a sentence can be expressed as: 

( ) ( ) ( ) ( )[ ] ( ),|1| | ,
,, ∏ −+⋅=

∈ ij

ij

Dw

Dwc
jgijgiiHMM CwPSwPSDP λλ  (2) 

where λ  is a weighting parameter and ),( ij Dwc  is the occurrence count of a term 

jw  in Di. In the HMM, the sentence model )|( ,gij SwP  and the collection model 

)|( CwP j  for each sentence are simply estimated from the sentence itself and a large 

external text collection, respectively. The weighting parameter λ  can be further 
optimized by taking the document Di as the training observation sequence and using 
the following EM training formula:  
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Once the HMM models for the sentences have been estimated, they are used to 
predict the occurrence probability of the terms in the spoken document. The sentences 
with the highest probabilities are then selected and sequenced to form the final 
summary according to different summarization ratios. 

2.2   Relevance Model (RM)  

In the sentence HMM, as shown in Eq. (2), the sentence model )|( , gij SwP  is 

linearly interpolated with the collection model )|( CwP j  to have some probability of 

generating every term in the vocabulary. However, the true sentence model 
)|( , gij SwP  might not be accurately estimated by MLE, since the sentence only 

consists of a few terms, and the portions of the terms in the sentence are not the same 
as the probabilities of those terms in the true model. Therefore, we explore the use of 
the relevance model (RM) [10, 11], which was originally formulated for IR, to derive 
a more accurate estimation of the sentence model. In the extractive spoken document 
summarization task, each sentence giS ,  of the document Di to be summarized has its 

own associated relevant class 
giSR

,
, which is defined as the subset of documents in the 

collection that are relevant to the sentence giS , . The relevance model of the sentence 

giS ,  is defined as the probability distribution )|( , gij RMwP , which gives the 

probability that we would observe a term jw  if we were to randomly select some 

document from the relevant class 
giSR

,
 and then pick a random term from that 

document. Once the relevance model of the sentence giS ,  has been constructed, it can 

be used to replace the original sentence model, or it can be combined with the original 
sentence model to produce a better estimated model. Because there is no prior 
knowledge about the subset of relevant documents for each sentence giS , , a local 

feedback-like procedure can be employed by taking giS ,  as a query and posing it to 

the IR system to obtain a ranked list of documents. The top K documents returned by 
the IR system are assumed to be relevant to giS , , and the relevance model 

)|( ,gij RMwP  of giS ,  can therefore be constructed by the following equation: 

( ) ( )
{ }

( ),|||
 Top

,, lj
D

gilgij DwPSDPRMwP
Kl

=
∈ D

 
(4) 

where { } K TopD  is the set of top K retrieved documents; and the probability 

)|( ,gil SDP  can be approximated by the following equation using the Bayes’ rule: 
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A uniform prior probability )( lDP  can be further assumed for the top K retrieved 

documents, and the sentence likelihood )|( , lgi DSP  can be calculated using an 
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equation similar to Eq. (1) if the IR system is implemented with the HMM retrieval 
model. Consequently, the relevance model )|( , gij RMwP  is combined linearly with 

the original sentence model )|( ,gij SwP  to form a more accurate sentence model: 

( ) ( ) ( ) ( ),|1||ˆ
,,, gijgijgij RMwPSwPSwP ⋅−+⋅= αα  (6) 

where α  is a weighting parameter. The final sentence HMM is thus expressed as: 

( ) ( ) ( ) ( )[ ] ( )
∏ −+⋅=
∈ ij

ij

Dw

Dwc

jgijgiiHMM CwPSwPSDP
,

,, |1|ˆ |ˆ λλ . (7) 

Fig. 2 shows a diagram of spoken document summarization using the HMM and RM 
models. 
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Fig. 2. A diagram of spoken document summarization using the HMM and RM models 

3   Experiment Setup 

3.1   Speech and Text Corpora  

The speech data set was comprised of approximately 176 hours of radio and TV 
broadcast news documents collected from several radio and TV stations in Taipei 
between 1998 and 2004 [12]. From them, a set of 200 documents (1.6 hours) collected 
in August 2001, was reserved for the summarization experiments [1]. The remainder 
of the speech data was used to train an acoustic model for speech recognition, of 
which about 4.0 hours of data with corresponding orthographic transcripts was used to 
bootstrap the acoustic model training, while 104.3 hours of the remaining un-
transcribed speech data was reserved for unsupervised acoustic model training [13]. 
The acoustic models were further optimized by the minimum phone error (MPE) 
training algorithm. A large number of text news documents collected from the Central 
News Agency (CNA) between 1991 and 2002 (the Chinese Gigaword Corpus 
released by LDC) was also used. The text news documents collected in 2000 and 
2001 were used to train n-gram language models for speech recognition; and a subset 
of about 14,000 text news documents collected in the same period as that of the 
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broadcast news documents to be summarized (August 2001) was used to construct the 
HMM and RM models. 

3.2   Broadcast News Transcription 

Front-end processing was performed with the HLDA-based (Heteroscedastic Linear 
Discriminant Analysis) data-driven Mel-frequency feature extraction approach and 
further processed by MLLT (Maximum Likelihood Linear Transformation) 
transformation for feature de-correlation. The speech recognizer was implemented 
with a left-to-right frame-synchronous Viterbi tree search as well as a lexical prefix 
tree organization of the lexicon. The recognition hypotheses were organized into a 
word graph for further language model rescoring. We used a word bigram language 
model in the tree search procedure and a trigram language model in the word graph 
rescoring procedure. The Chinese character error rate (CER) for the 200 broadcast 
news documents reserved for summarization was 14.17%. 

3.3   Evaluation Metric 

Three subjects were asked to summarize the 200 broadcast news documents, which 
were to be used as references for evaluation, in two ways:1) to rank the importance of 
the sentences in the reference transcript of the broadcast news document from the top 
to the middle; and 2) to write an abstract of the document with a length roughly equal 
to 25% of the original broadcast news document. Several summarization ratios of the 
summary length to the total document length [1] were tested. In addition, the ROUGE 
measure [14, 15] was used to evaluate the performance levels of the proposed models 
and the conventional models. The measure evaluates the quality of the summarization 
by counting the number of overlapping units, such as n-grams and word sequences, 
between the automatic summary and a set of reference (or manual) summaries. 
ROUGE-N is an n-gram recall measure defined as follows: 

( )
( ) ,=−

∈ ∈

∈ ∈

R n

R n

S Sgram
n

S Sgram
nmatch

gramCount

gramCount

NROUGE

S

S
 (8) 

where N denotes the length of the n-gram; S is an individual reference (or manual) 
summary; RS  is a set of reference summaries; )( nmatch gramCount  is the maximum 

number of n-grams co-occurring in the automatic summary and the reference summary; 
and )( ngramCount  is the number of n-grams in the reference summary. In this paper, we 

adapted the ROUGE-2 measure, which uses word bigrams as matching units. 

4   Experiment Results 

4.1   Comparison of HMM and Other Summarization Models 

The summarization results obtained by the HMM summarization model using word 
indexing terms (HMM-1) are shown in the second column of Table 1; and the  
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Table 1. The results achieved by the HMM and other summarization models under different 
summarization ratios 

Summarization Ratio HMM-1 HMM-2 VSM LSA-1 LSA-2 SenSig Random 

10% 0.2989 0.2945 0.2845 0.2755 0.2498 0.2760 0.1122 

20% 0.3295 0.3052 0.3110 0.2911 0.2917 0.3190 0.1263 

30% 0.3670 0.3334 0.3435 0.3081 0.3378 0.3491 0.1834 

50% 0.4743 0.4755 0.4565 0.4070 0.4666 0.4804 0.3096 

corresponding ROUGE-2 recall rates are approximately 0.30, 0.33, 0.37, and 0.47 for 
the summarization ratios 10%, 20%, 30%, and 50%, respectively. The summarization 
results of the HMM summarization model using syllable indexing terms (HMM-2) are 
shown in the third column of the table; and it is obvious that the results are 
comparable to that of the HMM summarization model using word indexing terms. In 
the following experiments, unless specified otherwise, the HMM model corresponds 
to the HMM summarization model using word indexing terms. In addition, all the 
other summarization models discussed in this subsection also use word indexing 
terms.

We compared the HMM model with the conventional VSM [4] and LSA models. 
Two variants of LSA, namely, the model mentioned in Section 1 [4] (LSA-1) and the 
model in [6] (LSA-2), were evaluated. For a spoken document, LSA-2 simply 
evaluates the score of each sentence based on the norm of its vector representation in 
the lower L-dimensional latent semantic space. A fixed number of sentences with 
relatively large scores are therefore selected to form the summary. In the experiments, 
we set the value of L at 5, the same as that in [6]. The two LSA models were 
implemented with the MIT SVD Toolkit [16]. We also tried to select indicative 
sentences from the spoken document based on the sentence significance score 
(denoted as the SenSig model) [5]. For example, given a sentence 

},...,,...,,{
,21, giNrgi wwwwS =  of length giN , , the sentence significance score is 

expressed by the following formula: 

( ) ( ) ( )[ ], 
,

1
21, ⋅+⋅=

=

giN

r
rrgi wLwISSig ββ  (9) 

where )( rwI  is the product of the term frequency (TF) and the inverse document 

frequency (IDF) of term rw  [17]; )( rwL  is the logarithm of the bigram probability of 

rw  given its predecessor term 1−rw  in giS , , which is estimated from a large 

contemporary text collection; and 1β  and 2β  are tunable weighting parameters. The 

results for the above models are shown in columns 4 to 7 of Table 1; the results 
obtained by random selection (Random) are also listed for comparison. We observe 
that HMM outperforms the VSM, LSA, and SenSig models, which demonstrates that 
the HMM-based probabilistic ranking model is indeed a good candidate for the 
extractive spoken document summarization task addressed by this study. 
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Table 2. The results of combining the HMM and RM models under different summarization 
ratios; RM was constructed with the IR system using word indexing terms 

Summarization Ratio docM =5 docM =10 docM =15 docM =20

10% 0.3074 0.3078 0.3078 0.3078 

20% 0.3265 0.3284 0.3260 0.3260 

30% 0.3667 0.3650 0.3661 0.3676 

50% 0.4759 0.4764 0.4762 0.4768 

Table 3. The results of combining the HMM and RM models under different summarization 
ratios; RM was constructed with the IR system using syllable indexing terms 

Summarization Ratio docM =5 docM =10 docM =15 docM =20

10% 0.3057 0.3111 0.3152 0.3152 

20% 0.3254 0.3344 0.3341 0.3332 

30% 0.3673 0.3659 0.3659 0.3659 

50% 0.4782 0.4770 0.4768 0.4759 

4.2   Combination of HMM and RM  

As mentioned in Section 2.2, when the HMM is used for summarization, the sentence 
model )|( ,gij SwP  might not be accurately estimated, since each sentence of a 

spoken document consists of only a few words and the portions of words present in 
the sentence are not necessarily the same as the probabilities of those words in the 
true model. Therefore, we combine the RM model )|( ,gij RMwP  with the sentence 

model )|( ,gij SwP  to produce a better estimated sentence model, as expressed in Eq. 

(6). To construct the RM model, each sentence of the spoken document to be 
summarized is taken as a query and posed to the IR system to obtain a set of M 
relevant documents from the contemporary text news collection. We implement the 
IR system with the HMM retrieval model using either words or syllables as the 
indexing terms. The results of combining the HMM and RM models are shown in 
Tables 2 and 3. In Table 2, the IR system uses words as the indexing terms to 
construct the RM model, while, in Table 3, syllables are adopted as the indexing 
terms for the IR system. Each column in the tables indicates the number of relevant 
documents ( docM ) returned by the IR system for construction of the RM model.  

A number of conclusions can be drawn from the results. First, the combination of 
HMM and RM boosts the summarization performance when the summarization ratios 
are low (e.g., 10%), while the gains are almost negligible at higher summarization 
ratios. Second, the RM model constructed based on the IR system using syllables as 
indexing terms is better than that based on the IR system using words as indexing 
terms. One possible reason is that the automatic transcript of a sentence in a broadcast 
news document often contains speech recognition errors and, in Chinese, syllable  
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Table 4. The results of combining the HMM and RM models, using syllable indexing terms; 
the RM model was constructed with the IR system using syllable indexing terms 

Summarization Ratio docM =5 docM =10 docM =15 docM =20

10% 0.3190 0.3276 0.3285 0.3285 

20% 0.3327 0.3414 0.3439 0.3439 

30% 0.3473 0.3544 0.3542 0.3542 

50% 0.4735 0.4750 0.4724 0.4724 

Table 5. The results of combining the HMM and RM models, using both word and syllable 
indexing terms; the RM model was constructed with the IR system using syllable indexing 
terms 

Summarization Ratio docM =5 docM =10 docM =15 docM =20

10% 0.3305 0.3285 0.3335 0.3352 

20% 0.3411 0.3391 0.3442 0.3468 

30% 0.3641 0.3641 0.3612 0.3645 

50% 0.4809 0.4816 0.4781 0.4782 

accuracy is always higher than word accuracy. Therefore, the IR system that uses 
syllables as indexing terms might retrieve a set of more relevant documents than the 
system using single words. Finally, the summarization performance seems to become 
saturated when the IR system returns 15 relevant documents for construction of the 
RM model. 

4.3   Information Fusion Using Word- and Syllable-Level Indexing Terms 

The summarization results reported in Sections 4.1 and 4.2 were obtained in such a 
way that the summarization models were only implemented with words as the 
indexing terms, although the IR system used to construct the RM model can use either 
words or syllables as indexing terms. Hence, we also implemented the models by 
using syllables as indexing terms. The summarization results of combining the HMM 
and RM models and using syllable indexing terms, are shown in Table 4. In this case, 
the RM model was also constructed with the IR system using syllable indexing terms. 
Compared with the results in Table 3, the summarization model implemented with 
syllable indexing terms is considerably better than the one implemented with word 
indexing terms, especially at lower summarization ratios. Finally, the results derived 
by combining the HMM and RM models, as well as by using both word and syllable 
indexing terms, are shown in Table 5. Compared with the results in Table 4, the 
fusion of these two kinds of indexing information clearly yields additional 
performance gains. This is because word-level indexing terms contain more semantic 
information, while syllable-level indexing terms are more robust against errors in 
speech recognition. Thus, combining these two kinds of indexing terms for the 
Chinese spoken document summarization task is effective. 
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5   Conclusions 

We have presented an HMM-based probabilistic model for extractive Chinese spoken 
document summarization. The model’s capabilities were verified by comparison with 
other summarization models. Moreover, the RM model of each sentence of a spoken 
document to be summarized was integrated with the sentence HMM model for better 
model estimation. The experiment results are very promising. In our current 
implementation, the relevant model trained on relevant documents retrieved for a 
sentence from a contemporary text collection is integrated with the sentence HMM. 
These relevant documents can be used to train the sentence HMM directly. We 
believe this is a more effective way to utilize relevant documents. 
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Abstract. The extraction of information from recorded meetings is a
very important yet challenging task. The problem lies in the inability of
speech recognition systems to be directly applied onto meeting speech
data, mainly because meeting participants speak concurrently and head-
mounted microphones record more than just their wearers’ utterances -
crosstalk from his neighbours are inevitably recorded as well. As a result,
a degree of preprocessing of these recordings is needed. The current work
presents an approach to segment meetings into four audio classes: Single
speaker, crosstalk, single speaker plus crosstalk and silence. For this pur-
pose, we propose Two-Layer Cascaded Subband Filters, which spread
according to the pitch and formant frequency scales. This filters are able
to detect the presence or absence of pitch and formants in an audio sig-
nal. In addition, the filters can determine how many numbers of pitches
and formants are present in an audio signal based on the output subband
energies. Experiments conducted on the ICSI meeting corpus, show that
although an overall recognition rate of up to 57% was achieved, rates for
crosstalk and silence classes are as high as 80%. This indicates the posi-
tive effect and potential of this subband feature in meeting segmentation
tasks.

1 Introduction

Meetings are an important part of everyday work life. Many spend more time
in meetings, where important goals and new strategies are discussed and deter-
mined, than on their desks. It is therefore desirable to extract the contents of a
meeting and conserve them for future work or for purposes of proof. Automatic
speech recognition (ASR), for example, seems to be a good tool to extract at
least the textual content of a meeting. Unfortunately the recognition of speech
in recorded meetings is a difficult task. Meeting participants speak naturally (i.e.
use natural language), interrupt each other, talk at the same time and also use
ungrammatical or incomplete sentences. In turn, these meeting conditions and
norms, negatively affect ASR recognition rate. That is why some form of pre-
processing of the recorded meetings is needed, among other things, to determine
how many persons had been speaking at any one time in the meeting.

There have been some attempts at preprocessing of meetings. Dielmann and
Renals [1] tried to segment meetings automatically into a set of social actions

Q. Huo et al.(Eds.): ISCSLP 2006, LNAI 4274, pp. 672–682, 2006.
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such as monologue, discussion and presentation. For that purpose, they com-
bined prosodical, lexical and speaker activity features to train and test a dy-
namic Bayesian Network model. With the so-called speaker activity feature, one
can estimate which direction of the meeting room the speech recorded at a time
is coming from. Therefore a microphone array was used to simulate a steerable
directional microphone. Their experiments achieved a recognition rate of 92.9%
and were conducted on the M4 corpus, which had been recorded at the IDIAP
Research Institute. The M4 corpus contains 53 short meetings, recorded using
lapel microphones for each meeting participant, and an eight element circular
microphone array. However the lexical features that were used were based on
human-generated word-level transcription of the meetings, entailing the employ-
ment of significant manual effort and that the segmentation process cannot be
done automatically.

Wrigley et al. [2] segmented meetings into four different audio classes, namely
single speaker (S), crosstalk (C), speaker plus crosstalk (SC) and silence (SIL).
Crosstalk occurs when the lapel microphones or head-mounted microphones of
meeting participants record not only their wearers’ utterances, but also spo-
ken comments from their neighbours. To discriminate the four different classes,
Wrigley et al. analyzed several features on their efficiency for the task. Besides
the classical speech processing features like MFCCs, Energy and Zero Crossing
Rate, they also tested other features which had been proven to work well in
similar tasks. These features include the following: Kurtosis, Fundamentalness,
Spectral Autocorrelation Peak-Valley Ratio, Pitch Prediction, features derived
from genetic programming and cross-channel correlation. After feature evalua-
tion, they presented a system which consisted of a multistream ergodic Hidden
Markov Model (eHMM) and a rule-based post processor to test the feature sets
they had first found. They reported high average recognition rates of 76.5% for
the speaker alone class, and 94.1% for the crosstalk alone class, but very low
recognition rates for single speaker plus crosstalk and silence.

In the current work, we implement Two-Layer Cascaded Subband Filters
(TLCSF) for meeting segmentation. The filters are able to extract the infor-
mation of number of speakers based on the pitch and formant information. We
combine this feature with other features which had been reported in [2] to classify
the audio classes S, C, SC and SIL with higher accuracy. We trained Gaussian
Mixture Models (GMM) for the four classes and linked them to an ergodic HMM.
Experiment results show that our recognition rates are significantly higher for
the classes SC and SIL.

The remaining of this paper is organized as follows: Section 2 describes the In-
ternational Computer Science Institute (ICSI) meeting corpus which was used in
our experiments. Following that is a presentation of our ergodic Hidden Markov
Model in section 3, and an explanation of the acoustic parameters used in
section 4. With the model and features in place, a range of experiments were
conducted and are presented and discussed in section 5. Finally section 6 con-
tains a conclusion of the current work as well as an outline of a few possibilities
for future improvements.



674 M. Giuliani, T.L. Nwe, and H. Li

2 Corpus

The ICSI Meeting Corpus consists of 75 meetings, which were recorded during
the years 2000 - 2002 at the International Computer Science Institute (ICSI) in
Berkeley, California. The meetings were not restricted by any guidelines, that
means the recording sessions were held during normal meetings, which would
have been conducted regardless of the recordings. In these recording sessions,
every meeting participant wore either a head-mounted or a lapel microphone.
At the same time, the meeting was recorded by six table microphones of different
qualities. The meeting lengths range between 17 and 103 minutes and the corpus
contains 72 hours of recorded speech in total. The data were collected at a 48
kHZ sample-rate, which was downsampled to 16 kHz. The audio files for each
meeting are provided as separate time-synchronous recordings for each channel,
encoded as 16-bit linear wave files and saved in the NIST sphere format. For each
meeting, a time-tagged word-level transcript is available, which also contains
meta information about its meeting participants and the hardware used for the
session. A full description of the corpus can be found in [3]. From the corpus
we chose 30 meetings, of which the data from 11 meetings were used to train
the ergodic Hidden Markov Model and the data from the remaining 19 meetings
were used for testing purposes.

3 Model

The model used in this work is an ergodic Hidden Markov Model (eHMM), which
is made up of four GMMs, one for each of the four classes - S, C, SC and SIL -
that we want to detect. The term ergodic refers to the fact that all four states of
the HMM are linked together, such that every state is reachable from any other
state and by itself, as illustrated in Figure 1. A GMM is defined by

G∑
i=1

piΦi(X, μi, Σi) (1)

where X is the feature vector and G is the number of Gaussian densities Φi.
Every Φi has a mean vector μi, a covariance matrix Σi and a mixing coefficient
pi.

Every GMM was trained with the expectation-maximization algorithm, as it
is implemented in the Hidden Markov Toolkit (HTK). The training data was
extracted from 11 meetings 1 of the corpus. For each of the four classes, one
million feature vectors were chosen randomly from the data. The number of
mixtures per GMM varied and were chosen according to the values mentioned
in [2]. The number of mixtures for the classes S and SC was set to 20, and to
5 and 4 for the classes C and SIL respectively. After training, the four GMMs
were linked with transitions, such that every GMM is reachable from any other
1 Training data was taken from the following meetings: Bed006, Bed008, Bed010,

Bed011, Bmr001, Bmr005, Bmr006, Bmr014, Bmr024, Bro007, and Bro012.
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Fig. 1. Ergodic Hidden Markov Model, comprising four GMMs

GMM. The arcs between the GMMs were provided with transition probabilities,
which were computed from the meeting transcripts.

4 Acoustic Parameters

The expressiveness of the acoustic parameters has direct impact on segmenting
audio into different classes. In addition to short-time spectral information, we
integrate pitch and formant information into our acoustic features. We propose
Two-Layer Cascaded Subband Filters (TLCSF), which spread according to the
pitch and formant frequency ranges. This filters are able to detect the presence
or absence of pitch and formants in an audio segment. Furthermore, the filters
can determine how many number of pitches or formants are present in an au-
dio segment from the output subband energies. We transform these subband
energies into cepstral coefficients for statistical modeling. The cepstral coeffi-
cients are used, because they have been proven to be robust in audio and speech
recognition [7].

4.1 Acoustic Characteristics and Audio Classes

Before computing the features, we examine the significant characteristics pos-
sessed by each audio class. The signal strengths of the classes S (speaker alone)
and SC (speaker plus crosstalk) are higher than those of class C (crosstalk alone)
and class SIL (silence). In addition, the numbers of pitches and formants present
in class S and class SC are different. The audio segment of class S has only one
pitch or formant. However, the audio segment of class SC can present more than
one pitch and formant. Furthermore, pitch and formant are not present in class
SIL. Therefore, the acoustic features to identify these 4 audio classes (S, SC,
C and SIL) should reflect the information on 1) signal strength, 2) the pres-
ence or absence of pitches and formants and 3) how many numbers of pitches
and formants are present in an audio segment. To this end, we propose Two-
Layer Cascaded Subband Filters to capture the above information from an audio
signal.
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4.2 Two-Layer Cascaded Subband Filters (TLCSF)

We propose Two-Layer Cascaded Subband Filters, shown in Figure 2, to capture
the information of pitch, formant and signal strength. The filter has two cascaded
layers. The first layer has overlapped rectangular filters. For each filter in the first
layer, there are 5 non-overlapped rectangular filters of equal bandwidth in the
second layer. The first filter of the first layer has a bandwidth spanned between
65Hz and 250Hz. This bandwidth covers the pitch of male and female in general
[8]. This filter is able to determine the information on 1) presence or absence of
pitch, and 2) number of pitches in an audio segment. Details on how the filter
captures pitch information will be discussed in later paragraphs. Bandwidths of
the following filters cover F1 (First formant), F2 (Second formant) and F3 (Third
formant) of 15 selected English vowels [5]. Each of these filters determines the
information on 1) presence or absence of formant, and 2) number of formants
in an audio segment. To this end, we need to implement 1 filter for pitch and
45 filters for F1, F2 and F3 of each of the 15 vowels. Note that the formants
of some vowels (example, First formants of vowels [aÈ] and [aØ]) overlap each
other. Hence, we need to implement only one filter for these overlapped formants.
Finally, we have 1 filter for the pitch (F0) and 40 filters for the formants (F1,
F2 and F3). In Total, we implement 41 filters in the first layer. The center
frequencies and bandwidths of all filters are listed in Table 1.

We have 41 filters in the first layer. For each filter of the first layer, we have
5 non-overlapped filters in the second layer. Hence, we have a total of 205 (41 x
5) filters in the second layer. The range of our subband filters is from 65 Hz to
3.2kHz.

The upper panels of Figure 3 (a), (b), (c) and (d) represent the signals of
the four audio classes S, SC, C and SIL in the pitch frequency range (65Hz
to 250Hz). As can be seen in the figures, the audio classes S and SC have the
strongest signal strength of all four classes. In addition, only one pitch is present
in audio class S and two pitches are present in the class SC, while no pitch is
present in the class SIL. The Two-Layer Cascaded Subband Filter captures this
information as follows.

The pitch information is captured by TLCSF for the four audio classes which
are presented in Figures 3 (a), (b) (c) and (d). In each figure, the signal in
the upper panel is passed through the TLCSF filters shown in the middle panel.
Then, the output amplitudes of the five subband filters are computed and shown
in the lower panel. As can be seen in the figures, the number of local maxima in
the lower panel is the number of pitches present in the audio signal. Since TLCSF

1.9 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3 2.35
0

1

2

First Layer 

Second Layer 

Frequency(kHz)

Fig. 2. A bank of Two-Layer Cascaded Subband Filters
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Table 1. Center Frequencies (CF) and Bandwidths (BW) of the 41 subbands in the
first layer

No Type Vowel CF(Hz) BW (Hz) No Type Vowel CF(Hz) BW (Hz)
1 F0 - 157.5 185 22 F2 [ÿ] 1290 100

2 F1 [i] 300 72.5 23 F2 [oÈ] 1390 910

3 F1 [u] 335 95 24 F2 [aÈ], [ÿ] 1540 765

4 F1 [eÈ] 405 212.5 25 F2 [̈I] 1575 295

5 F1 [È] 435 120 26 F2 [E] 1605 240

6 F1 [ÿ] 445 150 27 F2 [È] 1700 300

7 F1 [oÈ] 455 260 28 F2 [eÈ] 1870 400
8 F1 [Ø] 475 130 29 F2 [i] 2045 250
9 F1 [oØ] 495 170 30 F3 [u] 2200 140

10 F1 [aÈ], [a] 530 345 31 F3 [oØ] 2300 70
11 F1 [E] 575 150 32 F3 [Ø] 2370 120

12 F1 [O] 615 120 33 F3 [oÈ] 2425 195

13 F1 [U] 620 80 34 F3 [̈I], [aØ] 2450 360

14 F1 [̈I] 635 100 35 F3 [E] 2515 230

15 F1 [A] 700 130 36 F3 [aÈ] 2525 250
16 F2 [oØ] 1000 270 37 F3 [U] 2550 140

17 F2 [O] 1015 150 38 F3 [eÈ] 2560 280

18 F2 [u] 1075 460 39 F3 [È],[O] 2585 170
19 F2 [E] 1085 360 40 F3 [A] 2600 160
20 F2 [Ø] 1140 180 41 F3 [i] 2960 400
21 F2 [A], [U] 1220 70

includes subbands for pitch and formant frequency ranges, these subbands work
together to capture the pitch and formant information of the signal.

As mentioned above, formants of some vowels overlap each other. In Table
1, the filters with numbers 10, 21, 24, 34 and 39 are for 2 overlapped formants.
Each of these filters covers the formants of two vowels. These filters can wrongly
classify S as SC. The reason can be explained as follows: Let us assume, a
speech segment of class S includes two vowels, [aÈ] and [aØ], which formants
overlap in filter number 10. Two local maxima (two formants) can be present
in the output of filter number 10 similar to the one shown in the lower panel of
Figure 3(b). As we discussed above, if an audio segment has two local maxima,
the classifier classifies the segment as ’SC’. Hence, we need to make sure that
only one local maximum presents a segment of class ’S’. To this end, we choose
an analysis frame length that covers the duration of only one vowel. For this
reason, we choose the frame length of 60ms which is less than the average vowel
duration [4].

4.3 Computation of TLCSF Coefficients

The speech signal was divided into frames of 60ms with 10ms overlapping. Each
frame was multiplied by a Hamming window to minimize signal discontinuities
at the end of each frame. Next, fast fourier transform (FFT) was applied, and
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Fig. 3. Capturing pitch information and TLCSF subband filtering: (a) Speaker alone -
only one pitch and strong signal strength. (b) Speaker plus crosstalk - two pitches and
strong signal strength. (c) Crosstalk alone - only one pitch and weak signal strength.
(d) Silence - no pitch and weak signal strength. In each figure, the upper panel shows
the signal. The middle panel presents the frequency response of the TLCSF subband
filters. The lower panel demonstrates the output of the TLCSF subband filters. The
filters capture the information on 1) presence or absence of pitch, and 2) number of
pitches in the signal by detecting the local maxima.

following that, the audio frame was passed through a bank of cascaded subband
filters and the log energy of each of 205 bands in the second layer was computed.
Finally, a total of 40 Pitch and Formant Frequency Cepstral Coefficients (PF-
FCC) was computed from log energies using Discrete Cosine Transform [9] for
each audio frame.

In Figure 4, example frames for the four classes S, SC, C and SIL and their
corresponding feature vectors are illustrated. It can be seen clearly that the
values of the feature vectors can be used to discriminate between the classes.
For each class in Figure 4, two panels are shown. The top panels illustrate the
signal in time domain. Their corresponding subband feature vectors with 205
values are shown in the lower panel. Please note that the scales for the signals
of S/SC and C/SIL differ for illustration purposes.
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Fig. 4. Illustration of signals and feature vectors for all four audio classes

4.4 Features from Other Work

In addition to the PFFCC we introduced, seven other features were added. These
have been shown to give good results in the meeting segmentation processes in
[2]. Each of the following features was computed over a 16ms Hamming window
with a frame-shift of 10ms.

– Cross-channel Correlation (CCC). The CCC is the maximum of the cross-
channel correlation between a particular channel and any other channel. It
was computed at any time of the signal. For each set of correlation values
for any channel, the mean CCC, maximum normalized CCC and mean and
maximum spherically normalized CCC was computed.

– Kurtosis (KU). Kurtosis is the fourth-order moment of a signal divided by
the square of its second-order moment.

– Log Energy (LE).

5 Experiments

For the experiments, data from 19 of the ICSI meetings2 were used. We tried
combinations of different features to study the effects of the following parameters:
Window length of the PFFCC feature, reduction of PFFCC features by dct, as
2 The data of the following meetings were used: Bed015, Bed017, Bmr002, Bmr007,

Bmr008, Bmr009, Bmr013, Bmr018, Bmr022, Bmr026, Bmr027, Bro008, Bro013,
Bro014, Bro015, Bro017, Bro018, Bro023, Bro026.
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well as a combination of the PFFCC features with the parameters Cross-channel
Correlation, Kurtosis and Log Energy. As mentioned in Section 4.2, 60ms is a
suitable window length for this task since this length is the average duration
of a vowel. However, we would like to see the effect on the system performance
using a shorter window length (example, 20ms). The reason is that a shorter
window length could be a better choice to make sure that the audio segment
includes only one vowel. Hence, we use window lengths of 20ms and 60ms to
extract features. All these parameters led to six feature sets which are listed in
Table 2. According to the window length and the number of features, the sets
are named 20-41, 20-46, 20-211, 60-41, 60-46 and 60-211.

Table 2. Composition of feature sets

Window No. No. PFFCC CCC KU LE
Length Total 40 205

20 41 • •
20 46 • • • •
20 211 • • • •
60 41 • •
60 46 • • • •
60 211 • • • •

The feature vectors from all the test meetings were extracted and labeled.
Then recognition tests were made using the HTK. As we were interested to
study only the effects of the feature combinations, no smoothing strategy was
applied to the outgoing streams of recognition results.

In Table 3, we report the overall recognition results for two of the meetings
(namely Bed015 and Bmr002) to show the performance of the different feature
sets. It can be seen that the 41-dimensional feature sets, which contain the

Table 3. Overall recognition results for meetings Bed015 and Bmr022

Set Bed015 Bmr022

20-41 44.5% 46.0%

20-46 33.9% 39.3%

20-211 22.7% 22.9%

60-41 47.9% 52.7%

60-46 28.6% 36.3%

60-211 19.0% 17.0%

reduced PFFCC features and log energy, clearly outperform the remaining sets.
But it should be noted that the low performance of the other feature sets may
be due to a problem of normalization, which can be solved in future studies.
In addition, we found that a 60ms window length performs better than a 20ms
window. The reason for that is that a short window can not show a significant
spectral difference between the different audio classes.
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Fig. 5. Recognition rates (upper line with circles) and false positive rates (lower line
with squares) for all 19 test meetings using feature set 60-41. Each of the circles and
squares stands for the recognition rate, and false positive rate accordingly, of one
meeting.

Figure 5 displays the recognition rate (line with circles) and the false positive
rate (line with squares) for the single states of all meetings for the 60-41 feature
set, which performed best. The recognition rate denotes the percentage of cor-
rectly classified frames, while the false positive rate is specified as the proportion
of negative instances that were erroneously reported as being positive.

These results also show that the recognition rate for the classes S and SIL are
much higher than for the classes C and SC. Since our system aims to be used in
the preprocessing of meetings for ASR systems, these results are very useful as
they denote that a rather accurate detection of single speaker frames is possible
and achievable. This indicates that the PFFCC feature is indeed suitable for
the detection of several speakers and deserves further investigation. Our results
can’t be compared directly to the ones reported in [2], because on the one hand
we used a slightly different set of the recorded meetings for training and testing.
And on the other hand Wrigley et al. don’t report their recognition results before
applying a smoothing strategy.

6 Conclusions

In this paper, we presented a system for meeting segmentation, which segments
recorded meetings into the four audio classes: Single speaker, crosstalk, single
speaker plus crosstalk and silence. For that purpose we trained several ergodic
Hidden Markov Models with different feature sets, which were made up of a
feature that had been computed with two layers of subband-based filters, plus
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several other features that had been reported in other publications. Experiment
results show that the performance of our system is effective for the single speaker
and silence classes. Upcoming tasks to improve the recognition rate for the other
classes can include normalization of the feature sets and implementing different
models.
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Abstract. The multi-media archives are very difficult to be shown on
the screen, and very difficult to retrieve and browse. It is therefore im-
portant to develop technologies to summarize the entire archives in the
network content to help the user in browsing and retrieval. In a recent
paper [1] we proposed a complete set of multi-layered technologies to
handle at least some of the above issues: (1) Automatic Generation of
Titles and Summaries for each of the spoken documents, such that the
spoken documents become much more easier to browse, (2) Global Se-
mantic Structuring of the entire spoken document archive, offering to
the user a global picture of the semantic structure of the archive, and
(3) Query-based Local Semantic Structuring for the subset of the spoken
documents retrieved by the user’s query, providing the user the detailed
semantic structure of the relevant spoken documents given the query he
entered. The Probabilistic Latent Semantic Analysis (PLSA) is found to
be helpful. This paper presents an initial prototype system for Chinese
archives with the functions mentioned above, in which the broadcast
news archive in Mandarin Chinese is taken as the example archive.

1 Introduction

In the future network era, the digital content over the network will include all
the information activities for human life. Apparently, the most attractive form
of the network content will be in multi-media including speech information, and
such speech information usually tells the subjects, topics and concepts of the
multi-media content. As a result, the spoken documents associated with the net-
work content will become the key for retrieval and browsing. However, unlike the
written documents with well structured paragraphs and titles, the multi-media
and spoken documents are both very difficult to retrieve or browse, since they
are just audio/video signals, very difficult to be shown on the screen, and the
user can not go through each of them from the beginning to the end during
browsing. As a result, it will be very important to develop a set of technolo-
gies to summarize the entire archives of the spoken documents to help the user
to browse and retrieve the multi-media/spoken documents [1,2]. Such summa-
rization technologies for the entire archives at least need a few key elements:

Q. Huo et al.(Eds.): ISCSLP 2006, LNAI 4274, pp. 683–692, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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information extraction (to extract key information from the spoken documents),
document archive structuring (to organize the archive of spoken documents into
some form of hierarchical structures) and query-based (able to respond to the
user’s query to offer the information about a subset of the archive relevant to
user’s interest).

Note that while some of the technologies mentioned above have been studied
or explored to a good extent, most of the work has been performed independently
within individual scopes. Great efforts have been made to try to integrate several
of these technologies for a specific application , and several well-known research
projects have been successfully developed towards this goal. Examples include the
Informedia System at Carnegie Mellon University [3], the Multimedia Document
Retrieval Project at CambridgeUniversity [4], the Rough’n’Ready System at BBN
technologies [5], the Speech Content-based Audio Navigator (SCAN) System at
AT&T Labs-Research [6], the Broadcast News Navigator at MITRE Corporation
[7], the SpeechBot Audio/Video Search System at Hewlett-Packard (HP) Labs [8],
the National Project of Spontaneous Speech Corpus and Processing Technologies
of Japan [9], and the NewsBlaster project of Columbia University [10].

In a recent paper [1] we proposed a complete set of multi-layered technolo-
gies to handle at least some of the above issues: (1) Automatic Generation of
Titles and Summaries for each of the spoken documents, (2) Global Semantic
Structuring of the entire spoken document archive, and (3) Query-based Local
Semantic Structuring for the subset of the spoken documents retrieved by the
user’s query. All of the above have to do with the analysis of the semantics car-
ried by the spoken documents. Also we proposed that the Probabilistic Latent
Semantic Analysis (PLSA) recently developed for semantic analysis is very help-
ful [1]. In this paper we present an initial prototype system for the functionalities
mentioned above, in which the broadcast news archive in Mandarin Chinese is
taken as the example archive.

2 Proposed Approaches

2.1 Probabilistic Latent Semantic Analysis (PLSA)

The set of documents {di, i = 1, 2, . . . , N} have been conventionally analyzed
by the terms {tj, j = 1, 2, . . . , L} they may include, usually with statistical
approaches. In recent years, efforts have also been made to establish a proba-
bilistic framework for such purposes with improved model training algorithms,
of which the Probabilistic Latent Semantic Analysis (PLSA)[11] is often con-
sidered as a representative. In PLSA, a set of latent topic variables is defined,
{Tk, k = 1, 2, . . . , K}, to characterize the “term-document” co-occurrence rela-
tionships.Both the document di and the term tj are assumed to be independently
conditioned on an associated latent topic Tk. The conditional probability of a
document di generating a term tj thus can be parameterized by

P (tj |di) =
K∑

k=1

P (tj |Tk)P (Tk|di). (1)



A Multi-layered Summarization System for Multi-media Archives 685

Notice that this probability is not obtained directly from the frequency of
the term tj occurring in di, but instead through P (tj |Tk), the probability of
observing tj in the latent topic Tk, as well as P (Tk|di), the likelihood that di

addresses the latent topic Tk. The PLSA model can be optimized with the EM
algorithm by maximizing a carefully defined likelihood function [11].

2.2 Automatic Generation of Titles and Summaries for Spoken
Documents

The titles exactly complement the summaries for the user during browsing and
retrieval. The user can easily select the desired document with a glance at the
list of titles. He can then look through or listen to the summaries in text or
speech form for the titles he selected.

Substantial efforts have been made in automatic generation of titles and sum-
maries for spoken documents [12,13,14,15,16]. In this research, it was found that
the topic entropy of the terms estimated from probabilities obtained in PLSA
analysis is very useful in finding the key terms of the spoken documents in auto-
matic generation of titles and summaries [17][18]. The topic entropy of a term tj
is evaluated from the topic distribution {P (Tk|tj), k = 1, 2, . . . , K} of the term
obtained from PLSA and defined as:

EN(tj) = −
K∑

k=1

P (Tk|tj) log P (Tk|tj) (2)

Clearly, a lower entropy implies the term carries more topical information for a
few specific latent topics, thus is more significant semantically.

In this research, it was found that the sentences selected based on the topic
entropy can be used to construct better summaries for the spoken documents
[17]. For title generation, a new delicate scored Viterbi approach was developed
in this research based on the concept of the previously proposed statistical trans-
lation approach [13]. In this new approach, the key terms in the automatically
generated summaries are carefully selected and sequenced by a Viterbi beam
search using three sets of scores. This new delicate scored Viterbi approach was
further integrated with the previously proposed adaptive K-nearest neighbor
approach [19] to offer better results [18].

2.3 Global Semantic Structuring for the Spoken Document Archive

The purpose of global semantic structuring for spoken document archives is to
offer an overall knowledge of the semantic content of the entire spoken document
archive in some form of hierarchical structures with concise visual presentation to
help the user to browse across the spoken documents efficiently. In this research,
we developed successfully a new approach to analyze and structure the topics of
spoken documents in an archive into a two-dimensional tree structure or a multi-
layer map for efficient browsing and retrieval [20]. The basic approach used is
based on the PLSA concept. In the constructed two-dimensional tree structure,
the spoken documents are clustered by the latent topics they primarily address,
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and the clusters are organized as a two-dimensional map. The nodes on the map
represent the clusters, each labeled by several key terms with the highest scores
for the cluster. The nodes are organized on the map in such a way that the
distances between nodes have to do with the relationships between the topics
of the clusters, i.e., closely located nodes represent clusters with closely related
topics. Every node can then be expanded into another two-dimension map in
the next layer with nodes representing finer topics. In this way the entire spoken
archive can be structured into a two-dimensional tree, or a multi-layered map,
representing the global semantics of the archive [20]. This is very useful for
browsing and retrieval purposes.

2.4 Query-Based Local Semantic Structuring for Spoken Documents
Relevant to User’s Interests

The global semantic structure mentioned above is very useful, but not necessarily
good enough for the user regarding his special information needs , very often
represented by the query he entered to the information retrieval engine. The
problem is that the query given by the user is usually very short and thus not
specific enough, and as a result a large number of spoken documents are retrieved,
including many noisy documents retrieved due to the uncertainty in the spoken
document retrieval. However, as mentioned above, the spoken documents are
very difficult to be shown on the screen and very difficult to browse. The large
number of retrieved spoken document therefore becomes a difficult problem. It
is thus very helpful to construct a local semantic structure for the retrieved
spoken documents for the user to identify what he really needs to go through
or to specify what he really wish to obtain. This semantic structure is localized
to user’s query, constructed from those retrieved documents only, thus needs to
be much more delicate over a very small subset of the entire archive. This is
why the global semantic structure proposed above in section 2.3 cannot be used
here. Instead in this research we propose to construct a very fine topic hierarchy
for the localized retrieved documents. Every node on the hierarchy represents
a small cluster of the retrieved documents, and is labeled by a key term as the
topic of the cluster. The user can then click on the nodes or topics to select the
documents he wishes to browse, or to expand his query by adding the selected
topics onto his previous query [21].

The approach we used in this research for topic hierarchy construction is the
Hierarchical Agglomerative Clustering and Partitioning algorithm (HAC+P) re-
cently proposed for text documents [22]. This algorithm is performed on-line
in real time on the retrieved spoken documents. It consists of two phases: an
HAC-based clustering to construct a binary-tree hierarchy and a partitioning
(P) algorithm to transform the binary-tree hierarchy to a balanced and compre-
hensive m-ary hierarchy, where m can be different integers at different splitting
nodes. The first phase of HAC algorithm is kind of standard, based on the sim-
ilarity between two clusters Ci and Cj and is performed bottom-up, while the
second phase of partitioning is top-down. In this second phase, the binary-tree is
partitioned into several sub-hierarchies first, and then this procedure is applied
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Fig. 1. The block diagram of the initial prototype system

recursively to each sub-hierarchy. The point is that in each partitioning proce-
dure the best level at which the binary-tree hierarchy should be cut in order to
create the best set of sub-hierarchies has to be determined based on the balance
of two parameters: the cluster set quality and the number preference score [21].

3 An Initial Prototype System

An initial prototype system has been successfully developed. The broadcast news
are taken as the example spoken/multi-media documents. The broadcast news
archive to be summarized includes two sets, all in Mandarin Chinese. The first
has roughly 85 hours of about 5,000 news stories, recorded from radio/TV sta-
tions in Taipei from Feb. 2002 to May 2003. No video signals were kept with
them. The character and syllable error rates of 14.29% and 8.91% respectively
were achieved in the transcriptions. The second set has roughly 25 hours of about
800 news stories, all including the video signal parts, recorded from a TV station
in Taipei from Oct. to Dec. 2005. The character and syllable error rates for this
set is 20.92% and 13.90%.

For those news stories with video signals, the video signals were also summa-
rized using video technologies, for example, video frames for human faces, with
moving objects and scene changes are more important, and the length of the
video summary is based on the length of the speech summary. For the global
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Fig. 2. A 3x3 map on the second layer expanded from a cluster on the first layer of
the global semantic structure for world news

semantic structure, a total of six two-dimensional tree structures were obtained
for six categories of news stories, e.g. world news, business news, sports news,
A 3x3 small map on the second layer of the tree for world news overlaid with
the video signal is shown in Fig. 2. This is a map expanded from a cluster
in the first layer covering all disasters happening worldwide. As can be found
that on this map one small cluster is for airplane crash (��) and similar, one
for earthquake (��) and similar, one for hurricane (�	) and similar, and
so on. All news stories belonging to each node of the two-dimensional tree are
listed under the node by their automatically generated titles. The user can easily
browse through the titles or click to view either the summaries or the complete
stories. With this structure it is much more easier for the user to browse the
news stories either top-down or bottom-up. For the query-based local semantic
structuring, the topic hierarchy constructed in real-time from the news stories
retrieved by a query, “White House of United States (
	�
),” is shown on
the left lower corner of Fig 3, in which the three topics on the first layer are
respectively Iraq (�	�), US (
	) and Iran (��), and one of the node
in the second layer below US is President George Bush (��). When the user
clicks the node of President George Bush, the relevant news stories are listed on
the right lower corner by their automatically generated titles. The user can then
click the “summary” button to view the summary, or click the titles to view the
complete stories. Such information are overlaid with the news retrieved with the
highest score.

4 Performance Evaluation

The performance evaluation of some key technologies are briefly summarized
here.
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Fig. 3. The result of query-based local semantic structuring for a query of “White
House of United States”

4.1 Performance Evaluation of Automatic Generation of Titles and
Summaries

118 broadcast news stories recorded at Taipei were used as the test documents
in the evaluation for title generation, compared to human-generated reference
titles. The objective performance measures used were precision, recall, and F1
scores calculated from the number of identical terms in computer-generated and
human-generated titles. In addition, five-level subjective human evaluation was
also performed, where 5 is the best and 1 is the worst, with two different met-
rics, ”Relevance” calibrating how the titles are related to the documents, and
”Readability” indicating how the titles are readable. In subjective human eval-
uation, each subject was given the reference titles with reference scores for some
reference documents. The results for the previously proposed statistical Trans-
lation (ST) approach [13], Adaptive K-nearest-neighbor (AKNN) approach [19]
and the new approach proposed here are listed in table 1. It can be found that
the proposed approach performs significantly better in all measures, except with
slightly lower readability than AKNN.

The F-measure results of the proposed summarization approach using N-
gram co-occurrence statistics (ROUGE-1,2,3) and the longest common sub-
sequence (ROUGE-L) evaluated with ROUGE package [23] with respect to
human-generated summaries are shown in table 2 for summarization ratios of
10% and 30%. Here listed are two different ways to perform the automatic

Table 1. Evaluation results for title generation

Approaches Precision Recall F1 Relevance Readability
ST 0.0783 0.1513 0.1032 3.615 1.874
AKNN 0.1315 0.1074 0.1183 3.594 4.615
Proposed 0.2176 0.2119 0.2147 4.102 4.332
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Table 2. Evaluation results for automatic summary generation

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-L
Summarization 10% 30% 10% 30% 10% 30% 10% 30%
Ratio
Significance 0.27 0.48 0.18 0.40 0.16 0.36 0.26 0.47
Score
Proposed 0.36 0.54 0.30 0.47 0.29 0.44 0.36 0.53

summarization: the well known and very successful significance score [15,16],
and the approach proposed in this research respectively. It can be found that
the proposed approach is better in all scores.

4.2 Performance Evaluation of Global Semantic Structuring

The performance evaluation for the global semantic structuring was performed
on the TDT-3 Chinese broadcast news corpus [20]. A total of 47 different topics
have been manually defined, and each news story was assigned to one of the
topics, or as “out of topic”. These 47 classes of news stories with given topics
were used as the reference for the evaluation. We define the “Between-class to
within-class” distance ratio as in equation (3),

R = d̄B/d̄W , (3)

where d̄B is the average of the distances between the locations of the two clusters
on the map for all pairs of news stories manually assigned to different topics, and
d̄w is the similar average, but over all pairs of news stories manually assigned to
identical topics. So the ratio R in equation (3) tells how far away the news stories
with different manually defined topics are separated on the map. Apparently, the
higher values of R the better. On the other hand, for each news story di, the
probability P (Tk|di) for each latent topic Tk, k = 1, 2, . . . , K, was given. Thus
the total entropy for topic distribution for the whole document archive with
respect to the organized topic clusters can be defined as:

H = −
N∑

i=1

K∑
k=1

P (Tk|di) log(P (Tk|di)), (4)

where N is the total number of news stories used in the evaluation. Appar-
ently, lower total entropy means the news stories have probability distributions

Table 3. Evaluation results for the global semantic structuring

Choice of Distance Ratio (R) Total Entropy
Terms Proposed SOM (H)

(a) W 2.34 1.11 5135.62

(b) S(2) 3.38 1.04 4637.71

(c) C(2) 3.65 1.03 3489.21

(d) S(2)+C(2) 3.78 1.02 4096.68
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more focused on less topics. Table 3 lists the results of the performance mea-
sure for the proposed approach as compared to the well-known approach of
Self-Organized Map (SOM) [24] for different choices of the “term” tj used, i.e.,
W(words), S(2)(segments of two syllables), C(2)(segments of two characters),
and combinations.

4.3 Performance Evaluation of Query-Based Local Semantic
Structuring

The performance evaluation for the query-based local semantic structuring was
performed using 20 queries to generate 20 topic hierarchies [21]. The average
values of correctness (C) and coverage ratio (CR) were obtained with some
manual efforts. The correctness (C) is the measure if all the key terms in the
topic hierarchy is correctly located at the right node position. It can be evaluated
by counting the number of key terms in the topic hierarchy which have to be
moved manually to the right node position to produce a completely correct
topic hierarchy. The coverage ratio (CR) is the percentage of the retrieved news
stories which can be covered by the key terms in the topic hierarchy. On average
a correctness (C) of 91% and a coverage ratio (CR) of 97% were obtained.

5 Conclusion

In this paper we presented an initial prototype system which performs multi-
layered summerization for multi-media archives for the purposes of efficient
browsing and retrieval. This includes (1) Automatic Generation of Titles and
Summaries for each of the spoken documents, (2) Global Semantic Structuring
of the spoken document archive and (3) Query-based Local Semantic Structur-
ing for the subset of spoken documents relevant to user’s query. Satisfactory
performance for the system was obtained.
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Abstract. Story segmentation plays a critical role in spoken document 
processing. Spoken documents often come in a continuous audio stream without 
explicit boundaries related to stories or topics.  It is important to be able to 
automatically segment these audio streams into coherent units.  This work is an 
initial attempt to make use of informative lexical terms (or key terms) in 
recognition transcripts of Chinese spoken documents for story segmentation.  
This is because changes in the distribution of informative terms are generally 
associated with story changes and topic shifts.  Our methods of information 
lexical term extraction include the extraction of POS-tagged nouns, as well as a 
named entity identifier that extracts Chinese person names, transliterated person 
names, location and organization names.  We also adopted a lexical chaining 
approach that links up sentences that are lexically “coherent” with each other.  
This leads to the definition of a lexical chain score that is used for story 
boundary hypothesis.  We conducted experiments on the recognition transcripts 
of the TDT2 Voice of America Mandarin speech corpus.  We compared among 
several methods of story segmentation, including the use of pauses for story 
segmentation, the use of lexical chains of all lexical entries in the recognition 
transcripts, the use of lexical chains of nouns tagged by a part-of-speech tagger, 
as well as the use of lexical chains of extracted named entities.  Lexical chains 
of informative terms, namely POS-tagged nouns and named entities were found 
to give comparable performance (F-measures of 0.71 and 0.73 respectively), 
which is superior to the use of all lexical entries (F-measure of 0.69).  

Keywords: Story boundary detection, lexical cohesion, informative terms 
extraction, named entities. 

1   Introduction 

Story segmentation plays a critical role in spoken document processing.  Spoken 
documents often come in a continuous audio stream (e.g. in news broadcasts) without 
explicit boundaries related to stories or units.  It is important to be able to 
automatically segment these audio streams into coherent units.  The segmentation 
process is non-trivial since the physical audio contents of a story boundary may be 
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very diverse – it may be a silent pause, a short duration of music, a commercial break, 
etc. A simple approach for detecting story boundaries may be based on cue word 
matching, but the cue words may be specific to the television/radio program and its 
period.  Changes in the cue words will present a need to alter the heuristics in the 
system.  Previous approaches have used a combination of prosodic, lexical, semantic 
and structural cues for story segmentation.  They include audio energy levels and their 
changes [1], timing and melody of speech [2], novel nouns appearing in a short look-
ahead window [3], word repetitions, synonyms and other associations [4].  In 
particular, Stokes et al. [4] proposed the use of lexical chaining that does not depend 
on specific cue word entries.  Hence the approach is robust towards changes in the 
program and time.  Previous work was done mostly in English text or speech 
recognition transcripts of English audio.  Limited results were presented for Chinese.   
This paper reports on our initial attempt in the development of an automatic story 
segmentation system based on recognition transcripts of Chinese news audio.  The 
approach includes extraction of informative lexical terms, including nouns and named 
entities; followed by the insertion of “lexical chains” that connects repeated 
informative terms.  These chains are then used in scoring sentences for story 
boundary hypothesis.  Figure 1 depicts an overview of the task of audio extraction 
from an audio/video news program, the process of recognition transcription, the 
process of story boundary detection and the use of detected boundaries for story 
segmentation.  

Story Boundary
Detection

Audio/video
New  

Programs

Story
Segmentation

Audio
Extraction

Speech 
Recognition

Segmented 
Audio/video

News 
Programs

 

Fig. 1. Overview of the story segmentation task 

2   Experimental Corpus and Evaluation 

The experimental data is based on TDT2 Voice of American (VOA) Mandarin 
Speech corpus from February to June 1998 [5].  The VOA corpus contains radio news 
broadcasts in Mandarin and the corresponding recognition transcripts in GB-encoded 
Chinese characters.  The recognition transcripts include pauses.  Story boundaries are 
manually annotated in TDT2.  Among 177 programs in TDT2, 54 programs (Feb to 
April) are used for training and parameter tunings and the rest of 123 programs (May 
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to June) are used for evaluation.  From the training set, there are 1,549 stories in the 
corpus where 1,106 are annotated as news stories.  The remaining are classified as 
miscellaneous.  Miscellaneous stories contain filler content during story transition 
(e.g. silence, music, both silence and music, etc.), a news summary, an advertisement 
or introductory and conclusive comments from the newscaster.  For the evaluation set, 
there are 1,456 stories where 1,159 are annotated as news stories.  According to the 
TDT2 evaluation plan version 3.7 [6], a hypothesized story boundary is considered 
“correct” if it is placed with 15 seconds of the manually defined reference boundary. 

3   Overview of the Approach 

Our approach for automatic story segmentation includes three phases:  (i) informative 
lexical term extraction; (ii) lexical chaining and (iii) story boundary hypothesis.  
Details on each phase are presented in the following subsections. 

3.1   First Phase – Extraction of Informative Lexical Terms (Nouns and Named 
Entities)  

Our work on informative lexical terms extraction can draw heavily from previous 
work in the MUC (Message Understanding Conference) and MET (Multilingual 
Entity Task Evaluations) that focused on named entities (NE) [7].  Informative lexical 
terms refer to terms that carry useful content related to its story.  Previous approaches 
have emphasized the use of nouns (see section 1).  Other examples of informative 
terms are named entities include person names, location names, organization names, 
time and numeric expressions.  For our experiments, we use an existing part-of-
speech (POS) tagger [8] to perform part-of-speech tagging in Chinese.  We extract the 
tagged nouns informative terms.  We also develop a named entity extraction approach 
to extract Chinese person names, transliterated foreign person names, location names 
and organization names.  It is well-known that the Chinese language presents a 
special research challenge for automatic lexical analysis due to the absence of an 
explicit word delimiter.  A Chinese word may contain one or more characters and the 
same character set is used for both Chinese names and transliterated foreign names.  
Automatic lexical analysis of speech recognition transcripts faces the additional 
challenges of recognition errors and word segmentation errors.  The latter arises 
because the speech recognizer’s output is based on its (constrained) vocabulary, 
which is different from the open vocabulary in news audio.  In view of this, we 
propose a lexicon-based approach and a purely data-driven approach for word 
tokenization followed by a series of NE filters to extract informative terms. 

3.1.1   Word Tokenization 
Figure 2 illustrates our word tokenization algorithm.  Lexicon-based word 
tokenization involves a greedy algorithm that maximizes the length of the matching 
string as it references the CALLHOME lexicon.  However, out-of-vocabulary (OOV) 
words absent from the lexicon will be tokenized as a series of singleton characters.  
Proper names are often OOV.  For example:  
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(translation: trade representative Barshefsky) 
 
The character string is tokenized as:  

 

 

 
Fig. 2. Word tokenization using lexicon-based maximum matching as well as suffix array for 
generating candidate informative terms 

Therefore, in order to salvage the OOV words that may potentially be a name, we 
conjoin the contiguous singletons to form a candidate name for names filtering in the 
subsequent module, i.e.: 

(translation: [trade] [representative] <Barshefsky>) 
 
In other words, the lexicon-based approach leverages available lexical knowledge 

to extract OOV words that may be candidate names.  However, since a given Chinese 
character sequence may have multiple possible word segmentations, the greedy 
algorithm may be biased by the lexicon and may miss out on other possible 
tokenization options.  Hence, we supplement with a purely data-driven approach for 
word tokenization.   

We used the suffix array structure [9] to extract the longest recurring string patterns 
in a radio program.  The algorithm generates all substrings at all lengths within all 
sentences / utterances.1  These substrings are then sorted.  Only substrings that occur 
more than once and with lengths greater than one character are preserved, stop 
characters on either ends are removed and the resulting strings are treated as candidate 
names for subsequent names extraction. Analysis shows that the suffix array uncovers 
substrings such as “ ” (translation: “Clinton in”) and “ ” 
(translation: 80,000 Deutsch Mark), which may contain useful transliterated names.  

                                                           
1 For the kth sentence with Nk characters (C1, C2,…,CNk), possible output is {Cki…Ckj,; ∀i=1 to 

Nk, ∀j=i to Nk}. 
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3.1.2   Names Extraction 
Four types of names will be extracted from the list of tokenized words: Chinese 
person names, transliterated person names, location names and organization names.  
For Chinese person name extraction, we apply two simple heuristics in this step:  (a) 
the most common 100 surnames with reference to the surname list from [10], 
augmented with other surnames we found from the Web (i.e. 219 Chinese surnames 
in all); and (b) the popular Chinese names structure that consists of the surname (in 
one or two characters), followed by the given name (in one or two characters).  Valid 
name structures include: SG, SGG, SSG and SSGG (where ‘S’ denotes a surname 
character, e.g. ; and ‘G’ denotes a given name character, e.g. ).  Hence, in the 
Chinese name filtering procedure, a name candidate must be of two to four characters 
in length and must follow the pre-defined name structures in order to be qualified as a 
Chinese name.  

Extraction continues with a transliterated name character bigram model that is 
trained on the MEI transliterated name list of 42,299 items [11].  We used Good-
Turing discounting and backoff smoothing.  By thresholding the normalized log 
probability at above -3, a 99% recall can be obtained from the training data.  Log 
probability score are calculated for each word tokens, those scores above the 
threshold (i.e. -3) are extracted as transliterated person name. 

A list of commonly used location and organization suffix characters are used to 
further extract word token which contains special suffix characters, e.g. “    

    ” (translations: department, office, school, company, city, lake, 
village, road).  We also used a list of well-known location and organization names as 
basis for the extraction of known organization and location names. 

3.2   Second Phase – Lexical Chaining 

We extended the lexical chaining approach in [4] to Chinese with a focus on the 
repetition of informative lexical terms as an indicator of lexical cohesion.  Lexical 
cohesion is represented as lexical chains that connect repeated occurrences of 
informative lexical terms.  As mentioned previously, informative lexical terms 
include nouns or named entities.  Other terms are deemed non-informative.  If we 
observe a point in the story transcriptions where many existing lexical chains end and 
new lexical chains begin, then we consider it to be an indicator of a possible topic 
shift that is related to the occurrence of a story boundary. 

More specifically, we group all contiguous words in the recognition transcripts of 
TDT2 into a “sentence”.  Hence the “sentences” are separated by pauses.  Each 
sentence is labeled with an index number.  Every informative lexical term in a 
sentence is tracked with regards to its occurrences in other sentences.  This tracking 
process is conducted sequentially across the sentences that lie within a fixed window 
length, i.e. the window length for chain formation.  Choice of values for this window 
length should reference the story length.  In our training set, 94% of the stories range 
between 20 and 400 seconds in duration.  At every 20 second we take a value and a 
total of twenty values are obtained.  From these twenty values, the one that optimizes 
the training performance is selected.  A lexical chain is inserted if the current sentence 
contains an informative lexical term that has occurred in the previous sentence. We 
define a “start chain” (i.e. starting lexical chain) to occur where a lexical term is 
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chained to the following sentences but not the preceding sentences.  Conversely, we 
define an “end chain (i.e. ending lexical chain) to occur where a lexical term is 
chained to the preceding sentences but not the following sentences.  This is illustrated 
in Figure 3.  

 

Fig. 3. Illustration of lexical chaining, Sentence 1 contains three start chains ( , , 
); Sentence 2 contains one end chain ( ) as well as one start chain ( ); 

Sentence 3 contains three end chains ( , , ) and Sentence 4 contains three 
start chains ( , , ) 

3.3   Third Phase – Story Boundary Hypothesis 

After all lexical chains are established, we assign a “chain score” to every sentence, 
defined as: 

chainScoresent_i = num_start_chainsent_i + num_end_chainsent_i-1    (Equation 1) 

Based on Equation (1), the chain scores for sentences 1 to 4 in Figure 3 should be 
3, 1, 1 and 6 respectively.  A sentence with a high chain score generally has a high 
number of start chains and its preceding sentence contains a high number of end 
chains.  This should be an indication of a likely occurrence of a story boundary. 

In this work, we take an “over-hypothesize and filter” approach to story boundary 
hypothesis.  We will first hypothesize the occurrence of a story boundary if the chain 
score exceeds a tuned threshold as obtained from parameter tuning.  We observed 
from the training data that story boundary existed at sentence with chain scores 
between one to nine.  A tuned threshold can be obtained within this range.     
However, given that the evaluation criterion can tolerate offsets of 15 seconds for a 
story boundary (see Section 2), we also follow up with a filtering mechanism that 
selects the highest-scoring proposed boundary within a fixed window length.  For 
example, in Figure 4 we see two sentences that lie 5.68 seconds apart but with two 
hypothesized boundaries.  The filtering mechanism will remove the boundary at time 
272.1 (with lower chain score=4) and keep the boundary at time 266.42 (with higher 
chain score =5).  This parameter can be obtained by tuning in the development set  
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Fig. 4. Illustration of the filtering mechanism for hypothesized story boundaries.  We take an 
“over-hypothesize and filter” approach to story boundary detection.  Sentences with a chain 
score exceeding a trained threshold will be hypothesized with a story boundary.  Given that the 
evaluation criterion can tolerate boundary offsets up to 15 seconds, our filtering mechanism 
uses a fixed window length within which only the highest-scoring boundary is preserved.   

where given that there is a 15 seconds offsets during evaluation, a value smaller than 
30 seconds will be a reasonable candidate for this parameter.   

4   Experimental Results 

We have a series of comparative experiments on automatic story segmentation.  The 
various experimental setups are: 

 
1. Baseline performance using pauses:  The first baseline segments stories based 

on the occurrence of pauses.  A story boundary is hypothesized whenever a pause 
occurs in the recognition transcripts.  This is a very aggressive baseline segmenter, 
since pauses may also result from breath breaks, turn-taking in a dialog, etc. which 
do not correspond to a story boundary. 

2. Baseline performance using all lexical terms:  The second baseline includes all 
lexical terms found in the recognition transcripts for lexical chaining.  Hence the 
vocabulary used for lexical chaining is identical to that of the speech recognizer.    

3. Performance of lexical chaining with POS-tagged nouns:  An existing POS 
tagger [8] which is trained on another text corpus is used for tagging nouns 
(including locations).  These are categorized as “informative lexical terms” and 
only such terms are used for lexical chaining and subsequent story boundary 
hypothesis. 

4. Performance of lexical chaining of extracted named entities:  In this setup, 
informative lexical terms are defined as extracted named entities, including 
Chinese personal names, transliterated personal names, location names and 
organization names.  The method of extraction is described in Section 3.1.  The 
extracted named entities are used in the lexical chaining experiments. 

 

<sen id=”25” time=”266.42” score=”5” boundary=”yes”> 
" "" "" "" "</sen> 

<sen id=”26” time=”272.1” score=”4” boundary=”yes”> 
" "" "" "</sen> 

Before filtering hypothesized boundaries 

After filtering hypothesized boundaries 

<sen id=”25” time=”266.42” score=”5” boundary=”yes”> 
" "" "" "" "</sen> 

<sen id=”26” time=”272.1” score=”4” boundary=”no”> 
" "" "" "</sen> 
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Table 1 shows the tuned values for each parameter from the training corpus.  The 
window length for chain formation is consistent across all units and 80 is actually 
closed to the average story length (100 seconds) in the training corpus.  The window 
length for boundary removal also consistent across all units at 25 seconds while the 
chain score differ with each other where the chain score value is in proportional to the 
number of terms available during chain formation.  From the training corpus, the best 
performance is obtained by using named entities for chaining where it also achieved 
the best precision among other chaining units. 

Table 1. shows tuned parameters for each lexical chaining unit in the training data set as well 
as their corresponding performance on story boundary detection 

 All lexical 
terms 

POS-tagged 
nouns 

Named 
entities 

Window length for chain 
formation (seconds) 

80 80 80 

Chain score threshold 4 3 2 
Window length for boundary 
removal (seconds) 

25 25 25 

Number of terms 191,371 115,110 43,417 
Precision(P)  0.55 0.58 0.63 
Recall (R)  0.64 0.69 0.66 
F-measure (F) 0.59 0.63 0.64 

We applied the trained thresholds to the evaluation corpus and results are shown in 
Table 2 and Figure 5. Total number of terms for each chain unit in the evaluation 
corpus is 67,380, 43,051 and 18,872 respectively. 

Table 2. Performance on story boundary detection based on (i) use of pauses in recognition 
transcripts; (ii) lexical chaining of all vocabulary items in recognition transcripts; (iii) lexical 
chaining of POS-tagged nouns; (iv) lexical chaining of extracted named entities 

 Pauses only All lexical 
terms 

POS-tagged 
nouns 

Named 
entities 

Precision(P)  0.04 0.86 0.87 0.88 
Recall (R)  1 0.57 0.63 0.59 
F-meas. (F) 0.08 0.69 0.73 0.71 

It can be observed from Figure 5 that story segmentation based on pauses produces 
very high recall (R=1) but very low precision (P=0.04), leading to an F-measure of 
0.08.  This is because there are over 14,700 pause segments in the corpus but only 
1,159 correspond to story boundaries.  The filtering mechanism removes a fraction of 
false alarms in story boundary hypotheses occurring within a 25-second window. 
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Fig. 5. Performance on story boundary detection based on (i) use of pauses in recognition 
transcripts; (ii) lexical chaining of all vocabulary items in recognition transcripts; (iii) lexical 
chaining of POS-tagged nouns; (iv) lexical chaining of extracted named entities 

As we migrated to the use of lexical chaining of all vocabulary items in the 
recognition transcripts, performance values are P=0.86, R=0.57 and the overall F-
measure improved to 0.69.  The lexical chains offer lexical constraints for story 
segmentation.  Lost recall is generally due to having too few lexical chains, causing 
the chain score to fall below the threshold, thereby missing the hypothesis of a story 
boundary.  For example, one of the boundary sentences was “ ”
(translation: in Guatemala), where there is only one lexical chain, leading to a missed 
story boundary. 

The use of POS-tagged nouns attains the performance of P=0.87, R=0.63 and 
further improved the F-measure to 0.73.  We believe that these selected informative 
terms offers more focus in ascertaining lexical coherence.  For example, the sentence 
“    ” (translation:  one power plant, one nuclear reactor) 
contains three terms “" "" "" "”.  Two of these are tagged as 
nouns, i.e. “" ", " "”.  The term “ ” is rather general and is 
generally not significant in the determination of lexical cohesion.  It may even be 
possible for such terms to give rise to insignificant lexical chains that generate 
inaccurate story boundaries.  This is an illustration of the possible benefits of using 
POS-tagged nouns for lexical chaining. 

The use of extracted named entities gave the performance of P=0.88, R=0.59 and 
the F-measure of 0.71, which suggests that these are comparable with POS-tagged 
nouns for ascertaining lexical cohesion for story segmentation, with slightly better 
precision and slightly lower F-measure.  In our analysis, we found that named entities 
are often more descriptive of lexical cohesion than general nouns (hence achieving 
better precision).  For example,  the sentence with the named entities,"   

   " (translation: US, Middle East, special envoy, Roth, 
Monday, Israel) contains five nouns “     ”.  The term “

” (Monday) was lexically chained with a preceding sentence, which suggests 
lexical cohesion of this sentence with the preceding sentences.  The remaining four 
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terms were chained with following sentences which suggests lexical cohesion with 
following sentences and thereby outweighing the effect of the term “ ”.  Since 
named entities generally contain more distinctive information for describing lexical 
cohesion, they provide a better precision value for story segmentation.  On the other 
hand, when compared with POS-tagged nouns, named entities achieve a lower recall for 
in both the training and evaluation corpora.  This may be related to the use of 18.872 
unique named entities in the data set, as compared with 43,051 POS-tagged nouns. 

7   Conclusions and Future Work 

This paper presents our initial experiments in automatic story segmentation of 
recognition transcripts of Chinese spoken documents.  This is an important problem 
since spoken documents often come in a continuous audio stream without explicit 
boundaries that indicate the transition from one story (or topic) to another.  Our 
approach consists of three phases:   

• Automatic term extraction that includes lexicon-based maximum matching 
for word tokenization, followed by POS tagging and nouns extraction.  We 
also develop a named entity extraction approach, involving lexicon-based 
maximum matching to uncover out-of-vocabulary words as singleton 
characters, together with purely data-driven suffix array approach that 
identify recurring strings.  These extracted terms are then passed through a 
series of filters for Chinese names, transliterated names, location and 
organization names. 

• A lexical chaining algorithm that connects repeated informative lexical terms 
as an indication of lexical cohesion among sentences.  Story boundaries tend 
to occur where many existing lexical chains end and new lexical chains 
begin. 

• A story boundary hypothesis component that adopts an “over-hypothesize 
and filter” paradigm – the lexical chain score (based on the total number of 
ending and starting lexical chains) of each sentence is compared with a 
trained threshold, above which a story boundary will be proposed.  This is 
followed by a filtering mechanism that checks whether multiple boundaries 
are hypothesized within a small time window (25 seconds), upon which only 
the highest-scoring boundary hypothesis is preserved. 

 
We conducted story segmentation experiments based on TDT2 Voice of America 

Mandarin news data.  We observe increasing F-measures in story segmentation 
performance as we migrate from using only pauses for story segmentation; using all 
vocabulary items in the recognition transcripts with lexical chaining; using 
informative terms with lexical chaining.  These results suggest that named entities 
serve well as informative lexical terms that can effectively describe lexical cohesion 
for automatic story segmentation.  Future work will incorporate the use of both POS-
tagged nouns and named entities, synonyms and other word associates in HowNet 
[12] for lexical chaining; as well as the incorporation of other prosodic features, e.g. 
fundamental frequencies for story segmentation. 
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Abstract. In statistical machine translation, many of the top-performing 
systems are phrase-based systems. This paper describes a phrase-based 
translation system and some improvements. We use more information to 
compute translation probability. The scaling factors of the log-linear models are 
estimated by the minimum error rate training that uses an evaluation criteria to 
balance BLEU and NIST scores. We extract phrase-template from initial 
phrases to deal with data sparseness and distortion problem through decoding. 
By re-ranking the n-best list of translations generated firstly, the system gets the 
final output. Some experiments concerned show that all these refinements are 
beneficial to get better results. 

Keywords: phrase-based translation, minimum error rate training, phrase-
template, re-scoring. 

1   Introduction 

Statistical machine translation is a promising approach to large vocabulary text 
translation. Inspired by the Candide system IBM developed in the early 1990s [1], 
many statistical machine translation systems have been proposed. From the word-
based system initially, phrased-based and syntax-based translation systems have been 
developed [2][3]. 

We have proposed a phrase-based translation system [4]: In the system, we applies 
phrase-based translation model to capture the corresponding relationship between 
source and target language. A phrase-based decoder we developed employs a beam 
search algorithm, in which some target language words that have both high frequency 
of appearance and also fertility zero are introduced to make the result more 
reasonable. We improve the previously proposed tracing back algorithm to get the 
best path. 

This paper shows some improvements of our system currently: Section 2 presents 
the architecture of our system. Section 3 describes how to extract phrase-template 
from initial phrases. Section 4 studies the approach to compute the translation 
probability and train the scaling factors of all the models used in the translation 
system. Our system uses some special information to re-score the n-best translations, 
this is outlined in Section 5. In Section 6, a series of experiments are presented. We 
analyze the results. We summarize our system in Section 7. 
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2   System Description 

In statistical machine translation, we are given a source language (Chinese) sentence 

1 1
J

j Jc c c c= ⋅⋅ ⋅ ⋅ ⋅ ⋅ , the goal is to generate the target language (English) sentence 

1 1
I

i Ie e e e= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  which maximize the posterior probability: 
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Applying the maximum entropy framework [5], the conditional distribution 

1 1Pr( |I Je c ) can be modeled through suitable feature functions, our system is based 

on a log-linear model which extends the word-based IBM Model to phrase-based 
model. We obtain: 
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Our system uses some feature models to drive the translation process: translation 
model, language model, distortion model and future score model. The system exploits 
two search passes: the first is performed by a beam search [4] to obtain n-best results, 
the second is a re-scoring algorithm to get the final output. The process is illustrated 
as follows: 

 
 
 
 
 
 
 

Fig. 1. The decoding illustration of our phrase-based translation system 

3   Generalizing Phrases 

The translation system often encounters data sparseness and distortion problem. 
Koehn et al. [6] find data sparseness takes over for long phrases. Many systems use 
very simple distortion model [6][7] to reorder phrases, which penalizes translations 

target string 
source string 

decoder n-best Re-scoring 
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according to the jump distance instead of the syntax information. This model takes the 
risk of dealing with the long distance jump that is usually common between two 
languages with different expression habit. So we extract phrase-template from initial 
phrase pairs to alleviate these problems. The phrase are generalized in two ways:  

If the phrase pairs include named entities such as named persons, locations and 
organization, or numeral, we replace them with some certain symbols in source and 
target sides. We call the generalized phrase of this type N_template. Some symbol 
examples are showed in table 1. Name entities are translated by separate rule-based 
module through searching process. 

Table 1.  Some symbol examples replacing name entities 

type Symbol in source side Symbol in target side 
named persons PER_ per_ 

locations LOC_ loc_ 
organizations ORG_ org_ 

numeral TIMP_ timp_ 

Besides this method, we generalize phrase pairs that don’t include named entities 
as done inl [8], we call the rule generated X_template : 

1. Initial phrase pairs are extracted from sentences similar to [6]. Every initial 
phrase pair is an X_template. 

2. Aligned source-target small phrase included in initial phrases can be replaced by 
a nonterminal X. Then the phrase-template is extracted. 

3. We only extract phrase template that has only one nonterminal and at least one 
terminal. This prevent from producing too many phrase-template. 

The generalized phrases have some forms like that in table 2.  
Because many phrase pairs may generate the same X_template. We select the 

highest translation probability of these phrase as that of X_template. But its real 
translation probability is the product of probability of X_template and the relevant 
nonterminal X. During decoding, only when the phrase can not be found in the phrase 
table, the corresponding phrase-template is used. 

Table 2.  The forms of phrase-template generated 

Type Initial phrase pairs 
(source # target) 

Generalized phrase pairs 
(source # target) 

9   # get at 9 TIMP_  #  get at timp_ N_tempate 

   # 
from Jinan to Wuhan 

LOC_ LOC_  #  
from loc_ to loc_ 

   #  
connect with the voters 

 X1    # 
connect with X1 

X_template 

   # 
one of his friends 

X1  # 
one of X1 
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4   Translation Model and Minimum Error Rate Training 

There are several approaches to compute the phrase translation probability, Koehn 
estimate the probability distribution by relative frequency [6]: 

1

( , )

( )

c c e
h

c c
=

 . 
(3) 

or  

2

( , )

( )

c c e
h

c e
=

 . 
(4) 

Where e  and c are English and corresponding Chinese phrase, and c(·) means the 
occurrence count in the training data. But if two phrase pairs have the same 
frequency, the probabilities have little discrimination. To get more discriminative 
probability, CMU calculate probabilities based on a statistical lexicon (such as IBM 
model 4) for the constituent words in the phrase, the formula is: 

3 ( | )i j
i j

h p c e= ∏  (5) 

or inverse the formula: 

4 ( | )j i
j i

h p e c= ∏  . (6) 

where ic  and je  are the words that constitute phrase c  and e , ( | )i jp c e  is the 

IBM model. This method has a drawback: If only one word of source phrase has no 
appropriate corresponding word in target phrase, the phrase translation probability 
will be small. 

In order to offset the shortcoming of each method, we combine these four formulas 
to compute the phrase translation probability. The four formulas, distortion model, 
language model and future model are combined by log-linear form with a scaling 
factor each. The factors are estimated on the development data, by applying a 
minimum error training procedure [9]. It is an optimization problem, we use the 
simplex algorithm [10] to solve this problem. A key role of this training process is the 
evaluate metric. Firstly, we select BLEU as metric, we get a high BLEU score, but a 
low NIST score because the output sentences are short. Accordingly, we get a high 
NIST score at the cost of a significant deterioration of BLEU score when the NIST is 
used as the evaluate metric. A reasonable trade-off was final acquired using the metric: 

100*BLEU + 5*NIST 

The coefficient training process are introduced as follows: 

1 Give every model scaling factor an initial value. 
2 Use the current factor value to obtain the n-best candidate translations and 

corresponding features for each sentence through decoding. Merge the n-best lists   
across iterations. 
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3 Run the minimum error training to get the factor value of this iteration. If the value 
converges, the process stops, otherwise, goes to 2. The maximum of iteration is set 
as 10.  

5   Re-scoring  

The output sentence with the highest probability sometimes is not the best one 
compared with the reference translation. So we apply three additional feature 
functions to re-rank each of the 500 candidate translations for every input sentence: 

•   2-gram target language model.. 
•   4-grams target language model 
•   Question feature, that is, if the input sentence ends with a question punctuation,   

we alleviate the penalizing on distortion. 
•   Name entity feature, i.e. if the number of name entity of output sentence is equal 

to that of source sentence, a binary feature is triggered to favor this translation. 

We use the SRI Language modeling Toolkit to train language model. These 
features can be used respectively or combinatorially. We first get the top 500 
candidates for every input sentence, then re-rank them to obtain the final output. The 
experiments are introduced in Section 6. 

6   Experiments 

We carry a number of experiments on 2005 863 Chinese-to-English MT evaluation 
tasks of China. 870,000 sentence pairs are used as training data to train the translation 
and language model. 500 Chinese sentences with about 4 reference translation 
sentences each are used as development data, we use the development data to 
optimize the model scaling factors. About 450 sentences are reserved for testing all 
the experiments. All these data are from the 2005 863 MT evaluation data. These 
sentences are about tour and daily life with the length of 5-20 words.  

First we do experiments on the test data to check the role of the phrase-template. 
The experiments are made without training the model scaling factor. The results are 
shown in figure2. Where No_template denotes no phrase-template used, and 
+_template denotes adding phrase-template. We can see with the phrase-template 
added, the BLEU score goes up from 0.182 to 0.197, NIST score increases from 4.77 
to 5.86. This experiment shows the phrase-templates play a positive role because they 
partly remedy the data sparseness and distortion problem. So we train the model 
factor by minimum-error-rate training with phrase-template added. The results are 
showed in figure 3 and table 3. 

We make minimum error rate training on development set. We translate the 
sentence of test data to check the effect of the training, the results are showed in table 3. 
From figure 3, we can see the BLEU score’ changing trend with the total number of  
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translation candidates. The NIST score changes like this situation. The training 
procedure is iterated until the n-best list remains stable. In our experiment, about 9 
iterations are needed for convergence. The final values of each model’ scaling factor 
are showed in table 3. The BLEU score increases 0.015 from 0.197 to 0.212, and the 
NIST score goes up from 5.86 to 6.22. 

Finally, we do experiments on the test set for re-ranking. Table 4 shows the single 
contribution of the 4 feature functions used. Almost all the features enhance the 
performance except question feature, this is because the phrase-template has partly 
resolve reordering phrases. This feature breaks the balance of all the models used. The 
result from 4-gram feature is superior to other methods, this indicates the n-gram 
feature provides a significant role on fidelity and fluency of the translation. 
Combining these methods always leads to some improvement. 

 

Fig. 2.  The role of the phrase-template 

 

Fig. 3. Blue score as a function of the total number of generated translation candidates 
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Table 3. The final model factors and the BLEU and NIST score results when translating the 

test data. 1λ ~ 4λ mean the translation model factor, Lmλ , disλ  and futλ  mean the scaling 

factor of language model, distortion modle and future score model respectively 

1λ  2λ  3λ  4λ  Lmλ  disλ  futλ  

1.0628 0.0031 2.4476 0.7702 1.3992 0.1185 1.6576 
BLEU (4-gram) 0.212 

NIST 6.22 

Table 4. The effect of each feature functions in re-scoring step on the test data 

System BLEU(4-gram) NIST 
baseline 0.212 6.22 

Question feature 0.202 5.92 
2-grams LM 0.213 6.31 
4-grams LM 0.221 6.64 

Name entity feature 0.216 6.52 
All features 0.224 6.83 

7   Conclusion 

In summary, this paper shows some improvements to our phrase-based translation 
system. We use phrase-template to alleviate data sparseness and reorder the phrases 
during translation. The translation model is refined, and the scaling factors of the all 
the models are estimated by minimum error rate training. Instead of output the 
translation with the highest probability, we re-score the n-best lists to get the final 
translation. All these efforts are effective to our system. 

Although we used some formal syntax to generalize the phrases, how to combine 
syntax with phrase is our important work next. We will do some studies about parsing 
to improve our phrase-based system next step.    
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Abstract. In this paper, we propose a new approach for acquiring translation 
templates automatically from unannotated bilingual spoken language corpora. 
Two basic algorithms are adopted: a grammar induction algorithm, and an 
alignment algorithm using Bracketing Transduction Grammar. The approach is 
unsupervised, statistical, data-driven, and employs no parsing procedure. The 
acquisition procedure consists of two steps. First, semantic groups and phrase 
structure groups are extracted from both the source language and the target 
language through a boosting procedure, in which a synonym dictionary is used to 
generate the seed groups of the semantic groups. Second, an alignment algorithm 
based on Bracketing Transduction Grammar aligns the phrase structure groups. 
The aligned phrase structure groups are post-processed, yielding translation 
templates. Preliminary experimental results show that the algorithm is effective.  

Keywords: Spoken language processing, machine translation, translation 
template extraction, structure extraction and alignment. 

1   Introduction 

With the development of corpus processing technology, more and more bilingual 
corpora are becoming available for knowledge acquisition in machine translation (MT) 
and many other natural language processing tasks. Translation templates provide one 
especially useful kind of knowledge for MT systems. At the same time, phrasal 
translation examples are an essential resource for many MT and machine-assisted 
translation architectures. In this paper, we bring the need and the resource together. We 
present a new approach for acquiring translation templates automatically from a 
sentence-aligned parallel English-Chinese corpus through structure extraction and 
alignment.   

In some early-built example-based machine translation systems, the translation 
templates are extracted manually from the corpus. For example, [1] manually encodes 
translation rules in this way. Similarly, [2] has also proposed an example-based system 
which employs manually-built matching expressions as translation templates. 
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However, as the size of corpus grows, the manual process of template extraction 
becomes increasingly difficult and error-prone. 

Some methods for automatically acquiring translation templates have also been 
proposed. For instance, in [3], the analogical models are adopted for learning 
translation templates from bilingual parallel corpus. Templates are obtained by 
grouping the similar translation examples and replacing the variances with variables. 
However, such methods rely on a very large bilingual parallel corpus, which contains 
many similar instances. By contrast, some other methods for template acquisition are 
instead based on structure alignment [4][5]. Those approaches follow a procedure 
which may be termed “parse-parse-match” [6], i.e. each language in the parallel corpus 
is first parsed separately by using monolingual grammars, then the corresponding 
constituents are matched using some heuristic procedures. The performance of those 
methods is highly dependent on the parsers of the source and target languages.. In a 
similar vein, [7] has proposed a scheme based on bilingual language modeling: 
bilingual sentence pairs are first aligned with respect to syntactic structure by 
combining a parser with a statistical bilingual language model. The translation 
templates are produced from the alignment results. This scheme, likewise, needs a 
high-performance parser, as well as the part-of-speech tagging systems for both the 
source and the target language. 

And some other statistical methods are also proposed to perform the task of 
translation template acquisition. [6] introduced the Bracketing Transduction Grammar 
(BTG). It uses no language specific syntactic grammar, and employs a 
maximum-likelihood parser to select the parse tree that best satisfies the combined 
lexical translation preference. This method achieves encouraging results for bilingual 
bracketing using a word-translation lexicon alone. [8] proposed the alignment template 
translation model. It explicitly takes shallow phrase structures into account, using two 
different alignment levels: a phrase level alignment between phrases and a word level 
alignment between single words. This method is capable of completely automatic 
learning by using a bilingual training corpus and can achieve better translation results 
on a limited-domain task than other example-based or rule-based translation systems. 
And [9] propose a new alignment model based on shallow phrase structures, and the 
structures can be automatically acquired from parallel corpus. 

In this paper, we propose a statistical, data-driven approach which acquires 
translation templates from unannotated bilingual corpora based on the bilingual 
grammar induction and BTG.  

2   Our Motivations 

The translation template acquisition based on structural alignment is a popular method 
in the area of statistical machine translation. Considerable research has been carried out 
on this topic. We focus here on the methods based on unsupervised machine learning;  
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and propose a translation template acquisition method based on statistical phrase 
structure extraction and alignment. 

The main ideas of our approach to translation template acquisition are shown in  
Fig. 1: 

 

           
Fig. 1. Architecture of the proposed translation template acquisition system 

The input of our approach is the sentence-aligned bilingual corpus. Here, an 
English-Chinese bilingual corpus is used. The Chinese sentences are first segmented; 
then the grammar induction procedure is performed on both English and Chinese 
sentences. Next, the semantic groups (labeled SCi) and phrasal groups (labeled PCi) are 
obtained from the corpus for both English and Chinese. Finally, the phrase structures of 
the languages are aligned, using a modified BTG. These aligned phrase structures are 
post-processed to create the translation templates, which are the results of our 
approach. 

We now give a simple example to explain how the translation templates are acquired 
from the unannotated corpora. 

Suppose some SCi and PCi groups are obtained from the corpus, as shown in  
Table 1: 

 
 

Sentence-aligned 
          bilingual corpus 

    Chinese 
    segmentation 

English grammar 
induction 

Chinese Grammar 
induction 

Alignment 

 Translation  
            templates 
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Table 1. Examples of the grammars acquired from the experimental corpus 

Chinese part: 

SCC10       

PCC3     

PCC8  PCC3 SCC10 

PCC12      

PCC20  PCC12 PCC8 

 
English part: 

SCE5  single | double | standard  

PCE2  want to  

PCE4  a SCE5 room 

PCE8 I PCE2 reserve 

PCE14  PCE8 PCE4 

 
With the grammars shown in Table 1, the system aligns the phrase structures as 
follows: 

[[I/   [want/  to/ ] reserve/ ] [a/  /  N* room/N]]. 
 Where,   to/    means the Chinese word aligned with the word “to” is null, and  

             N= ⇔   N*=single; 
             N= ⇔  N*=double; 
             N= ⇔  N*=standard. 

Thus we can obtain the following translation templates: 
             ⇔   I want to reserve             
           N    ⇔   a N* room                 

Here in , N and N* are shown above. 
Here,  and  exemplify two kinds of translation templates in our approach.  is a 

constant template, since all of its elements are constants.  By contrast,  contains at 
least one variable element, so we call such kind of temples the variable template. 

3   Basic Algorithms  

In this section, we provide a brief overview of our basic algorithms for grammar 
induction and alignment using BTG. 

3.1   Grammar Induction Algorithm 

This clustering method consists of two steps, spatial clustering and temporal clustering. 
In the clustering procedure, we consider entities as processing units. The entities 
include single words, semantic group labels, and the phrasal structure group labels 
obtained with the procedure of clustering. For example, in table 1, the single words 
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‘single’, ‘want’ and etc. are single-word-level entities; the semantic group labels SCE5 
and SCC10 are the semantic-group-level entities, each entity containing a group of 
single words; and the phrasal structure group labels PCC8, PCE14 and etc. are the 
phrasal-structure-group-level entities, each entity containing a sequence of words or a 
sequence of entities. In the spatial clustering step, the entities which have similar left 
and right contexts are grouped together. These entities generally have similar 
semantics. In the temporal clustering step, the entities which frequently co-occur are 
clustered into groups. These entity groups tend to be commonly-used phrases. 

In spatial clustering, the Kullback-Leibler distance is used to describe the similarity 
of the distributions of the local contexts of entities, where an entity’s local context 
consists of the entity immediately before it and the entity immediately after it (1). 
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Here, p1 denotes the unigram distribution of the words which appear in the local context 
of the entity e1; p2 denotes the same distribution for entity e2; and wi denotes the word 
which appears in the local contexts of the entities e1 and that of e2, and V denotes the 
union of wi. 

In order to acquire a symmetric measure of the distance, or degree of difference, 
between two local context distributions, we use the divergence of the distributions, as 
shown in Formula (2):   

               )||()||(),( 122121 ppDppDppDiv +=                                 (2)        

Then the distance between two entities e1 and e2 is defined as in Formula (3): 

            ),(),(),( 212121
rightrightleftleft ppDivppDiveeDist +=                    (3)       

Distance between entities is thus the sum of the divergences of the distributions of 
the entities’ left and right contexts. 

In order to increase the clustering accuracy, we introduce the extended distance 
contexts into the measurement of distance between entities: we consider the words next 
to the entities’ contexts, called extended contexts.  

Finally, the distance between two entities is computed as the sum of the distance of 
the contexts and that of the extended contexts. Thus the distance between entities e1 and 
e2 can be described using Formula (4): 
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Here, the expression Div2(p1,p2) denotes the symmetric distance of the extended 
contexts of the two entities e1 and e2. 

The maximally similar entities are gathered into a semantic group, labeled SCi. That 
is, we cluster the pairs of entities which have the minimal distance between them (as 
calculated with (4)). 

Other measures which can be used to calculate the similarity between two entities 
have also been considered. We use feature vectors to describe the contexts of an entity, 
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and these can be used to calculate the similarity between two entities. If an entity e 
appears in the context of another given entity, this relationship can be described using 
the expression (posi, e), where posi has the value ‘left’ if e appears to the left side of the 
entity, or ‘right’ if e appears to the entity’s right. The value of each feature is the 
frequency count of the feature in the corpus. 

(u1,u2,…,un) and (v1,v2,…,vn) denote the feature vectors for the entity u and v, n is the 
number of feature types extracted from the corpus, and f(i) is the ith feature.  

Three other similarity measures are also used in the spatial clustering step, the 
Cosine Measure, Cosine of Pointwise Mutual Information, and Dice Co-efficient.  

The Cosine Measure computes the cosine of two entities’ feature vectors (5): 
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The pointwise mutual information (PMI) between a feature f(i) and an entity u 
measures the strength of the association between them, as defined in Formula (6): 
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Here, P(f(i),u) is the probability of f(i) co-occurring with u; P(f(i)) is the probability of 
f(i) co-occurring with any entity; and P(u) is the probability of any feature co-occurring 
with u. For example, if all the features occur 1,000 times in the corpus, f(i) occurs 50 
times, f(i) co-occurs with u 10 times, and u co-occurs with a feature 100 times, then 
P(f(i),u) = 10 / 1000 = 0.01 , P(f(i)) = 50 / 1000 = 0.05, P(u) = 100 / 1000 = 0.1. 

The Cosine of Pointwise Mutual Information (CosPMI) is defined in (7): 
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This formula computes the cosine between two entities’ pointwise mutual 
information.  

The Dice Co-efficient is defined in Formula (8). It is a simple measure of the 
difference between zero and non-zero frequency counts. 
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Here, s(x)=1 if x>0 and s(x)=0 otherwise. 
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After the spatial clustering, we substitute a category label throughout the corpus for 
the words that have been grouped. Then the temporal clustering is computed. 

In the temporal clustering step, the Mutual Information (MI) is used to describe the 
degree of co-occurrence of two entities e1 and e2 in the same sentence of the corpus, and 
it becomes the metric used for clustering. MI is defined in (9): 
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The entities which have the highest MI are clustered into phrasal groups labeled PCi. 
Next, PC labels are substituted for these entity pairs. Then another iteration of spatial 
clustering can be started. This is a boosting procedure. After the application of the 
clustering algorithm, the semantic groups and phrase structure groups will be extracted 
from the corpus. 

After each iteration of the clustering algorithm, more words are clustered into 
semantic groups and phrasal structure groups. The coverage of the clustering algorithm 
can be measured in terms of the percentage of words in the input corpus that are 
captured in the clustering groups. A stopping criterion (STC) is defined as the relative 
increment of the clustering coverage.  For example, if the coverage after iteration is 
80% and that of next iteration is 82%, then the STC between these two iterations is 
(82-80)/80=3.75%. When the STC is below 1%, the clustering algorithm will be 
stopped.  

We now describe our grammar induction approach. Importantly, it can capture 
semantic and phrase structures from unannotated corpora.  

The grammar induction algorithm is described in Fig. 2. 
The input of the algorithm is either the English part or the Chinese part of the 

bilingual corpus. 

Step1: If the distance measure is used, calculate the distance between each entity e1 and 
e2 in the corpus using Formula (4). If other similarity measures are used, calculate the 
similarity between each entity e1 and e2 using Formula (5), (7) or (8). 
Step2: Group the N pairs which have the minimum distance or the maximum similarity 
into a semantic class. 
Step3: Replace the entities in Step2 with their semantic class label SCi. 
Step4: Use Formula (9) to calculate the MI between each entity e1 and e2 in the corpus. 
Step5: Select the N pairs of entities with the highest MI to form the phrasal structure 
groups.  
Step6: Replace the entities in Step5 with their phrasal structure class label PCi. 
Step7: Calculate the STC. If the STC is lower than 1%, stop the procedure of the 
clustering algorithm, else go to Step 1. 

The Output of the algorithm is a list of semantic groups and phrasal structure groups. 
In the step of the spatial clustering, we introduce a synonym dictionary which is 

called “tong yi ci ci lin”. It is a Chinese synonym dictionary. We pick out the words 
both in the training corpus and in the synonym dictionary as the seed groups of the 
clustering. These groups are looked as the initial groups of the spatial clustering. And 
we also give out some manually built seed groups based on common sense, such as 
“Monday | Tuesday | …” in English and “  |  | ……” in Chinese. 
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Fig. 2. Flow chart of the grammar induction algorithm 

3.2   Alignment Using Bracketing Transduction Grammar 

A bilingual model called Inversion Transduction Grammar (ITG), proposed by [6], 
parses bilingual sentence pairs simultaneously. As it is difficult to find suitable 
bilingual syntactic grammars for English and Chinese, we employ a simplified ITG 
called BTG.  

The expressive characteristics of ITG grammars naturally constrain the space of 
possible matching in a highly appropriate fashion. As a result, BTG grammars achieve 
encouraging results for bilingual bracketing using a word-translation lexicon alone [6]. 
However, since no language specific syntactic knowledge is used in BTGs, the 
grammaticality of the output cannot be guaranteed [7].   

Our main idea in the present work is to use phrase structure information acquired by 
the grammar induction algorithm as a boundary restriction in the BTG language model. 
When the constraint is incompatible with BTG, BTG is used as the default result. This 
procedure allows the alignment to continue regardless of some failures in the matching 
process. Then a dynamic programming algorithm is used to compute the maximally 
probable alignment of all possible phrase structures. 
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A constraint heuristic function Fe(s,t) is defined to denote the English boundary 
constraint. Here, s denotes the beginning position of the phrase structure and t denotes 
its end position. Phrase structure matching can yield three cases: invalid match, exact 
match, and inside match. An invalid match occurs when the alignment conflicts with 
phrasal boundaries. Examples appear in (1,2), (3,4) and (4,5) etc. in the sample 
sentence below. (The constraint function is set at a minimum value 0.0001 to prevent 
selection of such matches when an alternate match is available.) An exact match means 
that the match falls exactly on the phrase boundaries, as in (2,3), (1,4) and (5,7) below. 
(When this condition is met, the function is set at a high value 10 for weighting.) 
Examples of inside matches are seen in (5,6) and (6,7) below. (The value of these 
functions is set to 1.)  

Example: 
             [[I/1 [want/2 to/3] reserve/4][a/5 single/6 room/7]]. 

The Chinese constraint function Fc(u,v) is defined similarly.  
Now let the English input sentence be e1,…,eT  and let the corresponding Chinese 

sentence be c1,…,cV. As an abbreviation, we write es…t for the sequence of English 
words es+1, es+2,…, et; Similarly, we write cu…v for the Chinese word sequence. Further, 
the expression q = (s,t,u,v) identifies all possible matched structures, where the 
substrings es…t and cu…v both derive from the node q. The local optimization function is 
shown in (10): 

][),,,( qmaxPvuts =δ                                        (10) 

Equation (10) denotes the maximally probable alignment of the phrase structures. 
Then the best combination of the phrase structures has the probability (0,T,0,V). 

To insert the English and Chinese constraints into the alignment procedure, we 
integrate the constraint functions Fe(s,t) and  Fc(u,v)  into the local optimization 
function. For this purpose, the function is split into three functions, as in formulas (11), 
(12) and (13) below. 

          )],,,(),,,,([),,,( [] vutsvutsmaxvuts <>= δδδ                           (11) 

       
21

[] ),(),(),,,( δδδ vuFtsF maxvuts ce

0U)-u)(v-(US)-s)(t-(S
vUu
tSs

≠+
≤≤
≤≤

=                      
(12)

   

      
43),(),(),,,( δδδ vuFtsF maxvuts ce

0U)-u)(v-(US)-s)(t-(S
vUu
tSs

≠+
≤≤
≤≤

<> =                   
(13) 

Here, 
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In (12) and (13), the condition (S-s)(t-S)+(U-u)(v-U) 0  specifies that only one of 
the language strings, not both, may be split into an empty string. 

Other symbols in the algorithm are defined as follows: (s,t,u,v), (s,t,u,v) and 
(s,t,u,v) are the variables used to record the production direction, the spilt points in 

English, and the split points in Chinese, when (s,t,u,v) is achieved. These variables are 
used to reconstruct the bilingual alignment tree in the final step. (s,t,u,v)= (q) is  
the non-terminal label of the node q. LEFT(q) is the left side of q, and RIGHT(q) is its 
right side. 

The optimal bilingual parsing tree for a given sentence-pair is then computed using 
the dynamic programming (DP) algorithm [6] shown in Table 2: 

Table 2. Alignment algorithm 

1. Initialization 

    )/(),1,,1( vt cebvvtt =−−δ     VvTt ≤≤≤≤ 1,1  

    )/(),,,1( εδ tebvvtt =−         VvTt ≤≤≤≤ 1,1  

    )/(),1,,( vcbvvtt εδ =−        VvTt ≤≤≤≤ 1,1  

2. Recursion 

For all s,t,u,v which are restricted by 

2

,1,0

>−+−
≤<≤≤<≤

uvst

VvuTts  

Calculate (s,t,u,v) using Formula (11), (12) and (13). 

3. Reconstruction 

Reconstruct and obtain the optimal result of the parsing tree. 

4   Experiments 

4.1   Training Set and Testing Set 

In our experiment, 50,000 pairs of Chinese-to-English spoken parallel sentences and 
1,000 monolingual Chinese sentences are randomly selected from the BTEC corpus as 
the training data and the testing data respectively. The sentences in the testing set are 
not concluded in the training set.  

4.2   Experiment Results 

The training set is used to extract the translation templates. The whole procedure of the 
translation templates extraction is carried on this set. The word alignment probabilities 
used in the step of phrase structure alignment are trained by the GIZA++ toolkit which 
performs statistical alignment (http://www.fjoch.com/GIZA++.html). 

We have done four experiments, the first one is based only on the IBM-1 translation 
model; the second one combines the word alignment probability in IBM-1 and the 
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phrases extracted from the HMM based word alignment model [10]; the third one is 
based on IBM-4 model in GIZA++ toolkit; and the last one is based on the translation 
templates (we use them as the translation phrase pairs in the statistical machine 
translation system) we extracted. 

In our experiments, the BLEU score is used to evaluate the translation results (N=4).  
The results of our experiment are shown in Table 3: 

Table 3. Experimental results 

Experiment BLEU NIST 
1 0.2352 5.1533 
2 0.2601 5.6309 
3 0.2695 6.2178 
4 0.2835 7.3582 

The experimental results show that our method got the highest performance of the 4 
systems.  

There are still some problems on the quality of the translation templates we got. Two 
kinds of errors appear in the clustering results which affect the final results of the 
translation templates extraction. First, some errors occur in the grammar induction step: 
because the induction algorithm does not adequately use the information contained in 
the corpus, unrelated entities are sometimes clustered into a single group. The second 
sort of errors occurs in the alignment step when idiomatic translations are compared. 

5   Conclusion  

In this paper, we present an approach to automatic acquisition of translation templates 
from unannotated bilingual parallel corpora. The method is statistical and data-driven, 
and requires no parser. A grammar induction algorithm extracts from the corpus 
semantic and phrase structure grammars for both source and target languages. Based on 
these grammars, the phrase structures are aligned using BTG. Finally, the aligned 
structures are treated as translation templates. The preliminary experiment results show 
that the approach is effective. 

However, we still face many difficult tasks, including the improvement of grammar 
induction and alignment. In the future, we will introduce more information and some 
additional pre-processing to improve the quality and efficiency of our approach.  
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Abstract. The paper describes the design, collection, transcription and analysis 
of 200 hours of HKUST Mandarin Telephone Speech Corpus (HKUST/MTS) 
from over 2100 Mandarin speakers in mainland China under the DARPA EARS 
framework. The corpus includes speech data, transcriptions and speaker 
demographic information. The speech data include 1206 ten-minute natural 
Mandarin conversations between either strangers or friends. Each conversation 
focuses on a single topic. All calls are recorded over public telephone networks. 
All calls are manually annotated with standard Chinese characters (GBK) as 
well as specific mark-ups for spontaneous speech. A file with speaker 
demographic information is also provided. The corpus is the largest and first of 
its kind for Mandarin conversational telephone speech, providing abundant and 
diversified samples for Mandarin speech recognition and other application-
dependent tasks, such as topic detection, information retrieval, keyword 
spotting, speaker recognition, etc. In a 2004 evaluation test by NIST, the corpus 
is found to improve system performance quite significantly.   

Keywords: Mandarin, telephone speech. 

1   Introduction 

Speech database is the fundamental and important resource for spoken language 
processing technologies. The rich variations in human speech can only be adequately 
analyzed and represented in properly recorded, annotated and processed speech data. 
Currently, most of the state-of-the-art automatic speech recognition (ASR) algorithms 
are based on statistical approaches, which requires a large amount of training data 
with different ages, accents, speaking styles, speaking modes, channels, etc. to cover 
the diversity of human speech and speech environments. 

There have been a lot of work and efforts in developing English and other major 
western languages [1, 2, 3]. These databases greatly facilitated the development of 
speech processing technologies, and many of them were published and released as 
                                                           
* HKUST Mandarin Telephone Transcripts, Part 1, Linguistic Data Consortium (LDC) catalog 

number LDC2005T32 and isbn 1-58563-352-6 http://www.ldc.upenn.edu/  
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standard development and evaluation resources. The Linguistic Data Consortium 
(LDC) in the United States, founded in 1992, is a major center for supporting and 
coordinating corpora development activities. It has released more than 140 corpora 
both in speech and text, in more than 20 languages to over 750 organizations 
worldwide [1]. In Europe, a number of multilingual spoken language corpora have 
been developed with joint efforts from member countries in the European Union 
(EU). For example, SpeechDat has been created to support voice-activated 
applications over telephone with 20 regional variants of 14 major European languages 
[2, 3]. In Asian, Japan has invested heavily in the development of different types of 
Japanese databases, including telephony speech, lecture speech, broadcast speech, etc. 
[4]. Through the use of these databases, a lot of ASR systems have been established 
for practical use in Japan. 

Chinese is one of the major languages in the world, and Mandarin (also known as 
Putonghua) is the official spoken language in mainland China, Hong Kong, Macau, 
and Taiwan. Mandarin speech recognition has attracted great interest in recent years. 
In particular, telephone conversational speech recognition is the latest pursuit by the 
ASR community since this type of speech is commonly used in daily life. 
SWITCHBOARD is a typical telephony conversational speech corpus that is widely 
used for English spontaneous ASR tasks [5]. CALLHOME Mandarin Chinese Speech 
is a corpus consisting of 120 unscripted telephone conversations between native 
speakers of Mandarin Chinese [1]. All calls were originated in North America and 
were placed to overseas locations, and most participants called family members or 
close friends. Similarly, the CALLFRIEND corpus includes both mainland and 
Taiwan dialects, which consists of 60 unscripted telephone conversations, lasting 
between 5 and 30 minutes. [1]. Both CALLHOME and CALLFRIEND were provided 
by LDC and released in 1996 and 1997. MAT is one of the first conversational 
Mandarin telephony speech corpus collected in Taiwan [6].  

Compared to the English SWITCHBOARD corpus, there has been a dearth of data 
for telephone speech processing for Mandarin Chinese. CALLHOME and 
CALLFRIEND contain limited amount of data and most conversational topics are 
focused on family and school life, due to the nature of the calls. Since all subjects in 
the MAT are from Taiwan, most of them have a strong regional Min accent. Hence, 
the MAT corpus is not applicable to ASR systems for the majority of Mandarin 
speakers who are from mainland China. Therefore, it is desirable to develop a 
Mandarin conversational telephony speech corpus collected in Mainland China. It has 
become desirable to provide a speech database of a large number of native Mandarin 
speakers from mainland China, with high variations in age, occupational background, 
and education level. More importantly, the speech must be naturally spoken telephone 
conversations on a large number of different topics.  

2   Phonological and Phonetic Properties of Mandarin Chinese 

Acoustically and phonetically, Mandarin is quite different from European languages. 
The main differences are: (1) Chinese is monosyllabic; (2) Chinese characters are 
ideographic, and words consist of one or several characters. The pronunciation is 
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represented by the syllable; and (3) Different characters may share the same syllable, 
this is known as homophony.  

The pronunciation of Mandarin is represented by syllables. The structure of a 
syllable in Chinese is relatively simple: it consists of an initial and a final, or only the 
final. For standard Mandarin, there are around 1100 tonal syllables and 415 basic 
toneless syllables, 21 initials and 38 finals. Initials are very short in duration 
compared to syllables. Their pronunciations are rather flexible in spontaneous speech. 
Empirical results have shown that most of the pronunciation variations are caused by 
the changes in initials. In addition, there is one-to-many mapping between syllable 
and characters. On average, each syllable translates to 17 commonly used characters.  

Mandarin is a tonal language. There are five lexical tones (including neutral tone) 
in [7, 8]. Each syllable is associated with a specific tone. The syllable with the same 
initial and final combination but with different lexical tones corresponds to different 
characters and has different meanings. Tones are a critical part of Chinese 
pronunciation and serve to differentiate meanings from characters of the same 
syllable.  

Table 1. The dialect distribution in China  

Mandarin Min Xiang Gan Yue Kejia Wu 

N.E. Minnan Tuhua Nanchang G.Zh. Meixian Taihu 

Jilu Puxian N. X Yingtan Wuyi Taizhou 

Jiaoliao Mindong O. X Fuzhou Wuzhou 

Beijing Minbei Yichun Chuqu

Central Minzhong Ji’an Oujiang

Lanyin Qiongwen
    

Xuanzhou

S.W. Shaojiang
     

Jianghuai
      

Gui-Liu
      

 

Unlike other languages, accent is a severe problem even for native Mandarin 
speakers. In addition to the standard Chinese Mandarin (Putonghua) spoken by radio 
and TV announcers, there are seven major language regions in China, including 
Guanhua, Wu, Yue, Xiang, Kejia, Min and Gan [7]. These major languages can be 
further divided into more than 30 sub-categories of dialects as shown in Table 1. In 
addition to lexical, syntactic and colloquial differences, the phonetic pronunciations 
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of the same Chinese characters are quite different between Putonghua and the other 
Chinese languages. 70% of Chinese speakers on Mainland China are native speakers 
of Guanhua, the language group most related to Putonghua.   

3   Corpus Design and Implementation 

The HKUST/MTS corpus includes three parts: speech data, transcription and speaker 
demographic information. The speech data are recorded phone calls over public 
telephone networks. The calls are ten-minute natural spontaneous conversations 
between two native Mandarin speakers, who for the most part did not know each 
other prior to the recording. The recorded speech data are manually annotated with 
standard Chinese character transcription as well as specific spontaneous speech mark-
ups. An MySQL database is established to store speaker’s demographic information 
such as age, gender, dialect and language group, education background, phone types, 
background noise, etc. 

3.1   Speaker  

There are 2412 subjects in the corpus, of which 1252 are male and 1154 are female 
speakers. All subjects are native and fluent Mandarin speakers with nil or very slight 
accent. The speakers’ age ranges from 16 to 60. The age distribution is shown in 
Table 2. The education background of the speakers ranges from high school to 
doctorate level. The occupation of speakers are as varied as government officers, 
bankers, university students, IT engineers, blue-collar workers, business people, etc. 
In addition, the birthplaces of all the speakers cover 221 cities or towns in 32 
provinces of China. Each speaker is only allowed for one conversation recording. 

Table 2. Speaker age distribution of the corpus 

Range of speaker ages Numbers Distributions 
<20 137 5.7% 
20 - 24 942 39.2% 
25 - 29 674 28% 
30 - 34 524 21.8% 
35 - 39 87 3.6% 
>40 42 1.7% 

3.2   Topic  

In order to create a flexible, natural and creative conversational exchange representing 
a wide range of domains relevant to the Chinese culture, the conversations in the 
corpus cover wide topics. Unlike the CALLHOME and CALLFRIEND 
conversations, which tended to be all about family and school, our conversational 
topics are not “enforced”, i.e., the call is included as long as there is continuous 
conversation on any topics. By consulting the English FISHER topics provided by 
LDC and with consideration to local cultural practice in mainland China, we finally 
provided 40 topics for the subjects to choose from. An example of selected topic list 
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is shown in Table 3. The distribution of conversations over topics is listed in Fig.1. In 
general, there is a strong preference of the subjects for topics related to daily life, over 
political topics. 

Table 3. Examples of conversation topics  

Topic 
example 

Contents of topic 

1 Life Partners -- What do you think is the most important thing to 
look for in a life partner? 

2 Computer games -- Do you play computer games? Do you play these 
games on the internet? What is your favorite game? 

3 Hobbies -- What are your favorite hobbies? How much time do each 
of you spend pursuing your hobbies? 

4 Travel -- Do you travel frequently? What are some of the advantages 
and disadvantages of traveling? 

… …… 

 

Fig. 1. The distribution of conversations over topics. The x-axis is the topic index and the y-
axis is the number of conversations on that topic. 

3.3   Channel  

All data are recorded over public telephone networks, that is, it is recorded directly 
from telephone lines and not re-recorded or D-A-D converted data. Three telephone 
types are used in recording: fixed line phone, mobile phone and PHS phone. Fixed 
line phones include normal fixed line phone, IP phone and cordless phone. Mobile 
phones include GSM and CDMA formats, and all commonly used models such as 
Motorola, Nokia, Sony-Ericsson, Samsung, etc. In order to keep the diversity of 
telecom channel and line, the collected calls include local calls (two speakers are in 
the same city or town) and long-distance calls (two speakers are in different cities in 
mainland China). Each side of a call was recorded on a separate .wav file, sampled at 
8 bits (a-law encoded), 8Khz. They were multiplexed later automatically in sphere 
format with a-law encoding preserved by using a tool developed in-house at HKUST. 
In the case where one side was shorter than the other, the shorter side was padded 
with silence.  
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3.4   Accent 

Speakers in the corpus are all native and fluent speakers of Mandarin. However, in 
order to collect sufficient amount of speech samples from older speakers, senior 
citizen subjects with some accent are allowed to participate in the recording. Speakers 
with strong accent or whose utterances of Mandarin are too spontaneous to be 
intelligible are disqualified. Table 4 gives a detailed description of accent distribution 
of 2412 speakers in the corpus (based on speaker birthplace only). In Table 4, the 
second column illustrates general accent distribution of Mandarin speakers [7], while 
the third column gives the distribution in the HKUST/MTS corpus. Note that 
“Unknown” row means that there are 11 speakers in the corpus who did not provide 
the information or only provided vague information, such as “China”. 

Table 4. Accent distribution of the HKUS/TMTS corpus 

Accent regions Distribution in general public Distribution in 
HKUSTMTS corpus 

Guanhua 70% 77.1% 
Wu 8.4% 8.8% 
Cantonese 6% 8.4% 
Xiang 5% 2.2% 
Gan 2.4% 1% 
Min 4.2% 1.7% 
Kejia 4% 0.3% 
Unknown -- 0.45% 

3.5   Speaking Style and Speaking Rate 

In order to collect natural spontaneous telephone conversations, subjects are asked 
to talk naturally, without trying to imitate broadcast news. The speaking volume is 
in general clear and steady. In general, speakers make about 70 to 90 utterances per 
ten-minute conversation under normal speaking rate, and most utterances are about 
8 to 20 words. The length of one utterance should be less than ten seconds. The 
statistics of speaking rate in the HKUST/MTS corpus of 2412 speakers is illustrated 
in Table 5. 

Table 5. Speaking rate information for HKUST/MTS corpus 

Statistical criterion Results 
Average utterance length 4.6 s 
Average character numbers per utterance 12.3 
Average speaking speed 4.1 syllables/per second 
Average utterance numbers per speaker in 
conversation 

82 
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4   Corpus Collection 

We use an operator-assisted recording approach for data collection. This is quite 
different from Fisher system and English EARS database collection system, which are 
automatic recording systems. Operator-assisted recording approach is the most 
reliable approach to get quality recordings and is particularly suitable for the Chinese 
collection due to the following reasons: (1) Many registered speakers will not respond 
to automatic calls. This has been the observation with past English database collection 
efforts; (2) Chinese are not used to respond to automatic messages; (3) High cost of 
automatic recording system; and (4) competitive labor costs in China. The procedure 
of recording is shown in Fig.2. 

 

Fig. 2. The procedures of recording and recording management  

4.1   Recording Conditions 

In order to collect data with sufficient coverage, we set up 15 recording centers 
(including Beijing, Shanghai, Jilin, Xi’an, Jinan, Hefei, Nanjing, Shenzhen, Xiamen, 
Wuhan, Changsha, Chongqing, Xining, Nanchang and Fuyang) in mainland China 
covering all seven major dialectal regions of Mandarin speakers. Subjects were 
encouraged to make calls from home, from office or from any other relatively quiet 
environments. However, a small amount of ambient noise is acceptable. There is less 
than 10% of data of this type. In addition, only conversational topic and a brief 
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instruction of how to use the recording system were provided to the subjects prior to 
the recording. Most importantly, speaking styles and vocabulary are not constrained. 

4.2   Recording Hardware and Software 

We use Intel Dialogic E1 card for PRCD/600PCI-2E1 to connect China telecom E1 
line with our recording servers. All data are recorded over public telephone networks. 
Speech from each speaker is recorded and saved to a wave file separately over a 
single channel. Our recording system supports 30 calls in parallel. The recruited 
subjects can either use fixed line phone or mobile phone/PHS phone to call the system 
for recording. In addition, the recording system supports local call, long distance call 
and international call. 

The recording software include Dialogic card based software for conversation and 
speaker information recording; Interactive Voice Response (IVR) software for 
prompting questions and collecting speaker information; automatic speaker 
registration software for speaker registration and unique speaker ID allocation; 
communication software for two calls connection; separation software for two-
channel recording separation and data saving; ftp server communication software for 
data transmission. 

5   Transcription  

The goal of transcription is to provide an accurate, verbatim transcript of the entire 
corpus, which is time-aligned with the audio file at the sentence level. Speech files are 
manually transcribed using standard simplified Chinese orthography in GBK code 
according to what the transcribers hear. Additional features of audio signal and speech 
are annotated with specific mark-ups for spontaneous speech. In general, we 
formulate transcription guidelines based on “LDC EARS RT-04 Transcription 
guidelines” [9]. The screenshot of a transcription tool developed in house for speech 
segmentation, labeling and transcription is shown in Fig.3. The transcriptions are 
saved in two formats: XML and TextGrid [10], which can be easily converted to any 
other format. 

 

Fig. 3. An example interface for speech segmentation, transcription and time labeling 
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6   Post-processing and Analysis of Speech Data 

Post-processing of recorded speech involves several rounds of fully manual and semi-
automatic inspection and verification of the quality and the format of speech data as 
well as those of the transcriptions. In order to enable the HKUST/MTS corpus to be 
used for different speech applications, speech is segmented at natural boundaries 
wherever possible and each segment is no more than 10 seconds long. In addition, 
speaker demographic information is cross-validated based on the recorded waveform 
and information provided by the subjects. We analyzed the demographic distribution 
of recruited speakers every two months, and may reconsider the location of recruiting 
centers in order to achieve gender, age and accent balance. 

6.1   Data Partition 

LDC processed the HKUST/MTS corpus and separated it into three sets, namely the 
evaluation set, the development set and the training set [1]. The evaluation set 
contains 60 minutes of speech. This set includes 12 conversations by 24 speakers 
(equal number of male and female speakers). All subjects in the evaluation set are 
native Mandarin speakers in their twenties. In addition, all phones used are landlines, 
all conversations were recorded in mainland China, and all topics in the evaluation set 
were from current events and social issues [11]. The development set contains 120 
minutes of speech. The selection strategy for this set is similar to that of evaluation 
set. The remaining data is used as training set for acoustic and language model 
estimation and generation.  

6.2   Data Analysis 

We give an initial analysis of the 200-hour collection to help readers better understand 
the corpus. All the conversations are segmented into utterances with length no more 
than 10 seconds long and transcribed at the Chinese character level with GBK encode 
format.  

At the character level, the 200-hour corpus contains 248,910 utterances and 
2,745,181 characters in total (filled pauses and spontaneous mark-ups are not 
counted). 3870 Chinese characters are used in the transcriptions. The auxiliary words 
“ ” and “ ” have the highest occurrence numbers at 91042 and 87734, respectively, 
which is in accordance with linguistic analysis [7]. At the syllable (Pinyin) level, 
since one character corresponds to one syllable, the corpus contains 2,745,181 
syllables and covers all 408 toneless base syllables. At the initial and final unit level, 
all 27 standard Putonghua initials (including zero initials) and 38 finals are covered. A 
summary of the contents, syllable and initial final coverage of HKUST/MTS corpus is 
described in Table 6. 

From the perspective of speech recognition, we are not only interested in how 
many units have non-zero occurrence numbers but also interested in how many of 
them have sufficient occurrences for robust acoustic model training. Ideally, we 
would like to have sufficient samples of all acoustic units.. In the corpus, it is found 
that 92%, 84% and 62.5% base syllables occur more than 100 times, 200 times and 
1,000 times, respectively, and 18.25% base syllable have more than 10,000  
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Table 6. A summary of the contents, syllable and initial final coverage of HKUST/MTS corpus 

Statistical criterion Results 
No. of utterances 248,910 
No. of characters/syllables 2,745,181 
No. of base syllable being covered 408 
No. of standard initials being covers 27 
No. of standard finals being covers 38 

occurrences. Therefore, syllable-based acoustic modeling is also possible for many 
small and medium lexicon applications using HKUST/MTS as a training set.   

Many state-of-the-art Chinese ASR systems use context-independent (CI) initial 
and final units instead of phoneme or phone as basic subword units for baseline 
acoustic model generation. Moreover, context-dependent (CD) acoustic modeling at 
sub-syllable level are widely used in ASR systems to achieve high recognition 
accuracy as well as good coverage of model complexity. Therefore, the occurrence 
number, the coverage and the distribution of different phonetic units of HKUST/MTS 
corpus need to be evaluated. Fig.4 gives the statistical distribution analysis of 
standard Chinese initials and finals. We can see that the distribution is in accordance 
with normal initial/final distribution, that is, the corpus is phonetically balanced. Due 
to the large amount of collected data, each context-independent or context-dependent 
subword units generated based on initial/final units has enough training samples. For 
example, even the least frequently used units “c” and “iong”, occurred 16147 and 
4775 times respectively, which is enough for robust model generation. 

 

Fig. 4. Distributions of Chinese initials and finals in the HKUST/MTS corpus 
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Table 7 shows a detailed coverage of context-independent and context-dependent 
phonetic units. Since bi-phone level units as well as tri-phone level units are 
commonly used, both the intra-syllable contextual units and inter-syllable contextual 
units are considered. It is shown that all context-independent initial/finals are covered 
with sufficient samples, as well as for bi-phone level intra-syllable units. The 
HKUST/MTS corpus is an excellent resource for different types of ASR systems 
using different sub-syllable units, as well as with varied dictionary size for different 
applications. Furthermore, the high coverage of intra-syllable initial-finals and inter-
syllable initial-finals means that the corpus is also suitable for robust triphone model 
generation and estimation.  

Table 7. The phonetic coverage of HKUST/MTS corpus 

No. of covered context-
independent CI units 

No. of covered CD intra-
syllable units 

No. of covered CD inter-
syllable units 

Initials 21  
(100%) 

Initial-Final 
combinations 

408 
(99.7%)

Final-Initial 
combinations 

788 
(98.7%) 

Zero 
initials 

6  
(100%) 

Initial-Nucleus 
combinations 

94 
(100%) 

Coda-Onset 
combinations 

42 
(100%) 

Finals 38 (100%)   Tone-Tone 
combinations 

20 
(100%) 

6.3   A First Evaluation 

A first evaluation using the HKUST/MTS corpus was reported in the 2004 Fall Rich 
Transcription Speech-to-Text Evaluation of the National Institute of Standards and 
Technology (NIST) [11]. The evaluation set contains 60 minutes of speech data. This 
set includes 12 conversations with 24 speakers (equal number of male and female 
speakers), and the length of the conversation is five minutes. All speakers in the 
evaluation set are native Mandarin speakers in their twenties. The evaluation results 
reported are as shown in Fig.5. Three recognizers, BBN, Cambridge University and 
SRI, were used in evaluation. It is seen that the Character Error Rate (CER) is around 
29%, which is much lower than the best performance of a similar evaluation in the 
previous year. This shows that the collected HKUST/MTS corpus used for training, 
development and testing has good quality and good phonetic coverage. 

 

Fig. 5. The CER of BBN, Cambridge University and SRI recognizers evaluated using 
HKUST/MTS evaluation set 
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7   Conclusions 

We described the design, collection, transcription and analysis of 200 hours of 
HKUST/MTS, a corpus of Mandarin Chinese conversational telephone speech from 
subjects in mainland China under the DARPA EARS framework. The corpus is the 
first of its kind that provides a large amount of naturally spoken conversations on a 
variety of pre-assigned topics. The corpus includes speech data, transcriptions and 
speaker demographic information. The corpus is an important resource for both 
application-specific and application-independent speech technologies, such as ASR, 
topic detection, pronunciation modeling, voice information retrieval and the analysis 
of conversational Mandarin. A large variety of acoustic speech samples from different 
telephone channels, including fixed line, IP phone, mobile phone and PHS phone, is 
included in the corpus. All speech data have been manually transcribed from the 
beginning to the end. Standard simplified Chinese characters, encoded in GBK were 
used. A tab-delimited tabular file with speaker demographic information was also 
provided. In addition, a software tool with relational database that has the functions of 
recording, multiplexing, transcribing, labeling, segmenting, checking and speaker 
information management has also been developed in-house at HKUST. A first 
evaluation of ASR tasks using this corpus has shown it to be very useful.  
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Abstract. Voice database is one of the most important parts in TTS systems. 
However, creating a high quality new TTS voice is not an easy task even for a 
professional team. The whole process is rather complicated and contains plenty 
minutiae that should be handled carefully. In fact, in many stages, human inter-
ference such as manually checking or labeling is necessary. In multi-lingual 
situations, it is more challenge to find qualified people to do this kind of inter-
ference. That’s why most state-of-the-art TTS systems can provide only a few 
voices. In this paper, we outline a uniform paradigm for creating multi-lingual 
TTS voice databases. It focuses on technologies that can either improve the 
scalability of data collection or reduce human interference such as manually 
checking or labeling. With this paradigm, we decrease the complexity and work 
load of the task. 

Keywords: multi-lingual, text-to-speech, voice database. 

1   Introduction 

Most state-of-the-art text-to-speech (TTS) systems adopt concatenative speech syn-
thesis approach, which perform unit selection in a large voice database, due to its 
capability in generating natural sounding speech. The naturalness of synthetic speech, 
to a great extent, depends on the size, the coverage and the quality of the voice data-
base. Therefore, creating a high quality voice database is crucial for any unit-selection 
based TTS system. However, the whole process of database collection and annotation 
is rather complicated and contains plenty minutiae that should be handled carefully. In 
fact, in many stages, human interference such as manually checking or labeling is 
necessary. Creating a high quality new TTS voice is not an easy task even for a pro-
fessional team. That’s why most state-of-the-art TTS systems can provide only a few 
voices. In this paper, we outline a uniform paradigm for creating multi-lingual TTS 
voice databases with focuses on technologies that reduce the complexity and manual 
work load of the task.  

(1) Be scalable. Though voice database is language dependent, we aim to have a platform 
scalable across different languages. To achieve this goal, it is very important to restrict 
language dependency within data and resources, such as text corpus, lexicon, and phone 
set. All algorithms used in the platform are designed language independent.  
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Beside the scalability in different languages, we also consider the scalability in dif-
ferent application scenarios. An important feature of concatenative TTS systems is 
that the synthetic speech inherits the voice characteristics and the speaking style of the 
voice talent who read the corpus. Therefore, just like different people have different 
taste for voice talents, TTS users often request for TTS voices that match their appli-
cation scenarios. For example, industry users, who run TTS systems on servers and 
provide voice services to tens of thousands of people, usually prefer to have their 
specific voices attached to their brands or services. They would like to accept a large 
voice database but be critical on the quality of synthetic speech. Home users, on the 
other hand, often prefer to listen to known voices (from family members or close 
friends). In such cases, they normally can not afford to record a multi-hour speech 
database and their tolerance to distortions or errors in synthetic speech is higher than 
industry users. To serve for different requirements, scalability in creating voice data-
base becomes important. In this paper, we introduce scalability in script generation 
and error detection. 
(2) Minimize the labor intensive checking and labeling. Although, the script gen-
eration, phonetic transcription, unit segmentation and prosody annotation can be done 
fully automatically, the results are often not accurate enough. The errors in voice 
database will hurt the quality of synthetic speech when related units are used. Nor-
mally, manually checking or labeling is needed. In this paper, we discuss algorithms 
for unit segmentation and prosody annotation that can produce highly accurate results 
with limited amount of manually labeled training samples.  

This paper is organized as follows. Section 2 describes the paradigm for creating 
multi-lingual TTS voice database. Section 3 to 6 introduces the key technologies that 
stress our research focuses. A summary is given in Section 7. 

2   The Paradigm for Creating TTS Voice Databases 

Though different TTS systems have different specifications for voice databases, they 
share common requirements for resources. As shown in Fig. 1, five types of data are 
normally needed, including the recording script, the recorded speech waveforms, the 
phonetic transcription, the segment boundaries and the prosody labels aligned to the 
speech waveforms. The corresponding processes, their key functions and challenges 
are described below. 

2.1   Script Generation 

The goal of script generation is to maximize the coverage of prosodic and phonetic 
variation of the base units in a limited amount of text script. Thus, at least three pa-
rameters, including the base unit set, the function for calculating coverage and the size 
of the script (or the total amount of speech planed to record), are to be decided ac-
cording to the characteristics of the target language and the target scenario. Some 
experimental tips on how to decide the three parameters is introduced in the Section 3.  
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Fig. 1. Processes and resources needed for creating a TTS voice 

After the three parameters are decided and all related language resources are avail-
able, a set of representative sentences can be selected from a large text corpus with a 
weighted greedy algorithm [1] 

2.2   Speech Recording 

The speech corpus for commercial usage is normally carried out by a professional 
team in a sound proof studio. The voice talent is carefully selected and well trained. 
With such constraints, the recorded speech, in general, have good quality. However, 
according to our experience, there are still about 1% words in the script been found 
not match with the speech. These mismatches are caused by reading errors, text-
normalization errors and the idiosyncratic pronunciation of the speaker. For a person-
alized speech corpus that is recorded by a home user with a PC, the error rate will be 
much higher. These errors will hurt the speech quality when related units are used. 
Therefore, it is desired to have an automatic mismatch detection algorithm.  

2.3   Text Processing 

When generating the recording script and the corresponding phonetic transcription, 
many TTS front-end functions, such as the text normalization and the grapheme-to-
phoneme conversion, are needed. These processes will often generate some errors and 
cause additional mismatch between the speech and its phonetic transcription. In  
Section 4, a generalized posterior probability based mismatch detection method [2] is 
presented. 

2.4   Unit Segmentation 

To make a speech corpus usable to a concatenative TTS, the phonetic transcriptions 
has to be aligned with the corresponding speech waveforms. HMM based forced 



 The Paradigm for Creating Multi-lingual Text-To-Speech Voice Databases 739 

alignment has been widely adopted for automatically boundary alignment [3]. Yet, 
despite its universal maximum likelihood and relatively consistent segmentation out-
put, such a method can not guarantee the automatic boundaries are optimal for con-
catenation-based synthesis. Thus, post-refining is often performed to guide the 
boundaries moving toward the optimal locations for speech synthesis [4, 5]. Manually 
labeled boundary references are required to train the refining model. In Section 5, we 
propose to use context-dependent boundary models [6] to fine tune the segmental 
boundaries. Our goal is to improve the boundary accuracy with as fewer manual la-
bels as possible. 

2.5   Prosody Annotation 

In order to achieve high quality synthetic speech, prosody annotation is often per-
formed on the speech corpus, either manually or automatically. In most TTS systems, 
there is a prosody prediction module that predicts either categorical prosodic features, 
such as phrase boundary locations, boundary tone and pitch accent locations and 
types, or numerical features such as pitch, duration and intensity. Such prediction 
modules can be used to generate the prosody annotation for a speech corpus. How-
ever, the prediction from text quite often does not match the acoustic realization by 
the voice talent. In Section 6, we introduce a multi-classifier framework for automatic 
prosody annotation [7], in which the appearance of a prosodic event is jointly decided 
by an acoustic classifier, a linguistic classifier and a combined classifier.  

Once all resources in Fig. 1 are available, the whole speech corpus or a selected 
part of it can be easily converted into a TTS voice automatically. Several key tech-
nologies that either improve the scalability or reduce the human inference are de-
scribed in Section 3 to Section 6. 

3   Choosing Proper Parameters in Script Generation 

As mentioned in Section 2, three parameters have to decide before script generation. 
Some experimental tips are given below.  

3.1   Size of the Script  

Theoretically, the more speech recorded, the better the voice quality will be. How-
ever, in real-applications, we have only limited time and resources. In our previous 
study [8], the relationship between the size of speech database and the voice quality 
has been studied. As shown in Fig. 2, when about half of the corpus is pruned, the 
naturalness of synthesized speech is almost unchanged. If more than 70% of the cor-
pus is pruned, the naturalness will drop rapidly. However, when 80% of the corpus is 
pruned, the MOS score is still above 3, which means acceptable. The speech corpus 
used in this study is in Mandarin and contains about 12000 utterances and 180,000 
syllables. 20 percents of it equal to about 36000 syllables or 2400 sentences. This 
draws out the bottom-bound for the size of speech corpus.  
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Fig. 2. The relationship between the size of speech corpus and the naturalness of synthesized 
speech. (the full size corpus contains about 180,000 Chinese syllables) 

3.2   Base Unit Set 

Base unit in a concatenative speech synthesizer is the smallest constituent in unit 
selection. There are many possible choices, such as phoneme, diphone, semi-syllable, 
syllable or even word. In order to get natural prosody and smooth concatenation, for 
each base unit, rich prosodic and phonetic variations are often expected. This is easy 
to achieve when smaller base units are used. However, there are several disadvantages 
for smaller base units. First, smaller units mean more units per utterance and more 
instances per unit and this implies a larger search space for unit selection and more 
search time. Second, smaller units cause more difficulties in precise unit segmentation 
and errors in unit boundaries will hurt the quality of the synthesized speech. It is 
found that longer base units are useful as long as enough instances are guaranteed to 
appear in the speech database [9].  

For languages which have a relatively small syllable set, syllable is often used. For 
example, Mandarin Chinese has less than 2000 tonal syllables. Syllable can be used as 
the base unit if a more than 10 hour speech corpus is planed. However, when only a 1-
2 hour speech corpus is planed, initial plus tonal final is an alternative choice. Since in 
zero-initial syllables and syllables with voiced initials, the segmentation between 
initial and final is very difficult, these syllables can be treated as whole units in a 
moderate size speech corpus, i.e. the base unit set can be a mixing of sub-syllabic 
units and syllabic units.  

For most western languages, such as English, it is difficult to generate a closed list 
of syllables. Smaller base unit such as phoneme, diphone, halfphone are used. How-
ever, using phone-size unit will result a much larger search space for unit selection. 
Therefore, the return speed of the unit selection module in a phone-based English 
TTS system is dozens times slower than a syllable-based Mandarin TTS system (both 
systems share the same unit selection module). Therefore, it is highly recommended  
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to expand the base unit set by adding some frequently used multi-phone unit. The 
criteria and the algorithm for identifying the multi-phone units are discussed in [9]. 
By keeping a good relationship between the number of multi-phone units added to the 
base unit set and the size of the speech corpus to be collected, the performance of the 
unit selection module can be kept in a good status in terms of both voice quality and 
return speed.  

3.3   Function for Calculating the Script Coverage 

The recording script should cover the most important phonetic or prosodic variations 
of each base unit. Some features like position in phrase, position in word and position 
in syllable (if sub-syllable units are used) are believed to cause variations in prosodic 
features of speech segments. Other features like left phone type and right phone type 
cause variations in segmental features. For tonal language like Chinese, the left tone 
and right tone should be considered. For languages that stress plays an important role, 
whether the unit is in a stressed syllable or not is an inducement for prosodic varia-
tions. When all these features are considered, they will result tens thousands possible 
contexts for each base unit. However, not all of them appear in real speech and the 
occurrence frequencies of context dependent units are non-uniformed. Therefore, we 
could generate a must-cover list that includes all context dependent units with occur-
rence frequencies higher than a threshold F, which is adjustable according to the tar-
get size of the script. Another constraint for the list is that each base unit has to appear 
for X times even if it has very low occurrence frequency. In order to cover all items in 
the must-cover list within the minimum size of script, the reciprocal of the occurrence 
frequency is often used as the importance index of each item. Then the importance of 
a sentence is measured by the sum of the importance indices of all new items it brings 
in. During sentence selection, the sentence with the highest importance is selected. 
After it is selected, all context dependent units in it should be removed from the must-
have list. Then, the selection is repeated until the must-have list is empty or size of 
selected sentences reaches its up-bound. 

In one experiment on Chinese script generation, a text corpus of five-year People’s 
Daily, which contains about 97 million Chinese characters, is used as the raw corpus 
for statistic. Tonal syllable is used as the base unit. After all Chinese characters are 
converted into context dependent syllables, about 2.3 million distinct context depend-
ent syllables are found. We found that the accumulated frequency of the top 44,000 
items is larger than 50%. By setting 50% as the cutting threshold and constraining that 
at least 10 items per syllable, a must-cover list with 46,000 items is generated. After 
sentence selection, 12000 sentences are selected, which contains 177,000 Chinese 
characters and 119,000 distinct context dependent syllables.  The additional 73,000 
syllables raise the accumulated frequency to 64.0%.  That is to say that we will have 
about 64% chances to find a syllable from the speech corpus with the required context 
during synthesis phase.  

In another experiment, a small script is desired. We use initial and tonal final as the 
base unit. A 300-sentence script is generated, which contains about 6000 syllables.  
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4   Mismatch Detection 

As mentioned in Section 2, both the recording process and text processing will gener-
ate mismatches between the speech and its phonetic transcription. Such mismatches 
will cause segmental errors in synthetic speech. They should be found in the data 
processing stage.    

Generalized posterior probability (GPP), an integration of acoustic model score 
and language model score, is a probabilistic confidence measure for verifying the 
results of automatic speech recognition [10]. A typical usage of GPP is to verify the 
correctness of words [11], in which word GPP (GWPP) is estimated by exponentially 
reweighing the corresponding acoustic and language model likelihoods of all in-
stances of a word in a word graph, as given in equation (1). GWPP has demonstrated 
robust performance on identifying the mismatches between script and speech that 
span to multiple syllables. However, it has rather high accepting ratio for wrong 
mono-syllabic words and words read slightly different from their canonical pronun-
ciations. This is because of the usage of a word lexicon and the corresponding N-gram 
language model. 
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where [w; s, t] is the focused word w with its starting time s and ending time t, x1
T is the 

sequence of acoustic observations, M is the number of words in the current string,  and  
are the exponential weights for the acoustic and language models, respectively. 

For a TTS database, besides the reading errors or orthographic error, local pho-
netic errors are desired to be identified. GPP for sub-word units is used for detecting 
such minor errors. Phoneme and syllable are two candidates. Since phonemes have 
very short duration, it is difficult to generate a reliable anchor for calculating GPP. 
Furthermore, the search space will be too large when all phoneme sequences are 
treated as legal. Thus, syllable is used in our work. First, a syllable lexicon and syl-
lable N-gram are generated. Then, syllable-loop decoding is performed to generate 
syllable graphs. In order to get rich syllable hypotheses in the graph, only syllable 
unit-gram is used. An orthographic transcription is normally available for a TTS 
speech corpus so that the phonetic transcriptions can be derived from it. Next, the 
phonetic transcriptions are forced-aligned with the speech waveform. Finally, gener-
alized posterior syllable probability (GSPP) for each syllable [2], defined as in equa-
tion (2),  is calculated.  
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where [syl; s, t] is the focused syllable with its starting time s and ending time t, x1
T is 

the sequence of acoustic observations, M is the number of syllables in the current 
string,  is the exponential weights for the acoustic models.  

If the GSPP of a syllable is smaller than a threshold, P, the syllable is marked as 
not reliable. It will be excluded from the final database or be checked by a human 
annotator. By adjusting P, we are able to control the number of syllables to be with-
drawn or checked. 

5   Unit Segmentation 

For a concatenative TTS system, the accuracy of unit boundaries is crucial to the 
voice quality of synthesized speech. The most commonly used method for boundary 
labeling is to perform HMM based forced-alignment. However, such alignments are 
obtained under the global maximum likelihood criteria, which do not guarantee the 
local optimum for concatenation. We propose a context dependent boundary model 
(CDBM) to refine the segmental boundary regarding to the boundary references pro-
vided by human.  

Since the evolution of speech signal across a segmental boundary depends upon the 
phonemes before and after the boundary. A boundary point B, which is labeled by its 
left phoneme, X, and right phoneme, Y, and denoted as X-B+Y, is then denoted as a 
Context Dependent Boundary (CDB). As shown in Fig. 3, the characteristics of a 
CDB is represented by (2N+1) frames of acoustic features extracted from the frames 
spanning over a time interval across the boundary point and modeled by a (2N+1)-
state HMM, where each state corresponds to one frame and the transition coefficient 
between neighboring states is always set to 1. Such a HMM is referred as the Context 
Dependent Boundary Model (CDBM). A certain mount of human labeled boundaries 
are required to train CDBMs. Ideally, one model per CDB. However, limited  
 

 

Fig. 3. Modeling of a context dependent boundary 
< 
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segmented utterances in the training set cannot cover all possible boundary types. 
Therefore, CART is applied to cluster acoustically similar CDBMs to share data for 
robust estimation of parameters. As illustrated in Fig. 4, the clustering is performed 
on states. In total, (2N+1) CARTs are built, one for each state. A Gaussian Mixture 
Model (GMM) is then trained from all feature vectors clustered at the same leaf node. 
With such a hierarchical structure, the total number of CDBMs is adaptable.  

 

 

Fig. 4. Clustering CDBM states with CART 

When such CDBMs are trained from 20,000 manually labeled boundaries, the 
boundary accuracy (if the distance from an auto-boundary to its manually labeled 
reference is smaller than 20ms, it is counted as a correct one) increases from 78.1% to 
94.8% for Chinese and from 81.4% to 92% for English. If the training samples re-
duced to 5000 boundaries (approximately 350 Chinese utterances or 150 English 
utterances), the boundary accuracy is still above 90%. In the scenario to build person-
alized voice fonts, it is unrealistic to ask for manual labels, speaker independent 
CDBMs are trained. The boundary accuracy increases from 78.8% to 91.9% on the 
TIMIT testing set.  

6   Prosody Annotation 

Two types of prosodic events are normally labeled in a TTS speech corpus, the phrase 
boundary (w/o boundary type) and the pitch accent (w/o accent type). ToBI [12] is a 
widely adopted prosodic representation. It is first proposed for English and has been 
extended in many languages. However, annotating a speech corpus with ToBI is a 
very difficult task even for professionals. It will take even experienced labelers from 
100 to 200 times real time [13]. The across personal agreement ratio for accent, edge 
tone and boundary indices are reported as 71%, 86%, and 74% respectively in [14]. 
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However, the agreement ratio on the presence and absence of accent and edge tone 
are much high (92% and 93%, respectively). Therefore, a simple version prosody 
representation ToBI lite [15] is proposed recently. In our studies, we propose to anno-
tate a set of prosodic event with complexity between ToBI and ToBI lite. It includes 
two-level boundary strength (correspond to the minor phrase and the major phrase 
boundaries), three boundary types (rising, falling and flat, correspond to the percep-
tual pitch movement before the boundary) and two-level accent (with/without accent). 
All these prosodic events have perceivable cues so that a well trained human annota-
tor can achieve good self-consistency. In our experiment in English, the same annota-
tor labeled the same sentences twice in a four-week time span. The agreement ratio on 
presence or absence of accent is 97.3%, on boundary strength plus boundary type is 
97.1%. After the training section, labeling such prosodic events takes about 15 times 
real time. The cost for manual labeling is still high.  

To reduce the human labeling efforts, we proposed a multiple classifier framework 
for prosody annotation [7]. As illustrated in Fig. 5, first, an acoustic classifier is used 
to detect the phrase boundary or the accented words from acoustic features and a 
linguistic classifier is used to predict phrase boundary or words to be accented from 
linguistic features. Then, the two results are compared. If they agree, the labels are 
kept. Otherwise, a third classifier is used to merge the scores from the two previous 
classifiers and some additional information such as word N-gram scores, segmental 
duration and pitch differences among succeeding segments. The third classifier gives 
the final labels on the disagreed part. With such a frame work, various acoustic fea-
tures and linguistic features are combined together to make a more accurate prosodic 
labels.  

In the experiment on accent labeling, the linguistic classifier is very simple, i.e. all 
content words are marked as with accent and all function words are without accent. 
The whole speech corpus was first labeled with the linguistic classifier and then used 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The multi-classifier framework for prosody labeling 
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to train the acoustic classifier (HMM models were trained for accented or unaccented 
vowels). A small amount of manual labels are required to train the combing classifier 
(AdaBoost classifiers [16]). When 500 manually labeled sentences are used, we 
achieve 94.0% accuracy on the presence or absence of accent. Similar experiment is 
carried for boundary detection. The accuracy for presence or absence of phrase 
boundaries is 96.5%.  

7   Summary 

In this paper, the paradigm for creating multi-lingual text-to-speech voice databases is 
introduced with focuses on script generation, mismatch detection, unit segmentation 
and prosody annotation. With such a framework, we have created several large speech 
database (>10 hour speech), including two in Mandarin, one in English and one in 
Spanish. Besides, we have created 8 personalized speech databases, 4 in English and 
4 in Chinese. These databases contain about 300 carefully selected sentences and read 
by our nice colleagues. With the technologies described in this paper, the work load 
and cost for developing a voice database is reduced. We hope this will inspire new 
request for using celebrity voice or personal voice, and voices in different speaking 
styles. As an initial attempt, we developed a demo which simulates a virtual chatting 
room on internet. Participants in the chatting room do not need to speak to their com-
puter (though there are some voice-chatting rooms, many participants prefer to type in 
their words instead of speaking in to avoid disturbing others). Yet, the words they 
type in will be converted into speech with their voice fonts (or any pre-selected voice 
fonts). As the result, other participants in this room can still hear their words in their 
own voices, most likely through a headphone.  

Acknowledgements. The authors would like to thank Eric Chang, Linda Chen, Frank 
Seide, Stephen Dahl and Sheng Zhao for their kindness to contribute their time and 
voices for the personalized voice databases. 
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Abstract. In this paper, four speech corpora collected in the Speech Lab of 
NCTU in recent years are discussed. They include a Mandarin tree-bank speech 
corpus, a Min-Nan speech corpus, a Hakka speech corpus, and a Chinese-
English mixed speech corpus. Currently, they are used separately to develop a 
corpus-based Mandarin TTS system, a Min-Nan TTS system, a Hakka TTS 
system, and a Chinese-English bilingual TTS system. These systems will be 
integrated in the future to construct a multilingual TTS system covering the four 
primary languages used in Taiwan. 

1   Introduction 

The issue of collecting multilingual database has become popular in both automatic 
speech recognition (ASR) and text-to-speech (TTS) [4]. In TTS, multilingual corpora 
can be used to develop multilingual or polyglot TTS systems. They can also be used 
to analyze prosody behavior [2] in each individual language as well as in mixed 
languages, such as Chinese-English, for generating proper prosodic information to 
improve the naturalness of TTS systems. In ASR, multilingual corpora can be used to 
develop multilingual speech recognizers for cross language conversation or 
information retrieval applications. 

In this paper, four speech corpora collected in the Speech Lab of NCTU in the past 
few years are introduced. They include a Mandarin tree-bank corpus, a Min-Nan 
corpus, a Hakka corpus, and a Chinese-English bilingual corpus. The main purpose of 
collecting these four corpora is to develop an integrated multilingual TTS system 
covering the main four languages used in Taiwan. In Taiwan, the official language is 
Mandarin Chinese with text written in Chinese character. But, there exist two popular 
dialects of Mandarin. One is Min-Nan which is the mother language of about 60% 
population. Another is Hakka which is the mother language of 11.5% population. 
These two dialects are widely used in the daily life of many people. Besides, the 
mixed speech of English and Mandarin is also used by many well-educated people. In 
this paper, we describe these four corpora in detail and discuss some of their uses in 
TTS. 

The paper is organized as follows. Section 2 describes these four speech corpora. 
Section 3 presents some of their uses. Some conclusions are given in the last section. 
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2   The Four Speech Corpora 

In this section, we describe the design, collection, processing and analysis of these 
four speech corpora in detail. 

2.1   The Mandarin Tree-Bank Corpus  

The Mandarin tree-bank corpus is composed of paragraphic read utterances of a 
single female professional announcer. It includes two sub-corpora. One contains 
utterances read in normal speed. It has 1422 sentences with 122,580 syllables or 
70,910 words. The types of characters are 3133. Another contains speech of three 
repetitions of reading the same texts in three different speeds. It has 380x3 utterances 
(or 52,192x3 syllables) with three different speaking rates of 2.8, 3.5, 4.3 syllables per 
second. 

Utterances of the corpus are all collected in the office environment and recorded in 
the form of 16 kHz sampling rate and 16-bit PCM format. The total memory size of 
the first sub-corpus is 1.01GB. All speech signals are automatically segmented into 
syllable sequence by the HMM method using the HTK and pitch-detected by using 
the ESPS. A part of the first sub-corpus, which contains 52,192 syllables, is further 
manually processed to correct the segmentation and pitch errors. 

The text of each utterance in the corpus is a short paragraph composed of several 
sentences selected from the Sinica Tree-Bank Corpus [1]. Each sentence is associated 
with a syntactic tree parsed manually. Fig. 1 displays a typical example. With the 
syntactic information, we can explore the syntax-prosody relationship more deeply. 

 

Fig. 1. The syntactic tree of an example sentence 

2.2   The Min-Nan Speech Corpus 

The Min-Nan corpus is designed for the development of a data-driven prosody 
generator for Min-Nan TTS. It consists of read speech of a single female speaker. It 
has 255 utterances including 130 sentential utterances with length in the range of 5-30 
syllables and 125 paragraphic utterances with length in the range of 85-320 syllables. 
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The total syllable count is 23,633. The corpus is collected in the office environment 
and recorded in a 20 kHz rate. All speech signals are segmented into syllable 
sequences manually. Pitch is first detected by ESPS and then manually error-
corrected. 

All texts of the utterances in the corpus are represented in the Han-Lo (Chinese 
character-Roman alphabet) format [5]. They are processed manually. First, all Roman 
alphabet strings are converted into syllables. They are then segmented into word 
sequences and labeled with part-of-speeches (POSs). Besides, both the lexical tone 
and the sandhi tone (i.e., contextual tone change) of each syllable are determined 
manually. The main reasons of performing all these text processings manually are: (1) 
The standard written form of Min-Nan language does not exist. So the automatic 
tagging of text to obtain the word sequence is not easy. (2) Min-Nan speech has a 
complicated system of tone sandhi rules. The automatic labeling of text to determine 
the sandhi tone of each syllable is also not easy. 

2.3   The Hakka Speech Corpus 

The Hakka speech corpus is designed for the development of a data-driven prosody 
generator for Hakka TTS. It is collected in the office environment and articulated in 
Siixian accent  by a female informant, a retired elementary school teacher in 
her late fifty, and now a radio program hostess introducing Hakka dialect and culture. 
It consists of 59 read articles with the articles divided into 304 paragraphs to be 
fluently read by our informant. All speech signals are segmented into syllable by first 
using the HMM method and then manually verified. Pitch is first detected by ESPS 
and then manually error-corrected. For all the running speech, two things have been 
done: first, all the syllables in the speech, 42,011 in total, were transcribed in a 
modified version of Taiwan Tongyong Romanization, and the texts of the articles 
were parsed and tagged with parts of speech based on a simplified tagging set 
developed by Academia Sinica. 

2.4   The Chinese-English Mixed Speech Corpus 

The Chinese-English mixed speech corpus is designed for the prosody generation of 
Chinese-English bilingual TTS. The texts considered are all Chinese sentences 
embedded with English words. It consists of two sub-corpora. One is designed for the 
case of spelling English words such as “IBM” and “NBA”, while another is for the 
case of reading English words such as “Windows” and “Seven-Eleven”. The first sub-
corpus consists of 539 utterances. The total syllable count is 13,540 including 1,872 
English alphabets and 11,668 Chinese characters. Another sub-corpus consists of 423 
utterances. It has in total 8,302 Mandarin syllables and 682 English words. The 
corpus is generated by a female speaker and recorded in the office environment. 
Utterances are all spoken naturally at a speed of 3.5 syllables/second. All speech 
signals are digitally recorded at a 20-kHz sampling rate. They were manually 
segmented into syllable sequences. Texts of the corpus are also manually processed to 
segment each sentence into word/POS/syllable sequences. 
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3   Some Uses of the Four Corpora 

In this section, we present some uses of these four speech corpora. 

3.1   Development of a Corpus-Based Mandarin TTS System 

A corpus-based Mandarin TTS system is developed using the first sub-corpus of the 
Mandarin tree-bank corpus. Fig. 2 shows a block diagram of the system. The system 
is composed of four main modules including Text Analyzer, Prosody Generator, Unit 
Selection, and Waveform Synthesizer. Input Chinese text in the form of character 
sequence encoded in Big 5 format is first tagged by Text Analyzer to obtain the word, 
POS, character and syllable sequences. Unit Selection then uses the word sequence to 
search the speech segments of all partially-matching word strings from the texts of the 
corpus. These speech segments are taken as candidates of synthesis units to form a 
lattice. Meanwhile, prosodic information is generated by Prosody Generator using 
some linguistic features extracted from the word and POS sequences [9]. Then, the 
best speech-segment sequence to be concatenated to form the output synthesized 
speech is then found from the speech-segment lattice by the Viterbi algorithm. Fig. 3 
shows a typical word-sequence lattice. 

 

Fig. 2. The structure of the corpus-based Mandarin TTS system 

 

Fig. 3. An example of candidate word-string lattice 
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The search of the optimal output speech-segment sequence is based on a cost 
function which considers both the intra-segment prosody matching cost and the inter-
segment concatenation cost. The former measures the difference between the prosody 
of a candidate speech segment in the speech corpus and the target prosody generated 
by Prosody Generator. The latter measures the continuity of concatenating two 
candidate speech segments. 

The function of Waveform Synthesizer is to generate the output synthesized speech 
by simply concatenating the optimal speech segments. For empty locations where no 
proper speech segments can be found in the speech corpus, waveform templates of 
base-syllable stored in an acoustic inventory are used to fill them. The PSOLA 
algorithm is employed to modify the prosody of those filling waveforms. Besides, a 
pause duration generated by Prosody Generator is inserted between two consecutive 
speech segments. 

To improve the quality of the output speech, some special processings of the 
corpus are performed. Firstly, all long determiner-measure (DM) compound words 
are further segmented into small word segments. Secondly, prefix and postfix 
characters, surnames, and frequent monosyllabic words are collected and stored in a 
special acoustic inventory as synthesis units. 

3.2   Development of a Min-Nan TTS System [7,12] 

Min-Nan is a spoken dialect widely used in the south-eastern China and Taiwan. Just 
like Mandarin, Min-Nan speech is also a syllabic and tonal language [5]. There exist 
more than 2000 tonal syllables which are all legal combinations of 877 base-syllables 
and 8 tones including the degenerated Tone 6 which is not used by modern 
Taiwanese. These 877 base-syllables have almost the same initial-final structure like 
Mandarin base-syllables except that some base-syllables have finals with “stop” 
endings. Those special “stop”-ending base-syllables can only be associated with light 
tones (i.e., Tone 4 and Tone 8), referred to as entering tones. There are in total 18 
initials and 82 finals. 

Although Min-Nan speech has similar linguistic characteristics like Mandarin 
speech, it is a colloquial language and does not have a standard written form. There 
exist two popular written forms in Taiwan. One is the Romanization form which uses 
Roman alphabets to spell each base-syllable and uses a number to specify its tone. 
The other is a hybrid one in which most syllables are represented by Chinese 
characters with only a small set of special syllables being represented in 
Romanization form. Text written in this representation is easier to understand so that 
it is widely used in writing books and text documents. Unfortunately, the system to 
represent words in Chinese characters is still not standardized nowadays in Taiwan. 
Except some popular words, people always choose, according to their own 
preference, a string of Chinese characters with similar pronunciations in Mandarin to 
represent a Min-Nan word. This makes the text analysis of Min-Nan language very 
difficult because of the lack of a standard lexicon. 

Another problem encountered in the text analysis of Min-Nan TTS is the 
determination of tone. Although there are only 7 lexical tones, the tone pattern of a  
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Fig. 4. A functional diagram of the Min-Nan TTS system (Source: Kuo [7]) 

syllable may change seriously in continuous speech. A previous study showed that 
Min-Nan speech possesses a set of tone sandhi rules [5]. Generally speaking, all 
syllables except the last one of a word chunk have to change their tones according a 
set of rules. So, the problem changes to a word chunking problem of determining 
sandhi word groups. A preliminary study of automatically labeling the tones of 
syllables was conducted by using the Min-Nan speech corpus [6]. It employed an F0 
model to characterize the syllable pitch contour patterns and eliminate the interference 
from the high-level intonation. An average accuracy of 61.9% was achieved. With the 
automatic sandhi tone labeling, a further study to predict the boundaries of sandhi 
word groups from the input text will be done in the future. 

A Min-Nan TTS system is developed by using the Min-Nan speech corpus [7,12]. 
Fig. 4 shows a block diagram of the system. It consists of four main functional blocks: 
Text Analyzer, RNN-based Prosody Generator, Acoustic Inventory, and PSOLA 
Speech Synthesizer. Input text is first tokenized into word/syllable sequence by Text 
Analyzer. The waveform sequence corresponding to the syllable sequence is then 
formed by table looking up from Acoustic Inventory which stores 877 waveform 
templates of base-syllable. Meanwhile, some linguistic features are extracted from the 
word/syllable sequence and used in RNN-based Prosody Generator to generate all 
required prosodic parameters. Lastly, a prosody modification of the waveform 
sequence to generate the output synthetic speech was performed by PSOLA Speech 
Synthesizer using these prosodic parameters. 

To improve the quality of the output speech, some special processings of the 
corpus are performed. Firstly, a “Chinese-to-Min-Nan” lexicon is added to solve the 
out-of-vocabulary problem encountered in the text analysis using only a Min-Nan 
lexicon. This also makes the system possess the capability of processing input 
Chinese text. Secondly, a set of tone sandhi rules is explicitly applied in text analysis 
to change the lexical tones of all syllables into the ones for pronunciation. This makes  
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Fig. 5. A typical example of synthesized prosodic parameters: (a) pitch mean, (b) initial 
duration, (c) final duration, and (d) log-energy level of syllable, and (e) inter-syllable pause 
duration. The text is “ the ”. 
(Source: Kuo [7]) 

the process of learning rules for generating proper prosodic information more easy. 
Thirdly, a further processing of the training speech database is done manually to label 
all major/minor breaks occurred at inter-syllable locations without punctuation marks 
(PMs) and to locate some special syllables pronounced short and lightly. Lastly, all  
5- and 6-syllable words are classified into {2-3, 3-2} and {2-2-2, 3-3} pronunciation 
patterns. The new information obtained by these processings is used to help the 
prosody generation. 

The whole system was implemented in software on a PC. Fig. 5 shows a typical 
example of the synthesized prosodic parameters. It can be seen from the figure that 
the synthesized prosodic parameters of most syllables matched well with their original 
counterparts.  

3.3   Development of a Hakka TTS System [13] 

Hakka is one of the major seven dialect families of Chinese spoken by native speakers 
in the provinces of southern China, Hong Kong, South-East Asia, and Taiwan. In 
Taiwan, it was estimated that Taiwan-Hakka is used approximately by two million 
native speakers, made up about 11.5% of Taiwanese inhabitants, hence a minor 
dialect used in Taiwan. Like many other minor languages/dialects in the world, 
Taiwan-Hakka is under the threat of disappearing from the pressure of dominant 
languages and gradual ethnic merging, which inevitably leads to a steep drop in the 
population of Hakka native speakers in the coming generations if no preventive 
measures are taken to avoid the disappearing of it or no adequate policy is made to 
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encourage using, learning, and studying it. At this critical moment, it is the good 
timing to develop a Taiwan-Hakka text-to-speech system (THTTS) to facilitate the 
preservation and propagation of Hakka, and to expand the horizon of Hakka study and 
text-to-speech techniques as well. 

To develop the THTTS along with its future practical application, we decided 
Siixian subdialect ( ) as our model language, considering its largest 
population both in Taiwan and China and its accent viewed agreeably among Hakka 
folks to be the standard (but not necessarily the privileged) variety.  

By using this corpus, we have constructed our first Hakka TTS system with RNN-
based prosody generator and PSOLA-based speech synthesizer. The system is 
designed based on the same principle of developing the Min-Nan TTS system 
discussed in Section 3.2. Experimental results confirmed that the system performed 
well. An informal listening test shows that the synthetic speech sounds natural for 
well-tokenized texts, and fair for automatic tokenized texts. Further studies to 
improve the naturalness of the synthetic speech by incorporating a more sophisticated 
text analysis scheme and by adding some tone sandhi rules are worthwhile doing in 
the future. 

3.4   Prosody Study on Chinese-English Mixed Corpus [8] 

For the Chinese society, Chinese-English mixed texts or speech are very popular in 
Taiwan especially for the information processing domain. We give two examples: 

(I want to join the IBM corporation.) 
(Give me an email.) 

Besides, it becomes popular that young generations in Taiwan use short English 
alphabet strings to replace Chinese words as well as to represent some concepts for 
daily speech communication and for interactive communication through Internet. We 
list some of them in the following: BPP , white), SDD (  very pretty) 
CBA ( , very cool), CKK ( , dead), LKK ( , very old), LM ( , 
spicy girl), OBS , mistress), OGS ( , mister), PMP ( , flatter), 
SYY , very happy), etc. 

In all applications of using Chinese-English mixed texts, Chinese is always the 
primary language. So the developments of Mandarin-English polyglot TTS systems 
are very urgent for Chinese societies. Now, we present an approach to expand an 
existing Mandarin TTS system [9] to a polyglot one which can properly spell English 
words letter-by-letter. The study focuses on the problem of generating proper 
prosodic information for English words in order to make their pronunciations match 
with the background Mandarin speech.  

3.4.1   Analysis of Grammatical Constraints on the Chinese-English Mixed 
Speech Corpus [14] 

It has been clearly proposed that the prosodic behavior of Chinese, for example, tone 
sandhi, is constrained by grammatical properties such as constituency and 
modification scope. According to Cutler [15], in speech comprehension, listeners do 
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use explicit segmentation procedures. These procedures differ across languages and 
seem to exploit “language-specific rhythmic structure”. We may want to know what 
are the rhythmic segmentation procedures in Chinese-English mixed speech. By 
studying the way English words are incorporated into Mandarin sentences, we may 
get clues as to how “prosodic phrases” are formed in Mandarin-English mixed speech. 

Chinese is a tonal language with clear tone patterns. Owing to this reason, when a 
speaker uses Chinese as his mother language, he will tend to pronounce English 
words with tonal concept. As a result, in Chinese-English mixed speech, some 
hypotheses are proposed:  

• Speakers using Chinese as their mother language will tend to apply tonal 
concept to pronounce English words or characters, which makes English 
words sounds like consisting of several tonal syllables. 

• Because English words are embedded in Chinese utterance, prosody 
information of English words will be guided by Chinese utterance in order 
to makes English words sounds not too strange and obvious. 

Our hypotheses may be reasonable because of the following phenomena. When it 
comes to switching speaking language to English in a Chinese utterance, two 
language switching phenomena may happen. First is that when English words 
coarticulated with adjacent Mandarin syllables, it could be pronounced without any 
difficulty and sounds like constructed by tonal syllables. Another one is that if an 
English word can be constituent with adjacent Mandarin characters, it will be 
combined and becomes a prosody word, and will be sounded as natural as a Mandarin 
prosody word. These two phenomena shows that our hypotheses may be suitable for 
us to construct a Mandarin-English bilingual TTS system. 
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Fig. 6. A block diagram of the RNN-MLP scheme (Source: Kuo [8]) 
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3.4.2   Prosody Generation for English-Chinese Bilingual TTS [8] 
Fig. 6 is a block diagram of the proposed RNN-MLP scheme of generating prosodic 
information for spelling English words embedded in background Chinese texts. It 
adds four additional MLPs to follow the Mandarin RNN prosody generator developed 
previously. In operation, it first treats each English word as a Chinese word and uses 
the Mandarin RNN prosody generator to generate a set of initial prosodic parameters 
for each syllable of the English word. These initial prosodic parameters are expected 
to match globally well with those of the background Mandarin speech. It then divides 
these initial prosodic parameters into four subsets and employs four MLPs to refine 
them with the goal of compensating the distortions caused by the mismatch on the 
prosody pronunciations between the English word and the substituting pseudo 
Chinese word. 

A typical example of the synthesized prosodic parameters for a Chinese-English 
mixed sentence is displayed in Fig. 7. It can be seen from the figure that all four initial 
prosodic features generated by the RNN for most English syllables matched well with 
the global trend of those for the background Mandarin speech. We also find from the 
figure that these initial prosodic features were greatly improved for most syllables by 
the four MLPs. This confirmed the efficiency of the RNN-MLP scheme. It can also be 
seen that the pre-English word pause duration at -USNS (Shi4-USNS) was 
lengthened while it was not for -NB (Ze2 Shi4-NB). 
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Fig. 7. A typical example of the generated prosodic parameter sequences of: (a) the pitch mean 
and (b) duration of syllable. The text is: “ USNS IBS

NB ”. (Source: Kuo [8]) 

4   Conclusions 

In this paper, four speech corpora collected in NCTU and their uses have been 
discussed. Using these four corpora, three individual TTS systems for Mandarin 
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Table 1. The RMSEs of the synthesized prosodic parameters 

Mandarin English-Chinese Bilingual Taiwanese Hakka
word spelling word readingInside Outside
Inside Out-

side
inside Out-

side

Inside Out-
side

In-
side

Out-
side

Pause 
(ms)

23.7 54.5 25.9 30.8 25.7 26.0 27.62 29.06 56.8 65.4 

Initial 
(ms)

17.2 18.5 13.4 14.5 21.6 23.8 12.00 12.19 20.7 25.6 

Final 
(ms)

33.3 36.7 35.2 37.6 41.3 45.5 34.55 35.22 42.9 45.7 

Pitch
(ms/frame)

0.84 1.06 0.56 0.65 0.45 0.45 0.84 0.85 1.9 2.2 

Energy 3.39 4.17 2.16 3.06 3.41 4.90 2.53 2.97 3.7 4.3 
(dB)  

Chinese and its two dialects, Min-Nan and Hakka, and a Chinese-English bilingual 
TTS system were developed, and the RMSEs of synthesized prosody parameters are 
displayed in table 1. The research will be continued to integrate these TTS systems 
into one multilingual TTS system to cover the four main languages used in Taiwan. 

Other uses of these four speech corpora on prosody modeling to exploit the 
relationship between the hierarchical prosody structure and the hierarchical linguistic 
structure of Mandarin Chinese is now under studied [3,10,11]. 
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Abstract. This paper describes the effort of constructing the Olympic Oriented 
Trilingual Corpus for the development of NLP applications for Beijing 2008. 
Designed to support the real NLP applications instead of pure research purpose, 
this corpus is challenged by multilingual, multi domain and multi system 
requirements in its construction. The key issue, however, lies in the 
determination of the proper corpus scale in relation to the time and cost 
allowed. To solve this problem, this paper proposes to observe the better system 
performance in the sub-domain than in the whole corpus as the signal of least 
corpus needed. The hypothesis is that the multi-domain corpus should be 
sufficient to reveal the domain features at least. So far a Chinese English 
Japanese tri-lingual corpus totaling 2.4 million words has been accomplished as 
the first stage result, in which information on domains, locations and topics of 
the language materials has been annotated in XML. 

Keywords: trilingual corpus, corpus scale, multi-domain, machine translation. 

1   Introduction 

To provide necessary information for anybody at any time in any location is one of 
the most challenging tasks faced by Beijing 2008. The NLP systems are the most 
promising solution to this problem. Current NLP technology can be characterized by 
so-called corpus approach. That is to say, the NLP system demands a reasonable 
collection of language material as the training data. Therefore, the performance of the 
NLP system for Beijing 2008 relies heavily on the quality and scale of the training 
corpus available. 

To acquire the proper corpus for the NLP system development is not a trivial task. 
Although language is reproduced and recorded in an extremely large amount 
everyday, it does not readily exist in proper quality and right form for a corpus 
purpose. In a sense, corpus collection technology itself remains an open issue in NLP 
research [1].  

So far, the reported corpora are chiefly constructed for NLP researches instead of 
practical application system development. For example, most of the famous corpus 
projects like LOB, BNC, Brown Corpus and Penn Treebank are all designed for the 
research of a NLP subtask [1]. Another kind of corpus construction is closely related 
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with public evaluation of certain kind of NLP technique. For instance, the 
accumulation of Chinese-English parallel corpus is devoted to evaluate MT (machine 
translation) performance in a large scale. These efforts in corpus collection make no 
attempt to answer how much data should be enough. Without the burden of ensuring a 
successful development of a NLP application, they either work to the time and money 
allowed, or continuously accumulate all materials available, scaling up into a huge 
enough corpus in the long run. 

In contrast to these corpus constructions, the Olympic Oriented Parallel Corpus 
presented here is designed to support the NLP development from the very beginning. 
Challenges of the corpus come from 2 aspects: 1) In contrast to a given NLP sub-task, 
Beijing 2008 requires many kinds of NLP systems, any of which generally integrates 
several NLP sub-technologies; 2) Beijing 2008 also involves many domains of 
language. To enable the same good performance over all the domains, current NLP 
technologies, which are chiefly based on statistical model, require a sufficient training 
corpus on each domain. The key to these problems is how to provide suitable data in a 
proper scale demanded by the NLP system development. 

In order to solve this problem, this paper describes a typical application based 
corpus scale measure. Instead of trying to figure out how much data is enough, the 
proposed measure tries to figure out the "minimal data needed" by the hypothesis that 
a multi-domain corpus should, at least, reveal the features of each domain. The rest of 
the paper is arranged as follows: section 2 briefly introduces the overall design of the 
corpus. Section 3 presents the corpus scale control strategy based on application 
performance observation in each domain vs. in the whole corpus. Section 4 gives the 
experimental results of our method and describes the present progress of the Olympic 
Oriented trilingual corpus. And, finally, section 5 concludes this paper. 

2   Design and Collection of Olympic Oriented Parallel Corpus 

Since the chief task of the NLP application for Beijing 2008 is to provide information 
access for the people coming from the world, cross language information service 
system becomes the chief development task. Therefore, the parallel corpus that 
consists of several languages as mutual translations is the target of the construction. In 
practice, multi-lingual corpus is a challenge since parallel corpus is extremely rare in 
existence. To facilitate the corpus construction, Chinese, English and Japanese are 
chosen as the first targets because they are most easily accessed in China. And the 
purpose is to collect the “Olympic Oriented Trilingual Corpus” to support related 
NLP application development. 

It can be further noticed that the “Olympic” is actually a social event rather than a 
single language domain. Hence the parallel corpus should contain all domains of 
language involved in the event. After discussion with NLP system developers, 
altogether 5 most related domains are chosen to be included in the first stage of the 
corpus construction, i.e. traveling, food&drink, traffic, business and sports. Although 
both speech and text material are necessary, only text material is focused for the 
current construction to meet the urgent needs of cross-lingual service development. 
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As a compensation strategy, transcripts of dialogues are more emphasized than essay 
(written articles). 

Ideally the corpus should be collected from real language usage. But direct record 
of such language material, such as the building of trilingual spontaneous speech 
corpus mentioned in [2], is extremely expensive and time consuming. As an 
alternative, we first try to get the parallel corpus from the Internet. Though parallel 
corpus mining from the Internet is reported useful [3,4], we found that it is not 
suitable for our purpose because: 

1)  The amount of the parallel corpus of the 5 domains mentioned above is limited; 
2)  Manual verification of the automatically collected texts is not an easy task; 
3)  Most of the parallel corpus from the Internet is selected form English textbook, 

with many typos in the texts; 

As a result, we turn to traditional way of selecting language material from the 
publications. Manual input is carried out, and verification is conducted with corpus 
annotation. Figure 1 displays the main steps of the corpus construction. 

Needs Analysis: 
3 languages, 5 domains, 
dialogues and texts 

Chinese English Parallel 
Corpus Collection 

Corpus Scale 
Determination 

Adding Japanese 
Translation

Annotation 
& Formatting 

 

Fig. 1. Main Stages of the Trilingual Corpus Construction 

The trilingual corpus is aligned at the sentence level, which is manually checked. 
As for its annotation, the following information is included: 

1) Genres: dialogue, article or sample sentence; 
2) Scenario : the place where the dialogue happens or that the article is 

describing; 
3) Topic: the topic of the dialogue or the articles; 

A summary of the scenario tags and topic tags is given in Table 1 of Section 4. 
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3   Application Performance Based Corpus Scale Determination 

The key to the corpus collection is to determine how much data should be contained. 
Ziff law indicates that there are always half low frequency words in the corpus no 
matter how large the corpus is. So people now don't attempt to build a perfect large 
corpus any longer. But in practice, "how much is enough" can not be avoided in 
corpus collection. 

A method to decide the corpus scale is to observe the improvements of the model 
performance with the data expansion. Usually the model performance will reach the 
ceiling after a first phase of increase brought by the data expansion. Although this 
information is usually provided for NLP model development, it might as well be 
treated as a signal of sufficiency of corpus data. 

To adopt this method in the trilingual corpus collection aimed at a specific 
application development, there exist the following disadvantages: 

l) The test suite should be chosen properly to measure the real performance of the 
system, which is not an easy task in itself. 

2) Using this method implies that the target systems have already been established 
for testing purpose. However, we are now building a corpus for the subsequent system 
development. 

3) Cross language services in Beijing2008 involves many NLP technologies. In 
practice we cannot test them one by one on the corpus. 

4) The corpus covers 5 domains as mentioned above and each scale needs to be 
justified as large enough. 

It’s lucky that the first stage of our trilingual corpus construction is to provide 
“reasonable large data”. For this purpose, this paper proposes a corpus scale measure 
based on the application performance over the multi-domain parallel corpus. The 
hypothesis is that, when dealing with multi-domain corpus, the least amount of the 
corpus scale should be such that each domain would not lost its own features against 
the whole. A way to measure this is to check the system performance in each domain 
against that in the whole corpus. In detail, the strategy contains the following steps: 

1) Choose the system from the candidate applications; 
2) Get the test sets and evaluate the system performance for each domain of the 

corpus; 
3) Combine the test sets and evaluate the system performance in the whole corpus; 
4) Compare the differences of the above tests in relation to the corpus expansion, 

and the point where domain performance surpasses the whole corpus performance is 
the least scale of the whole corpus. 

Usually, if a NLP task is more difficult and the model does less generalization, the 
system would require more training data. As far as the Olympic Oriented Trilingual 
Corpus is concerned, machine translation (MT) is perhaps the most challenging task 
among other cross language NLP systems to be developed. And in the 3 main models 
of MT, i.e. rule based MT (RBMT), example based MT (EBMT) and statistical MT 
(SMT), EBMT adopts a "case-to-case" strategy and thus provides less data 
generalization compared with the other two. So the corpus scale can be safely 
measured by the EBMT performance. 
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4   Corpus Scale Determination by Chinese-English EBMT 

The EBMT system chosen for the experiment in this paper is a word-alignment based 
Chinese-English EBMT[5]. It is a pure EBMT system without any hybrid module 
combination, which can be built fully automatically from the word aligned bilingual 
corpus. To automatically evaluate the EBMT system performance, one of the most 
popular MT evaluation standards 5-gram NIST score is adopted [6]. 

During the corpus collection, 1000 Chinese English sentence pairs are called as a 
section. The 5 domains are enlarged section by section simultaneously. Section 0 of 
each domain is reserved as the test sets of corresponding domain. The later sections 
are treated as the training data. When the corpus is enlarged section by section, the 
system performance on the 5 domain is observed by two translation conditions: 1) 
translated by the example base built from the section(s) from corresponding domain; 
2) translated by the example base built from the section(s) of the 5 domains. 

In the beginning of our experiment, the EBMT performs better in the whole corpus 
than in the specific domain on each test set. But the two results get close when more 
sections are added into the each domain. When the whole corpus are enlarged into 
50,000 sentence pairs, i.e. 10 sections for each domain, the EBMT built from the 
specific domain slightly produces a better results than the whole corpus. To verify this 
result, we did ten-fold cross validation for each domain: selecting each section as the 
test set and observe the EBMT performance over the rest 9 sections. Fig2-6 shows the 
average results of the 5 domains, in which the horizontal axis represents the number 
of sections used to build the translation example base, and the vertical axis represents 
the quality of the translation result in NIST score. 

As shown in Fig 2-6, the domain of food &drink, sports and traffic succeed in 
producing better translation result against the whole corpus. But the domain of 
traveling and business fail to produce better results. After further analysis, the reasons 
for such failure can be summarized as the following: 

1) The domain of business is originally designed for transcriptions of business 
related dialogues. But, owing to the scarcity of such materials, business letters are 
allowed. In fact, the two kinds of material preserve rather different language usage. 
The dialogue usually produces simple short sentences, which the business letter often 
contains complex long sentences. The whole business domain can actually be treated 
as two sub-domains owing to different genres. With roughly 5000 sentence pairs 
divided for each, it is reasonable that the two sub-domains are in need of more data to 
reveal their features, let alone the business as a whole to bring its own feature against 
the whole corpus. 

2) The case for the domain of traveling is a bit more subtle. In facts, tourism-
related language materials are all thrown into this domain except those with clear 
mark for the other four domains. The language materials without clear scenarios are 
also grouped into here, such as greeting expressions that can be used in either 
restaurant, sports stadium or during a trip. In this case, the traveling domain would be 
like a salad of the other four domains, mostly represented by language materials on 
hotels, post offices, hospitals, etc. 
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Fig. 2. EBMT Performance in Food&Drink Domain vs. in Whole Corpus 

 

Fig. 3. EBMT Performance in Traffic Domain vs. in Whole Corpus 

 

Fig. 4. EBMT Performance in Sports Domain vs. in Whole Corpus 

In fact, when 5 other linguistic experts are invited to examine this corpus, they 
would rather interpret it like this: 

1) All tourism-related texts are grouped into traveling domain, with the exception 
of food&drink and traffic texts. 

2) The business domain actually contains two completely different types of 
languages: one is dialogue and the other is business letters; 

3) The sports domain is clearly distinguished by conversations on sports activities. 
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Fig. 5. EBMT Performance in Travel Domain vs. in Whole Corpus 

 
Fig. 6. EBMT Performance in Business Domain vs. in Whole Corpus 

Table 1. Statistics of Current Olympic Oriented Trilingual Corpus 

Domain Number of Sentence Pair Number of Word Scenario Tags Topic tags 
Traveling 11,408 441,015 19 128 
Food &Drink 11,352 441,018 9 15 
Sports 95,09 605,663 10 47 
Traffic 11,869 460,543 16 55 
Business 9,905 475,987 4 78 
Total 54,043 2,424,226 58 323 

To make a remedy for this problem, more data are added to the domain of traveling 
and business. We also take out some noisy data from the 5 domains by observing 
abnormal system performance change. After adding Japanese translation for the 
corpus, we finally got the 1st stage of Olympic Oriented Trilingual Corpus, for which 
Table 1 lists its brief statistics. 

5   Conclusion 

This paper presents the construction of the Olympic Oriented Trilingual Corpus, 
which is featured by multi domain, tri-language and practical application needs. This 
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may be the first attempt to construct a parallel corpus for the demands of successful 
development of NLP applications. Instead of decide “how much corpus is enough”, 
this paper proposes to determine “how much should be the minimum” by so called 
“application driven corpus scale measure”. This provides a solution to multi-domain 
corpus construction. 

Although the ten-fold cross validation is carried to verify the soundness of the 
corpus scale, the statistical significance of the performance differences has not been 
finished. Also comparison of other NLP tasks for scale measure against MT is still 
under investigating. 

In fact, the usefulness of the proposed measure can only be validated by the 
feedback from the users of the corpus. At present, the corpus annotated with the 
domain, location and topic has been converted into SML format, which is already 
available in Chinese LDC (http://www.chineseldc.org). 
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Abstract. The role of lexical resources is often understated in NLP research. 
The complexity of Chinese, Japanese and Korean (CJK) poses special chal-
lenges to developers of NLP tools, especially in the area of word segmentation 
(WS), information retrieval (IR), named entity extraction (NER), and machine 
translation (MT). These difficulties are exacerbated by the lack of comprehen-
sive lexical resources, especially for proper nouns, and the lack of a standard-
ized orthography, especially in Japanese. This paper summarizes some of the 
major linguistic issues in the development NLP applications that are dependent 
on lexical resources, and discusses the central role such resources should play in 
enhancing the accuracy of NLP tools. 

1   Introduction 

Developers of CJK NLP tools face various challenges, some of the major ones being: 

1.  Identifying and processing the large number of orthographic variants in 
Japanese, and alternate character forms in CJK languages. 

2. The lack of easily available comprehensive lexical resources, especially lexi-
cal databases, comparable to the major European languages. 

3. The accurate conversion between Simplified and Traditional Chinese [7].  
4. The morphological complexity of Japanese and Korean. 
5. Accurate word segmentation ([3], [12]) and disambiguating ambiguous seg-

mentations strings (ASS) [15]. 
6. The difficulty of lexeme-based retrieval and CJK CLIR [4]. 
7. Chinese and Japanese proper nouns, which are very numerous, are difficult to 

detect without a lexicon.  
8. Automatic recognition of terms and their variants [6]. 

The various attempts to tackle these tasks by statistical and algorithmic methods [10] 
have had only limited success. An important motivation for such methodology has 
been the poor availability and high cost of acquiring and maintaining large-scale lexi-
cal databases.  
    This paper discusses how a lexicon-driven approach exploiting large-scale lexical 
databases can offer reliable solutions to some of the principal issues, based on over a 
decade of experience in building such databases for NLP applications. 
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2   Named Entity Extraction 

Named Entity Recognition. (NER) is useful in NLP applications such as question 
answering, machine translation and information extraction. A major difficulty in 
NER, and a strong motivation for using tools based on probabilistic methods, is that 
the compilation and maintenance of large entity databases is time consuming and ex-
pensive.  

The number of personal names and their variants (e.g. over a hundred ways to spell 
Mohammed) is probably in the billions. The number of place names is also large, 
though they are relatively stable compared with the names of organizations and prod-
ucts, which change frequently. 

A small number of organizations, including The CJK Dictionary Institute (CJKI), 
maintain databases of millions of proper nouns, but even such comprehensive data-
bases cannot be kept fully up-to-date as countless new names are created daily. Vari-
ous techniques have been used to automatically detect entities, one being the use of 
keywords or syntactic structures that co-occur with proper nouns, which we refer to as 
named entity contextual clues (NECC).  

Table 1 shows NECCs for Japanese proper nouns, which when used in conjunction 
with entity lexicons like the one shown in Table 2 below achieve high precision in 
entity recognition. Of course for NER there is no need for such lexicons to be multi-
lingual, though it is obviously essential for MT. 

Table 1. Named Entity Contextual Clues 

Headword Reading Example 
   

   
   

   

Table 2. Multilingual Database of Place Names 

English Japanese Simplified 
Chinese 

LO Traditional 
Chinese 

Korean 

Azerbaijan  L   
Caracas  L  
Cairo   O  
Chad   L   
New Zealand  L  
Seoul   O   
Seoul   O   
Yemen   L  



770 J. Halpern 

Note how the lexemic pairs (“L” in the LO column) in Table 2 above are not 
merely simplified and traditional orthographic (“O”) versions of each other, but inde-
pendent lexemes equivalent to American truck and British lorry. 

NER, especially of personal names and place names, is an area in which lexicon-
driven methods have a clear advantage over probabilistic methods and in which the 
role of lexical resources should be a central one. 

3   Linguistic Issues in Chinese 

3.1   Processing Multiword Units  

A major issue for Chinese segmentors is how to treat compound words and multiword 
lexical units (MWU), which are often decomposed into their components rather than 
treated as single units.  

For example,  lùxiàngdài 'video cassette' and  j qif nyì 'machine 
translation' are not tagged as segments in Chinese Gigaword, the largest tagged Chi-
nese corpus in existence, processed by the CKIP morphological analyzer [13]. Possi-
ble reasons for this include: 

1.   The lexicons used by Chinese segmentors are small-scale or incomplete. Our 
testing of various Chinese segmentors has shown that coverage of MWUs is often 
limited. 

2. Chinese linguists disagree on the concept of wordhood in Chinese. Various theo-
ries such as the Lexical Integrity Hypothesis [5] have been proposed. Packard’s 
outstanding book [2] on the subject clears up much of the confusion. 

3. The "correct” segmentation can depend on the application, and there are various 
segmentation standards. For example, a search engine user looking for  is 
not normally interested in  'to videotape' and  'belt' per se, unless they are 
part of . 

This last point is important enough to merit elaboration. A user searching for 
zh ngguórén 'Chinese (person)' is not interested in  'China', and vice-versa. A 

search for  should not retrieve  as an instance of . Exactly the same 
logic should apply to , so that a search for that keyword should only retrieve 
documents containing that string in its entirety. Yet performing a Google search on  

 in normal mode gave some 2.3 million hits, hundreds of thousands of 
which had zero occurrences of  but numerous occurrences of unrelated 
words like  'robot', which the user is not interested in. 

This is equivalent to saying that headwaiter should not be considered an instance 
of waiter, which is indeed how Google behaves. More to the point, English space-
delimited lexemes like high school are not instances of the adjective high. As shown 
in [9], "the degree of solidity often has nothing to do with the status of a string as a 
lexeme. School bus is just as legitimate a lexeme as is headwaiter or word-processor.  
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The presence or absence of spaces or hyphens, that is, the orthography, does not de-
termine the lexemic status of a string." 

In a similar manner, it is perfectly legitimate to consider Chinese MWUs like those 
shown below as indivisible units for most applications, especially information re-
trieval and machine translation. 
 

s chóuzh lù silk road 
j qif nyì machine translation 
àiguózh yì patriotism 
lùxiàngdài video cassette 
X nx lán New Zealand 
línzhènmóqi ng start to prepare at the last moment 

 
One could argue that  is compositional and therefore should be consid-

ered "two words." Whether we count it as one or two "words" is not really relevant – 
what matters is that it is one lexeme (smallest distinctive units associating meaning 
with form). On the other extreme, it is clear that idiomatic expressions like , 
literally "sharpen one's spear before going to battle," meaning 'start to prepare at the 
last moment,’ are indivisible units.  
    Predicting compositionality is not trivial and often impossible. For many purposes, 
the only practical solution is to consider all lexemes as indivisible. Nonetheless, cur-
rently even the most advanced segmentors fail to identify such lexemes and misseg-
ment them into their constituents, no doubt because they are not registered in the lexi-
con. This is an area in which expanded lexical resources can significantly improve 
segmentation accuracy. 

In conclusion, lexical items like  'machine translation' represent stand-
alone, well-defined concepts and should be treated as single units. The fact that in 
English machineless is spelled solid and machine translation is not is an historical 
accident of orthography unrelated to the fundamental fact that both are full-fledged 
lexemes each of which represents an indivisible, independent concept. The same logic 
applies to which is a full-fledged lexeme that should not be decomposed. 

3.2   Multilevel Segmentation  

Chinese MWUs can consist of nested components that can be segmented in different 
ways for different levels to satisfy the requirements of different segmentation stan-
dards. The example below shows how  B ij ng Rìb nrén Xuéxiào 
'Beijing School for Japanese (nationals)' can be segmented on five different levels. 
 

1. multiword lexemic 
2. + + lexemic 
3. + + + sublexemic 
4.  + [  + ] [ + ] morphemic 
5. [ + ] [ + + ] [ + ] submorphemic 
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For some applications, such as MT and NER, the multiword lexemic level is most 
appropriate (the level most commonly used in CJKI’s dictionaries). For others, such 
as embedded speech technology where dictionary size matters, the lexemic level is 
best. A more advanced and expensive solution is to store presegmented MWUs in the 
lexicon, or even to store nesting delimiters as shown above, making it possible to se-
lect the desired segmentation level. 

The problem of incorrect segmentation is especially obvious in the case of neolo-
gisms. Of course no lexical database can expect to keep up with the latest neologisms, 
and even the first edition of Chinese Gigaword does not yet have  bókè 'blog'. 
Here are some examples of MWU neologisms, some of which are not (at least bilin-
gually), compositional but fully qualify as lexemes. 

 diànn omí cyberphile 
diànz sh ngwù e-commerce 

 zhu ch zú auto fan 

3.3   Chinese-to-Chinese Conversion (C2C) 

Numerous Chinese characters underwent drastic simplifications in the postwar period. 
Chinese written in these simplified forms is called Simplified Chinese (SC). Taiwan, 
Hong Kong, and most overseas Chinese continue to use the old, complex forms, re-
ferred to as Traditional Chinese (TC). Contrary to popular perception, the process of 
accurately converting SC to/from TC is full of complexities and pitfalls. The linguis-
tic issues are discussed in [7], while technical issues are described in [11]. The con-
version can be implemented on three levels in increasing order of sophistication: 

1. Code Conversion. The easiest, but most unreliable, way to perform C2C is to 
transcode by using a one-to-one mapping table. Because of the numerous one-to-
many ambiguities, as shown below, the rate of conversion failure is unacceptably 
high. 

Table 3. Code Conversion 

SC TC1 TC2 TC3 TC4 Remarks 
     one-to-one 

     one-to-one 

     one-to-many 

     one-to-many 

     one-to-many 

2. Orthographic Conversion. The next level of sophistication is to convert ortho-
graphic units, rather than codepoints. That is, meaningful linguistic units, equivalent 
to lexemes, with the important difference that the TC is the traditional version of the  
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SC on a character form level. While code conversion is ambiguous, orthographic con-
version gives much better results because the orthographic mapping tables enable 
conversion on the lexeme level, as shown below. 

Table 4. Orthographic Conversion 

English SC TC1 TC2 Incorrect 
Telephone       
Dry         
       

As can be seen, the ambiguities inherent in code conversion are resolved by using 
orthographic mapping tables, which avoids false conversions such as shown in the 
Incorrect column. Because of segmentation ambiguities, such conversion must be 
done with a segmentor that can break the text stream into meaningful units [3]. 
    An extra complication, among various others, is that some lexemes have one-to-
many orthographic mappings, all of which are correct. For example, SC  cor-
rectly maps to both TC  'dry in the shade' and TC  'the five even numbers'. 
Well designed orthographic mapping tables must take such anomalies into account. 

3. Lexemic Conversion. The most sophisticated form of C2C conversion is called 
lexemic conversion, which maps SC and TC lexemes that are semantically, not ortho-
graphically, equivalent. For example, SC  xìnx  'information' is converted into the 
semantically equivalent TC  z xùn. This is similar to the difference between Brit-
ish pavement and American sidewalk. [14] has demonstrated that there are numerous 
lexemic differences between SC and TC, especially in technical terms and proper 
nouns, e.g. there are more than 10 variants for Osama bin Laden. 

Table 5. Lexemic Conversion 

English SC Taiwan TC HK TC Incorrect TC 
Software 

Taxi 

Osama  
Bin Laden 

Oahu 

3.4   Traditional Chinese Variants 

Traditional Chinese has numerous variant character forms, leading to much confu-
sion. Disambiguating these variants can be done by using mapping tables such as the 
one shown below.  

If such a table is carefully constructed by limiting it to cases of 100% semantic in-
terchangeability for polysemes, it is easy to normalize a TC text by trivially replacing 
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variants by their standardized forms. For this to work, all relevant components, such 
as MT dictionaries, search engine indexes and the related documents should be nor-
malized. An extra complication is that Taiwanese and Hong Kong variants are some-
times different [14].  

Table 6. TC Variants 

Var. 1 Var. 2 English Comment 
  Inside 100% interchangeable 

  Particle variant 2 not in Big5 

  sink; surname partially interchangeable 

4   Orthographic Variation in Japanese  

4.1   Highly Irregular Orthography 

The Japanese orthography is highly irregular, significantly more so than any other 
major language, including Chinese. A major factor is the complex interaction of the 
four scripts used to write Japanese, e.g. kanji, hiragana, katakana, and the Latin al-
phabet, resulting in countless words that can be written in a variety of often unpre-
dictable ways, and the lack of a standardized orthography. For example, toriatsukai 
'handling' can be written in six ways: , , , ,

, . 
An example of how difficult Japanese IR can be is the proverbial 'A hen that lays 

golden eggs.' The "standard" orthography would be Kin no tamago 
o umu niwatori. In reality, tamago 'egg' has four variants ( , , , ), 
niwatori 'chicken' three ( , , ) and umu 'to lay' two ( , ), 
which expands to 24 permutations like ,  
etc. As can be easily verified by searching the web, these variants occur frequently. 

Linguistic tools that perform segmentation, MT, entity extraction and the like must 
identify and/or normalize such variants to perform dictionary lookup. Below is a brief 
discussion of what kind of variation occurs and how such normalization can be achieved. 

4.2   Okurigana Variants 

One of the most common types of orthographic variation in Japanese occurs in kana 
endings, called okurigana, that are attached to a kanji stem. For example, okonau 'per-
form' can be written or , whereas toriatsukai can be written in the six 
ways shown above. Okurigana variants are numerous and unpredictable. Identifying 
them must play a major role in Japanese orthographic normalization. Although it is 
possible to create a dictionary of okurigana variants algorithmically, the resulting 
lexicon would be huge and may create numerous false positives not semantically in-
terchangeable. The most effective solution is to use a lexicon of okurigana variants, 
such as the one shown below: 



 The Contribution of Lexical Resources to Natural Language Processing  775 

Table 7. Okurigana Variants 

HEADWORD READING NORMALIZED 

 
   

 
   

Since Japanese is highly agglutinative and verbs can have numerous inflected forms, a 
lexicon such as the above must be used in conjunction with a morphological analyzer 
that can do accurate stemming, i.e. be capable of recognizing that 

 is the polite form of the canonical form . 

4.3   Cross-Script Orthographic Variation 

Variation across the four scripts in Japanese is common and unpredictable, so that the 
same word can be written in any of several scripts, or even as a hybrid of multiple 
scripts, as shown below: 

Table 8. Cross-Script Variation 

Kanji Hiragana katakana Latin Hybrid Gloss 
     carrot 

   OPEN  open 

     sulfur 
    Y    shirt  

      skin 

Cross-script variation can have major consequences for recall, as can be seen from 
the table below. 

Table 9. Hit Distribution for  'carrot' ninjin 

ID Keyword Normalized Google Hits 
A    67,500 
B    66,200 
C    58,000 

Using the ID above to represent the number of Google hits, this gives a total of 
A B C 123  = 191,700.   is a coincidental occurrence factor, such as in  
'100 , in which ' ' is unrelated to the 'carrot' sense. The formulae for calcu-
lating the above are as follows. 
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Unnormalized recall: 

123

α+++ CBA

C

700.191

000.58
30%)                   (1) 

Normalized recall: 

123

α+++
++

CBA

CBA

700.191

700.191
100                      (2) 

Unnormalized precision:  

3

α+C

C

000.58

000.58
100                     (3) 

Normalized precision: 

123

α+++ CBA

C

000.191

000.191
100                    (4) 

 'carrot' illustrates how serious a problem cross-orthographic variants can be. If 
orthographic normalization is not implemented to ensure that all variants are indexed 
on a standardized form like , recall is only 30%; if it is, there is a dramatic im-
provement and recall goes up to nearly 100%, without any loss in precision, which 
hovers at 100%. 

4.4   Kana Variants 

A sharp increase in the use of katakana in recent years is a major annoyance to NLP 
applications because katakana orthography is often irregular; it is quite common for 
the same word to be written in multiple, unpredictable ways. Although hiragana or-
thography is generally regular, a small number of irregularities persist. Some of the 
major types of kana variation are shown in the table below. 

Table 10. Kana Variants 

Type English Standard Variants 
Macron computer   

Long vowels maid   
Multiple kana team   
Traditional big   

  vs.  continue    
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The above is only a brief introduction to the most important types of kana variation. 
Though attempts at algorithmic solutions have been made by some NLP research labo-
ratories [1], the most practical solution is to use a katakana normalization table, such as 
the one shown below, as is being done by Yahoo! Japan and other major portals. 

Table 11. Kana Variants 

HEADWORD NORMALIZED English 
  Architecture 

  Architecture 

  Architecture 

4.5   Miscellaneous Variants 

There are various other types of orthographic variants in Japanese, described in [8]. 
To mention some, kanji even in contemporary Japanese sometimes have variants, 
such as  for  and  for  and traditional forms such as  for . In addition, 
many kun homophones and their variable orthography are often close or even identi-
cal in meaning, i.e., noboru means 'go up' when written  but 'climb' when written 

, so that great care must be taken in the normalization process so as to assure 
semantic interchangeability for all senses of polysemes; that is, to ensure that such 
forms are excluded from the normalization table. 

Table 12. Orthographic Normalization Table 

HEADWORD READING NORMALIZED 
   

   
   
   
   

   
   

   
   

   
   

 

4.6   Lexicon-Driven Normalization  

Leaving statistical methods aside, lexicon- driven normalization of Japanese ortho-
graphic variants can be achieved by using an orthographic mapping table such as the 
one shown below, using various techniques such as: 
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1. Convert variants to a standardized form for indexing. 
2. Normalize queries for dictionary lookup. 
3. Normalize all source documents. 
4. Identify forms as members of a variant group. 

Other possibilities for normalization include advanced applications such as do-
main-specific synonym expansion, requiring Japanese thesauri based on domain on-
tologies, as is done by a select number of companies like Wand and Convera who 
build sophisticated Japanese IR systems. 

5   Orthographic Variation in Korean 

Modern Korean has is a significant amount of orthographic variation, though far less 
than in Japanese. Combined with the morphological complexity of the language, this 
poses various challenges to developers of NLP tools. The issues are similar to Japa-
nese in principle but differ in detail. 

 

Briefly, Korean has variant hangul spellings in the writing of loanwords, such as 
 keikeu and  keik for 'cake', and in the writing of non-Korean personal 

names, such as  keulrinteon and keulrinton for 'Clinton'. In addition, 
similar to Japanese but on a smaller scale, Korean is written in a mixture of hangul, 
Chinese characters and the Latin alphabet. For example, 'shirt' can be written 

 wai-syeacheu or Y  wai-syeacheu, whereas 'one o'clock' hanzi can 
written as , 1  or . Another issue is the differences between South and 
North Korea spellings, such as N.K.  osakka vs. S.K.  osaka for 
'Osaka', and the old (pre-1988) orthography versus the new, i.e. modern  'worker' 
(ilgun) used to be written  (ilkkun). 
    Lexical databases, such as normalization tables similar to the ones shown above for 
Japanese, are the only practical solution to identifying such variants, as they are in 
principle unpredictable. 

6   The Role of Lexical Databases 

Because of the irregular orthography of CJK languages, procedures such as ortho-
graphic normalization cannot be based on statistical and probabilistic methods (e.g. 
bigramming) alone, not to speak of pure algorithmic methods. Many attempts have 
been made along these lines, as for example [1] and [4], with some claiming perform-
ance equivalent to lexicon-driven methods, while [10] reports good results with only a 
small lexicon and simple segmentor.  
    [3] and others have reported that a robust morphological analyzer capable of proc-
essing lexemes, rather than bigrams or n-grams, must be supported by a large-scale 
computational lexicon. This experience is shared by many of the world's major portals 
and MT developers, who make extensive use of lexical databases.   
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    Unlike in the past, disk storage is no longer a major issue. Many researchers and 
developers, such as Prof. Franz Guenthner of the University of Munich, have come to 
realize that “language is in the data,” and “the data is in the dictionary,” even to the 
point of compiling full-form dictionaries with millions of entries rather than rely on 
statistical methods, such as Meaningful Machines who use a full form dictionary con-
taining millions of entries in developing a human quality Spanish-to-English MT  
system. 
    CJKI, which specializes in CJK and Arabic computational lexicography, is engaged 
in an ongoing research and development effort to compile CJK and Arabic lexical 
databases (currently about seven million entries), with special emphasis on proper 
nouns, orthographic normalization, and C2C. These resources are being subjected to 
heavy industrial use under real-world conditions, and the feedback thereof is being 
used to further expand these databases and to enhance the effectiveness of the NLP 
tools based on them. 

7   Conclusions 

Performing such tasks as orthographic normalization and named entity extraction  
accurately is beyond the ability of statistical methods alone, not to speak of C2C con-
version and morphological analysis. However, the small-scale lexical resources cur-
rently used by many NLP tools are inadequate to these tasks. Because of the irregular 
orthography of the CJK writing systems, lexical databases fine-tuned to the needs of 
NLP applications are required. The building of large-scale lexicons based on corpora 
consisting of even billions of words has come of age. Since lexicon-driven techniques 
have proven their effectiveness, there is no need to overly rely on probabilistic meth-
ods. Comprehensive, up-to-date lexical resources are the key to achieving major en-
hancements in NLP technology. 
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Abstract. A multilingual spoken language corpus is indispensable for
spoken language communication research such as speech-to-speech trans-
lation. To promote multilingual spoken language research and develop-
ment, unified structure and annotation, such as tagging, is indispensable
for both speech and natural language processing. We describe our ex-
perience with multilingual spoken language corpus development at our
research institution, focusing in particular on speech recognition and nat-
ural language processing for speech translation of travel conversations.

1 Introduction

Various kinds of corpora developed for analysis of linguistic phenomena and
statistical information gathering are now accessible via electronic media and can
be utilized for the study of natural language processing. Since such information
includes written-language corpora and monolingual corpora, however, it is not
necessarily useful for research and development of multilingual spoken language
processing. A multilingual spoken language corpus is indispensable for spoken
language communication research such as speech-to-speech translation.

There are a variety of requirements for every component technology, such as
speech recognition and language processing. A variety of speakers and pronun-
ciations might be important for speech recognition. A variety of expressions and
information on parts of speech might be important for natural language process-
ing. To promote multilingual spoken language research and development, unified
structure and annotation, such as tagging, is indispensable for both speech and
natural language processing.

We describe our experience of multilingual spoken language corpus develop-
ment at our research institution, focusing in particular on speech recognition
and natural language processing for speech translation of travel conversations.

First, we introduce an interpreter-aided multilingual spoken dialog corpus
(SLDB), and discuss corpus configuration. Next, we introduce our basic travel
expression corpus (BTEC) built for training machine translation of spoken lan-
guage among Japanese, English, and Chinese. Finally, we discuss the Japanese,
English, and Chinese multilingual spoken dialog corpus that we created using
speech-to-speech translation systems.

Q. Huo et al.(Eds.): ISCSLP 2006, LNAI 4274, pp. 781–791, 2006.
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2 Interpreter-Aided Multilingual Spoken Dialog Corpus
(SLDB)

The corpus, called Spoken Language DataBase (SLDB), contains data from dia-
log spoken between English and Japanese speakers through human interpreters
[1,2]. All utterances in the SLDB have been translated into Chinese. The content
is all travel conversations between a foreign tourist and a front desk clerk at a
hotel. The interpreters serve as the speech translation system.

Table 1 is an overview of the corpus, and Table 2 shows its basic characteristics.

Table 1. Overview of SLDB

Number of collected dialogs 618

Speaker participants 71

Interpreter participants 23

Table 2. Basic characteristics of SLDB

Japanese English

Number of utterances 16,084 16,084

Number of sentences 21,769 22,928

Number of word tokens 236,066 181,263

Number of word types 5,298 4,320

Average number of words per sentence 10.84 7.91

Corpus configuration. One remarkable characteristic of SLDB is its integra-
tion of speech and linguistic data. Each conversation includes recorded speech
data, transcribed utterances, and their correspondences.

The transcribed Japanese and English utterances are tagged with morpho-
logical and syntactic information. These kinds of tagged information are crucial
for natural language processing. The recorded speech signals and transcribed
utterances in our database provide us with both examples of various phenomena
in bilingual conversations, and input data for speech recognition and machine
translation evaluation purposes.

Data can be classified into the following three major categories.

1. Transcribed data
2. Tagged data
3. Speech data

The transcribed data consists of the following.

(a) Bilingual text
(b) Japanese text
(c) English text
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J: Arigatou gozai masu. Kyoto Kankou Hotel de gozai masu.

JE: Thank you for calling Kyoto Kanko Hotel.|How may I help you?

E: Good evening. |I’d like to make a reservation, please.

EJ: Kombanwa. |Yoyaku wo shi tai n desu keredomo.

J: Hai,[e-]go yoyaku no hou wa itsu desho u ka?

JE: Yes, when do you plan to stay?

E: I’d like to stay from August tenth through the twelfth, for two nights.|

If possible, I’d like a single room, please.

EJ: Hachigatsu no tooka kara juuni-nichi made, ni-haku shi tai n desu.|

Dekire ba, single room de o-negai shi masu.

J: Kashikomari mashi ta. |Shoushou o-machi kudasai mase.

JE: All right, please wait a moment.

J: O-mata se itashi mashi ta.|

Osoreiri masu ga, single room wa manshitsu to nat te ori masu.

JE: I am very sorry our single rooms are fully booked.

J: [e]Washitsu ka twin room no o-hitori sama shiyou deshi tara o-tori deki masu ga.

JE: But, Japanese style rooms and twin rooms for single use are available.

E: [Oh] what are the rates on those types of rooms?

EJ: Sono o-heya no ryoukin wo oshie te kudasai.

J: Hai,[e-]twin room no o-hitori sama shiyou desu to ichi-man yon-sen yen.

JE: Yes, a twin room for single use is fourteen thousand yen.

J: Washitsu no hou desu to ichi-man has-sen yen,

[e-] izuremo zei, service ryou wa betsu ni nari masu.

JE: And for a Japanese style room, it’s eighteen thousand yen per night,

and tax and service charges are not included.

Fig. 1. Conversation between an American tourist and a Japanese front desk clerk

The recorded bilingual conversations are transcribed into a text file. Bilingual
text contains descriptions of the situations in which a speech translation system
is utilized.

Figure 1 shows examples of transcribed conversations. The Japanese text in
Figure 1 is transcribed into Romanized Japanese for the convenience of read-
ers who are unfamiliar with Japanese hiragana, katakana, and kanji (Chinese
characters). The original text is transcribed in Japanese characters hiragana,
katakana, and kanji. Interjections are bracketed. J, E, JE, or EJ at the beginning
of a line denotes a Japanese speaker, an English speaker, a Japanese-to-English
interpreter, or an English-to-Japanese interpreter, respectively. “|” denotes a
sentence boundary. A blank line between utterances shows that the utterance’s
right was transferred.

The Japanese text is produced by extracting the utterances of a Japanese
speaker and an English-to-Japanese interpreter, while the English text is pro-
duced by extracting the utterances of an English speaker and a Japanese-to-
English interpreter. These two kinds of data are utilized for such monolingual
investigations as morphological analysis, parsing, and so on.
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The tagged data consists of the following.

(d) Japanese morphological data
(e) English morphological data

Morphological and syntactic information are useful for the study of statistical
natural language processing, the production of grammar rules, etc.

3 Basic Travel Expression Corpus (BTEC)

The Basic Travel Expression Corpus (BTEC) [3,4] was designed to cover utter-
ances for all potential topics in travel conversations, together with their trans-
lations. Since it is practically impossible to collect them by transcribing actual
conversations or simulated dialogs, we decided to use sentences from the mem-
ories of bilingual travel experts. We started by looking at phrasebooks that
contain bilingual (in our case Japanese/English) sentence pairs that the authors
consider useful for tourists traveling abroad. We collected these sentence pairs
and rewrote them to make translations as context-independent as possible and
to comply with our speech transcription style. Sentences outside of the travel
domain or those containing very special meanings were removed.

Table 3 contains basic statistics of the BTEC collections, called BTEC1, 2, 3,
4, and 5. Each collection was created using the same procedure in a different time
period. We used a morpheme as the basic linguistic unit for Japanese (instead
of a word), since morpheme units are more stable than word units.

BTEC sentences, as described above, did not come from actual conversations
but were generated by experts as reference materials. This approach enabled
us to efficiently create a broad coverage corpus, but it may have two problems.
First, this corpus may lack utterances that appear in real conversation. For
example, when people ask the way to a bus stop, they often use a sentence like
(1). However, BTEC1 contains (2) instead of (1).

(1) I’d like to go downtown. Where can I catch a bus?
(2) Where is a bus stop (to go downtown)?

The second problem is that the frequency distribution of this corpus may be
different from the “actual” one. In this corpus, the frequency of an utterance
most likely reflects the best trade-off between usefulness in real situations and
compactness of the collection. Therefore, it is possible to think of this frequency
distribution as a first approximation of reality, but this is an open question.

Table 3. Overview of BTEC

BTEC1 BTEC2 BTEC3 BTEC4 BTEC5

# of utterances (103) 172 46 198 74 98

# of Japanese word tokens (103) 1,174 341 1,434 548 1,046

# of Japanese word types (103) 28 20 43 22 28

languages J:EC J:EC J:EC E:JC E:JC
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4 Machine-Translation-Aided Dialogs in a Laboratory
Room (MAD)

The previous approach focuses on maximizing the coverage of the corpus rather
than creating an accurate sample of reality. Users may use different wording
when they speak to the system.

Therefore, the second approach is intended to collect representative utter-
ances that people will input into S2ST systems. For this purpose, we carried
out simulated (i.e., role play) dialogs between two native speakers of different
mother tongues with a Japanese/English bi-directional S2ST system, instead of
using human interpreters.

The first half period of the research program, we used human typists instead
of speech recognizers in order to collect good quality data. The second half
period of the research program, we used our S2ST system between English and
Japanese and between Chinese and Japanese.

4.1 Collecting Spoken Dialog Data Using Typists

We have conducted five sets of simulated dialogs (MAD1 through MAD5) so far,
changing parameters including system configurations, complexity of dialog tasks,
instructions to speakers, etc. Table 4 shows a summary of the five experiments,
MAD1-MAD5. In this table, the number of utterances includes both Japanese
and English.

Table 4. Statistics of MAD Corpora

Subset ID MAD1 MAD2 MAD3 MAD4 MAD5

Reference [5] [5] [6] [7] [8]

# of utterances 3022 1696 2180 1872 1437

# of morphs per utterance 10.0 12.6 11.1 9.82 8.47

# of utterances per dialog 7.8 49.3 18.8 22.0 27.0

Task complexity Simple Complex Medium Medium Medium

Average numbers depend on experimental conditions.

The first set of dialogs (MAD1) was collected to see whether conversation
through a machine translation system is feasible. The second set (MAD2) focused
on task achievement by assigning complex tasks to participants. The third set
(MAD3) contains carefully recorded speech data of medium complexity. MAD4
and MAD5 aim to investigate how utterances change based on different settings.

Figure 2 is an overview diagram of the data collection environment.
It is very likely that people speak differently to a spoken language system

based on the instructions given to them. For all the sets except MAD1, we made
instructional movies to ensure that the same instructions were given to each
subject. Before starting the experiments, subjects were asked to watch these
movies and then to try the system with test dialogs. Instructions and practice
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Fig. 2. Data Collection Environment of MAD

took about 30 minutes. In the fourth set (MAD4), we gave different types of
instructions in this preparation step.

S2ST presupposes that each user understands the translated utterances of
the other. However, the dialog environment described so far allows the user to
access other information, such as translated text displayed on a PDA. We tried to
control the extra information in MAD5 to see how utterances would be affected.

4.2 Collecting Spoken Dialog Data Using Speech Translation
Systems

We collected spoken dialog data using our S2ST system for English and Japanese.
This data collection experiment is called MAD6 because we conducted five data
collection experiments using typists. The system was configure as follows.

– Acoustic model for Japanese speech recognition: Speaker-adapted models.
– Language model for Japanese speech recognition: Vocabulary size 52,000

morphemes.
– Acoustic model for English speech recognition: Speaker-adapted models.
– Language model for English speech recognition: Vocabulary size 15,000 mor-

phemes.
– Translation from Japanese to English: HPAT+D3+Selector [9].
– Translation from English to Japanese: HPAT+D3+Selector [9].
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Table 5. Overview of MAD6

MAD6

Purpose Spoken dialog data collection using S2ST system

Task Simple as MAD1

# of utterances 2,507

# of dialogs 139

– Japanese speech synthesis: XIMERA 1.0 [10].
– English speech synthesis: AT&T Labs’ Natural VoicesTM.

Table 5 is an overview of MAD6. We designed task dialogs to take ten minutes
or less.

5 Machine-Translation-Aided Dialogs in Realistic Fields
(FED)

An ideal approach to applying a system to “real” utterances is to let people
use the system in real world settings to achieve real conversational goals (e.g.,
booking a package tour). This approach, however, has at least two problems.
First, it is difficult to back up the system when it makes errors because current
technology is not perfect. Second, it is difficult to control tasks and conditions
to do meaningful analysis of the collected data.

The new experiment reported here was still in the role-play style but its
dialog situations were designed to be more natural. We set up our S2ST system
for travel conversation at tourist information centers in an airport and a train
station, and then asked non-Japanese-speaking people to talk with the Japanese
staff at information centers using the S2ST system.

Experimental system for data collection. Figure 3 is an overall diagram of
the experimental system. The system includes two PDAs, one for each language,
and several PC servers. The PC servers are for a special controller called the
“gateway” and for component engines, consisting of ASR (Automatic Speech
Recognition) [11], MT (Machine Translation) [12], and SS (Speech Synthesis)
[10] PCs for each language and each language-pair. The gateway is responsible for
controlling information flow between PDAs and engines. It is also responsible for
mediating messages from ASR and MT engines to PDAs. Each PDA is connected
to the gateway with a wireless LAN. The gateway and component engines are
wired. In the FED experiment, we also used headset microphones.

An utterance spoken into a PDA is sent to the gateway server, which calls
the ASR, MT, and SS engines in this order to have the utterance translated.
Finally, the gateway sends the translated utterance to the other PDA.

We used speaker-adapted acoustic models for Japanese speech recognition
because a limited number of Japanese staffs at the tourist office joined the FED
experiment. We also added to the lexicons some proper names that were deemed



788 T. Takezawa

PDA
(Pocket PC)

Wi-Fi

PCM 

S2ST Gateway Controller

ASR (J)

ASR (E)

MT (JtoE)

MT (EtoJ)

SS (E)

SS (J)

Common 
XML Data 
Structure

ASR (C)
MT (CtoJ)

MT (JtoC)
SS (C)

Fig. 3. Overview of the experimental system

necessary to carry out the planned conversations. These included names such as
those of stations near the locations of the experiment.

Locations. We conducted the data collection experiments near two tourist
information centers. One was in Kansai International Airport (hereafter, KIX),
and the other was at Osaka City Air Terminal (hereafter, OCAT) in the center
of Osaka. The former is in the main arrival lobby of the airport, which many
tourists with luggage carts pass as they emerge from customs. The latter is a
semi-enclosed area of about 40 m2 surrounded by glass walls (but with two open
doors).

Environmental noise was 60-65 dBA at both places. The noise, however, rose
to 70 dBA when the public address system was in use.

Language pairs. English-Japanese/Japanese-English and Chinese-Japanese/
Japanese-Chinese.

Scenario. A good method of collecting real utterances is to just let subjects
talk freely without using predetermined scenarios. Analyzing uncontrolled dialog,
however, is very difficult. In our FED experiment, we prepared eight dialog sce-
narios that were shown to subjects. These scenarios, listed below, are categorized
by expected number of turns for each speaker, into three levels of complexity.
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Level-1 : Requires one or two turns per speaker plus greetings.
E.g., “Please ask where the bus stop for Kyoto station is.”

Level-2 : Requires three or four turns per speaker plus greetings.
E.g., “Please ask the way to Kyoto station.”

Level-3 : Free discussion.
E.g., “Please ask anything related to traveling in the Osaka area.”

Real dialogs included many clarification sub-dialogs necessitated by incom-
prehensible outputs from the system. This means that the number of turns was
actually larger than we expected or planned.

Japanese speakers. We asked staff at tourist information centers to participate
in the experiments, with six people at KIX and three at OCAT agreeing to take
part in the experiments.

Chinese speakers. Since the Chinese speech recognizer was trained on Man-
darin speech, we needed to recruit subjects from (the Beijing region of) Mainland
China. It was, however, difficult to find tourists from Mainland China who had
time to participate in the experiment because most of them came to Osaka
as members of tightly scheduled group tours. Therefore, we relied on 36 sub-
jects gathered by the Osaka prefectural government. These subjects are college
students from Mainland China majoring in non-technical areas such as foreign
studies and tourism.

English speakers. The English speech recognizer was trained on North Ameri-
can English. Again, however, it was difficult to find volunteer subjects who speak
North American English. We expected to recruit many individual tourists, and
most of the English-speaking volunteer subjects were indeed tourists arriving at
or leaving the airport during the experiment. In addition to these volunteers,
Osaka prefecture provided five subjects who were working in Japan as English
teachers. The resulting 37 subjects were not all North Americans, as shown in
Table 6.

Conducting data collection. First, we set up the S2ST system and asked the
Japanese subjects (i.e., service personnel at the tourist information centers) to
stand by at the experiment sites.

Table 6. Origin of English-speaking subjects

Origin # of subjects

U.S.A. 15

GB 6

Australia 5

Canada 4

New Zealand 2

Denmark 2

Other 5
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When an English or Chinese speaking subject visited a center, he or she was
asked to fill out the registration form. Then, our staff explained for 2-3 minutes
how to use the S2ST system and asked the subject to try very simple utterances
like “hello” or “thank you.” After the trial utterances, we had the subject try
two dialogs: one dialog for practice using a level-1 scenario, and the other for
the “main” dialog, which was a scenario chosen randomly from level-1 through
level-3. Finally, the subject was asked to answer a questionnaire.

The average time from registration to filling out the questionnaire was 15-
20 minutes. Since we conducted 4-5 hours of experiments each day, excluding
system setup, we were able to obtain dialog data for 15 subjects per day.

Overview of collected data. Table 7 is an overview of FED data.

Table 7. Overview of FED

J(toE) E(toJ) J(toC) C(toJ)

# of utterances 608 660 344 484

# of speakers 7 39 6 36

# of word tokens 3,851 4,306 2,017 422

# of word types 727 668 436 382

6 Conclusion

We described our experience of multilingual spoken language corpus devel-
opment at our research institution, focusing in particular on speech recogni-
tion and natural language processing for speech translation of travel conversa-
tions.

First, we introduced interpreter-aided multilingual spoken dialog corpus
(SLDB), and mentioned corpus configuration. Next, we introduced basic travel
expression corpus (BTEC) built for training machine translation of spoken lan-
guage among Japanese, English and Chinese speakers. Finally, we mentioned
a multilingual spoken dialog corpus between Japanese, English, and Chinese
created using speech-to-speech translation systems.

In the future, we plan to expand our activities to multilingual spoken language
communication research and development involving both verbal and nonverbal
communications.
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Abstract. This paper describes a recently initiated effort for collection
and transcription of read as well as spontaneous speech data in four
Indian languages. The completed preparatory work include the design of
phonetically rich sentences, data acquisition setup for recording speech
data over telephone channel, a Wizard of Oz setup for acquiring speech
data of a spoken dialogue of a caller with the machine in the context of
a remote information retrieval task. An account of care taken to collect
speech data that is as close to real world as possible is given. The current
status of the programme and the set of actions planned to achieve the
goal is given.

1 Introduction

Human Computer Interaction through Natural Language is touted to be the
next big event in computing. This necessitates the advent of machine interfaces
through which users can interact through spoken or written language. This is
imperative in a multi-lingual country such as India where a large fraction of
population would hesitate to use English language oriented input/output devices.
In addition, development of multi-lingual technology in the Indian context would
foster greater interaction among people who may not know each other’s language.

Realizing the importance of multilingual technology, the Government of In-
dia has initiated a number of programmes. The most recent one is an an Indo-
German Collaboration project titled ’Voice-based Multilingual Information
Access (V-MIA) System for Indian Languages’ [1]. Text as well as spoken multi-
lingual corpora are key raw materials for development of language technology.
This paper describes an effort for development of spoken corpora in four Indian
Languages.

The organization of the paper is as follows. Section 2 briefly states the cur-
rent status of corpora development in Indian languages. The goal of the current
initiative is stated in Section 3. The process of accumulation of text corpus and
design of phonetically rich sentence corpus is described in Section 4. The need
for collecting conversational speech data for developing practical speech appli-
cations is dealt with in Section 5. A detailed account of speech data acquisition
setup is given in Section 6. It also states the current status of the programme
and tasks to be taken up next. Some conclusions are drawn in Section 7.

Q. Huo et al.(Eds.): ISCSLP 2006, LNAI 4274, pp. 792–801, 2006.
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2 Current Scene in India

Considerable progress has been made in generation of text corpus of Indian
languages thanks to the Technology Development in Indian Languages pro-
gramme of the Government of India. For example, thirty lakh words of machine
readable corpora in various Indian languages has been created through a dozen
Language Technology Resource Centres [2]. In addition, software tools for word
level tagging of grammatical categories, word count, frequency count have also
been developed. In contrast, development of spoken corpora and handwritten
script corpora has lagged behind. A status report of the speech database devel-
opment activities for Indian languages is given in [3]. Several organizations have
created database of isolated words in many Indian languages. A multi-speaker,
annotated and hand-segmented speech database for Hindi language was devel-
oped about a decade ago [4]. However, large spoken language corpora are yet to
be generated for Indian languages.

3 Present Initiative

Development of Automatic Speech Recognition system in a language needs a
large amount of annotated speech data in order to train statistical models as
well as for evaluation of trained systems. Such corpora have to be created for
many languages in a multi-lingual country such as India. An effort initiated by
the spoken language group of TIFR is a step in this direction. The goal is to
generate large corpora of spoken Indian languages. The corpora will consist of
phonetically rich sentences spoken by many speakers as well application specific
conversational speech. The database will be annotated at the lexical level.

Another feature of the proposed database is that speech will be collected over
telephone channels. One of the unique features of voice oriented interface to com-
puter is that there exists a telecommunication network that carries speech signal.
This permits a user to conveniently access information from central databases
remotely on anytime anywhere basis if an automatic speech recognition (ASR)
and understanding system is part of the back-office. With the recent introduction
of cellular networks, the telephone density in India has increased tremendously.
Thus, it is necessary to collect narrow band speech data so that the database
can be put to use to develop speech applications sooner.

In the first phase of the present programme, speech databases will be devel-
oped for four languages: Hindi, Marathi, Indian English and Malayalam. These
languages have been chosen keeping in mind the importance, representation and
ease of data acquisition. Hindi is the official language of the Government of India
and spoken widely in North India. It is the mother-tongue of about one third of
Indian population; another one third Indians speak Hindi as second language.
TIFR is located in Mumbai, the capital of the western state of Maharashtra;
Marathi is the official language of the state. English is an associate official lan-
guage of the Government of India and is the de facto medium of instruction in
colleges. Although its usage in India is much less than that of Hindi, it is spoken
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by educated Indians who happen to be the first users of modern technology. Also,
because English is spoken as second or third language, the phrase structure of
mother tongue influences that of spoken English. This gives rise to what can be
called ’Indian English’ whose lexicon and sentence formation differs noticeably
from, say British or American English. In addition, the flavour of Indian English
varies continuously across India due to a multitude of languages spoken.

Both Hindi and Marathi languages belong to the Indo-European language
family, and in fact, share a common script. Even English belongs to the same
language family. People in southern part of India speak languages belonging to
Dravidian language family. Malayalam is a Dravidian language, and is the fourth
language selected in the first stage of the effort.

This paper is a report of the preliminary work done in development of multi-
lingual spoken language corpora development effort that was recently initiated
at TIFR, Mumbai.

4 Phonetically Rich Text Corpora

Due to statistical nature of the models used by prevalent speech recognition
systems, a large amount of speech data is needed to train the model. In order
to represent (or at least to manage) variations in speech signal due to many
factors such as phonetic context, speaker variability etc., complex models are
used that involve a large number of parameters. For reliable estimation of these
parameters, a lot of people have to speak many sentences that comprise of a
variety of phonetic contexts. People are not willing to spend a lot of time reading
dozens of sentences, since time is always at a premium. Moreover, data has to
be collected from a large number of speakers. Thus, it is imperative to design
compact sets of sentences that not only contain as many important phonetic
contexts as possible, but also are not difficult to speak. A prerequisite for such
a selection process is a large text corpus in a form that is amenable to such
statistical analysis.

An easily available source of electronic text in Indian languages is the set of
internet based vernacular newspapers. A few online newspapers have archives
that go back 3 to 4 years. Another advantage is that this corpus keeps growing on
a daily basis. However, there are some disadvantages too. A major disadvantage
is that the text corpus gets dominated by the writing style of one newspaper.
This problem can be alleviated if we can collect data from many newspapers.
However, such an effort throws new challenges due to the nature of script used
by Indian languages.

The Indic scripts used by Indian languages are syllabic in nature. Each char-
acter represents one vowel preceded by zero or more consonants. Figure 1 shows
the basic characters of the Devanagari script used by Hindi and Marathi lan-
guages. The first panel shows vowels in independent form, i.e., no consonant.
The second and third panels show consonants with an implicit /a/ vowel. The
fourth panel illustrates syllabic characters comprising of phoneme /k/ following
by various vowels; here, vowels are represented by glyphs called ‘matras’. When
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ka kA ki kI ku kU ke kE ko kO

Fig. 1. Basic characters of the Devanagari script used by Hindi and Marathi languages;
the corresponding IPA symbols are also shown. The first panel shows vowels in indepen-
dent form; the second and third panels show consonants with an implicit /a/ vowel.
The fourth panel shows syllabic characters comprising of phoneme /k/ following by
various vowels; vowels are represented by glyphs called ‘matras’. Notice that quite a
few graphemes share glyphs such as vertical lines. Also, a few characters are proper
subsets of others. Exploitation of such properties to minimize the size of glyphs by font
developers result in non-standard grapheme-to-phoneme conversion rules.

a syllable comprises of more than one consonant, consonants can be combined
to form ligatures. This leads to hundreds of ligatures.

Notice that quite a few graphemes share glyphs such as vertical lines or semi-
circles. In fact, in case of graphemes with a vertical line (called danda) on right,
the absence of the danda represents a pure consonant and is used to form lig-
atures. Also, a few characters are proper subsets of others. Such characteristics
are exploited by certain font developers to construct a small set of glyphs that
form the building blocks for constructing all characters including ligatures. For
example, a consonant associated a simple grapheme could be encoded by one
byte, whereas a consonant associated with a complex grapheme may be encoded
by three bytes. Thus, in case of such fonts, the mapping between the glyphs
and their binary codes is non-standard and needs to be discovered. On the other
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hand, if the publisher uses a standard font encoding scheme such as Unicode
or UTF-8, it is easier to transliterate online vernacular text in roman script for
gathering phonetic and linguistic statistics. Such a simple scheme was employed
by a Hindi online newspaper. Thus it was easy to quickly acquire a large amount
of text in electronic form and to select phonetically rich sentences as described
in [6]. On the other hand, for Marathi language, we could not locate an online
newspaper that used a well known encoding scheme. So, we had to discover the
mapping, and write a complex program that derived the transliteration form.
Same was found to be true with Malayalam language. For English language, we
plan to use sentences of the TIMIT database [5].

Another disadvantage of using newspapers as source of text is that the web
material belongs to a small set of topics and is not general enough. Moreover,
sentences to be read should not be long or difficult to comprehend. These diffi-
culties are more likely to be encountered with newspaper text. Therefore, there is
a need to augment such sources with others such as online webpages and stories.

Once a large set of textual material is available, one can select phonetically rich
sentences to form sets of sentences to be read by subjects. We use phonetically
‘rich’ criteria rather than the traditional phonetically ‘balanced’ criteria because
we wanted to enrich the frequency count of rare phonemes in the database. In
our previous effort [4], the goal was not only to enrich the phonetic diversity, but
also richness of Broad Acoustic Class pairs. This was necessary because of the
small size of the database. Also, the phoneme boundaries in speech data were to
be manually marked; the database was supposed to serve other needs in addition
to speech recognition. However, in the current programme, we restricted the goal
to enhance the phonemic richness since the primary aim of the database is to
train speech recognition models. The concern for diversity of phonetic context is
likely to be less severe here due to large amount of speech data that is proposed
to be collected. We plan to use the public domain software,“CorpusCrt”, for
this purpose [7]. It may be noted that phonetically rich sentences in the four
languages designed in this project are not related to each other, unlike in the
case of a parallel corpus.

5 Spoken Dialog

When human beings exchange information through natural language, the process
does not complete with each person saying one sentence. Instead, a conversa-
tion takes place between human beings. This is quite often needed since people
are wont to give incomplete or ambiguous information or query. The process
of disambiguation or seeking clarification leads to a dialogue. The same phe-
nomenon is likely to recur in case of voice oriented human machine interaction
as well. So, developers of real-life speech applications would need to pay atten-
tion not only to speech recognition but also to other aspects of spoken dialogue.
Such a dialogue is associated with spontaneous speech whose characteristics are
quite different from read speech. Spontaneous speech contains speech disfluen-
cies such as “ah”s, “am”s, pause, incomplete word, repetition, false starts etc.
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Such natural human behaviour has to modeled in speech recognition systems.
Any modeling needs data. Thus, collection of speech data in the context of a hu-
man machine conversation is necessary. In the absence of a machine with speech
recognition/understanding capability, such a data can only be generated in a
simulated environment. We plan to record speech of a person in ‘conversation’
with a machine with the goal of acquiring a specific information. The next sec-
tion describes the data collection setup and the procedure for collecting read as
well as spontaneous speech data.

6 Data Acquisition Setup

The goal is to collect speech data over telephone channel; so, a computer tele-
phony interface is a prerequisite. Since conversational speech is to be recorded,
the interface must be intelligent enough to detect ‘barge-in’ by the subject and
take appropriate action. A 4 port Dialogic analog voice card (Model D/41 JCT)
was chosen to operate in Linux environment. The card can detect voice activity
on the incoming channel, detect barge-in, and stop a system prompt playing on
the outgoing channel of the same telephone line and record speech data in an
echo canceled mode. It can store speech data either in a file or in an array that
can be processed by another programme. This features enables automatic speech
recognition in a live mode.

6.1 Wizard of Oz Setup

In addition to recording read speech, an important aim of the current speech
database programme is to record goal oriented, conversational speech. Sponta-
neous speech has a few distinct characteristics in comparison to read speech. In
the latter, speakers carefully read grammatically correct sentences designed to
cover a variety of phonetic contexts and suprasegmental effects. On the other
hand, spontaneous speech quite often includes ungrammatical phrases, and a
variety of speech disfluencies as mentioned earlier. Therefore, acoustic and lan-
guage models trained with read speech data is not suitable for conversational
systems. Hence, it is necessary to collect speech data in a simulated environment
where speakers feel that they are talking and listening to a machine. ‘Wizard
of Oz’ is one such speech data collection method where a human volunteer acts
like a wizard, and emulates the response of an ASR system. He always listens
to the speech of the caller, but can never talk to the caller. Instead, he types
in the likely response of the machine based on its understanding of the caller’s
speech. The machine takes the textual input entered by the wizard and gen-
erates corresponding speech; this synthesized speech is played to the caller. In
addition, some errors of the ASR system are feigned so that the caller feels as if
he is actually carrying on a spoken dialogue with the system. The acoustic and
language models trained with speech data collected under such an audio-only
environment are likely to perform better in actual usage by the general public.

The task domain of the current setup at TIFR is that of a railway reservation
enquiry system. Figure 2 shows a snapshot of the java based Graphical User
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Fig. 2. A graphical user interface for Wizard of Oz experiment for collection of con-
versational speech over telephone channel under a simulated environment

Interface (GUI) that helps to simulate the response of a computer to the caller.
The caller will be instructed to carry out a free form dialogue with the computer
and achieve a pre-specified goal. A typical goal is to find out whether a reserved
ticket of a certain class of travel is available for traveling between pre-specified
stations by a train on a specified date. All interaction is in audio-only mode since
the caller may be calling over mobile phone from anywhere.

A volunteer (the wizard) sits in front of the computer running the GUI and
keeps listening to whatever the caller says. Mandatory information to be spo-
ken by the caller are source and destination stations, train name or number,
class and date of travel. Whenever the caller provides one or more such infor-
mation, the wizard enters that information by selecting the suitable entry in a
drop down menu in the appropriate panel. The caller is free to speak such that
the utterance contains zero or one or many items of information. Moreover, he
may provide information in any order. For instance, the destination and date
of travel may be mentioned in the first query. When the wizard enters these
information and presses the button “QUERY” at the lower part of the GUI, the
system discovers that the source station is not known. It generates a query to
this effect, synthesizes the corresponding speech waveform, and plays it over the
telephone channel. The query also contains the information just provided by the
caller so that he has the option of correcting the misunderstanding of the system,
if any. The computer continues to carry on such a dialogue with the caller until all
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the necessary information is received for seeking the availability status from the
database. Then, the wizard presses the “CONFIRM” button. The computer re-
trieves the information from the reservation information database, composes the
response containing the availability status and plays the corresponding synthetic
speech data. Then, it asks whether the user wants any further information. If
the answer is affirmative, the wizard presses “RESET” button; the information
on the panels get cleared. Else, the wizard chooses the “THANK YOU” button
and the system plays a valedictory message.

It may be noted that the wizard never speaks and the caller hears only the
synthesized speech. Also, the wizard has the option of deliberately entering in-
correct information, thus simulating errors in speech recognition. Since these
errors are normally among acoustically confusing words, the GUI facilitates sim-
ulation of such errors. Normally, selections in the windows are made by clicking
the left button. On the other hand, when the wizard clicks the right button in
station name or train name, a new pane appears containing phonetically similar
items. Figure 2 illustrates such an event. The caller has spoken “Ahmedabad”;
the system has shown that “Aurangabad” and “Allahabad” are city names that
are acoustically similar to the spoken word ‘Ahmedabad’, and are potential out-
come of ASR system in case of a misrecognition. The wizard can choose any of
them in order to simulate an error of ASR system. In this fashion, response of
callers to erroneous recognition of the machine can be collected and modeled.
The speech and the corresponding text data can be used to train acoustic and
language models for spoken conversation.

This setup is just to collect spontaneous speech data in a simulated environ-
ment. The system does not carry out input validation tests. For example, the
station may not be on the itenery or path of the train. The train number, di-
rection of travel, available classes may not match. The availability information
provided at the end of the dialogue is purely random.

Currently, the java based GUI system and C based computer telephony inter-
face software have been tested independently. The two are being integrated for
the purpose of recording spoken conversations in Hindi. It can be easily adapted
to other languages by changing the speech synthesis system. In the current ver-
sion, we plan to use pre-recorded speech instead of a full blown text-to-speech
system. We expect the data collection setup to be operational in about a month’s
time.

We want the collected data to reflect the actual usage conditions. The only
restriction we place currently is that the signal-to-noise ratio should not be low.
It may be possible to relax this constraint in future by considering the fact that
most mobile companies employ sophisticated signal processing algorithms to en-
hance speech of the speaker even when the microphone is several centimeters
away and above the mouth. We plan to collect data from people with diverse
educational, dialectal backgrounds. We also plan to collect data from many geo-
graphical locations. Also, we would like people to speak using their handset over
landline or wireless channel. Such a diversity of handsets has to be strived for
since in actual application, speech can come from any of the handsets. The wide
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variation in transduction properties of handsets is a major cause of misrecogni-
tion in ASR. In order detect the type of handset, we plan to collect information
about the model of the handset. Additional information we would collect about
speaker are gender, age group (3 groups: <= 15, 15 < age <= 30, > 30) and
mother tongue.

One of the practical difficulties is to coax people to spend time to participate in
the data collection process. Moreover, we expect subjects to use their phone (and
pay for the call) because we want to capture variability in handset characteristics.
So, we plan to entice people to cooperate with us by giving mobile recharge
coupons that more than compensate for the phone bill. Still, volunteers are
needed to coax people in India. The proposed strategy is to approach friends
and relatives of volunteers first and approach others later hoping that the word
of mouth spread of the news and incentive would do the needful. If a volunteer
is present with the speaker, he can (a) give a hardcopy of the set of sentences
to read, (b) explain the conversational data collection setup, and issue the card
that contains the goal of that conversation to the subject, (c) and handover the
coupons.

There is an additional advantage in having a volunteer with the subject dur-
ing the recording process. While the subject is talking to the computer over the
phone, the same speech can also be simultaneously recorded over a wideband
speech recorder. The advent of small, flash drive based voice recorders has made
this possible. The recorder is light and smaller than normal mobile phones in In-
dia, and thus can be attached to the mobile phone easily. The recorder has 1GB
storage and has excellent speech I/O hardware. Thus, we plan to acquire broad-
band speech as well. This recording, however, will not have sentence boundary,
may have the voice of volunteer and others, and will have to be processed by
humans even to extract sentences. Yet, as the adage goes, “no data like more
data”; one can even say “no data like real data”.

We have thoroughly tested the read speech data acquisition setup, by con-
ducting trial runs in the lab, by making phone calls from suburbs and over mobile
phones. We have standardized the speaker information sheet, file naming con-
vention and speech data organization. We have also collected speech data from
about a dozen persons. However, we would like to wait for the Wizard of Oz
setup to be ready so that we can collect both type of data at one shot. We also
plan to use the speech data collection drive to acquire handwritten Devanagari
script data for online cursive script recognition studies.

6.2 Follow-Up Process

The previous section has described the data collection setup and the acquisition
process in great detail. The recorded speech, however, has to be processed so
that it can be used for developing ASR systems. While speech data can be
automatically organized in speaker-specific directory structures, data still has
to be validated for errors such as ‘no speech’ etc. Another time-consuming task
is that of manual transcription of data by listening to spontaneous speech. The
transcription involves not only noting down the sequence of words but also speech
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disfluencies and pauses. A pronunciation dictionary has to be prepared that
contains all the words that occur in the conversation. As a reviewer pointed out,
it is desirable to validate the recorded data and transcription process at an early
stage. An evaluation of the initial data would give an opportunity to improve and
modify the data collection process, if it is necessary. In view of the task-specific,
goal oriented conversation, a study of various dialogue samples may give us clues
to generate language models (for use in automatic speech recognition) that are
better than a simple n-gram language model.

7 Conclusions

Generation of multi-lingual speech corpora for Indian languages is a dire ne-
cessity if the benefit of information technology has to be made available to all
citizens of the country. We have presented an outline of a recent initiative to col-
lect speech data in 4 Indian languages and described the preparatory work that
has been completed with respect to Hindi. Read speech data has been collected
from about a dozen speakers of Hindi language, and trial runs for collection of
spontaneous speech data will commence soon. Preparatory work for extending
the data collection process to other 3 Indian languages is in progress. We hope
to collect significant amount of speech data that will bring us closer to face chal-
lenges as well as to realize opportunities in the development of spoken language
machine interfaces for use by ordinary Indians.
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